
Trinity University
Digital Commons @ Trinity

Faculty Authored and Edited Books & CDs

12-2013

Elementary Differential Equations
William F. Trench
Trinity University, wtrench@trinity.edu

Follow this and additional works at: https://digitalcommons.trinity.edu/mono

Part of the Mathematics Commons

This Book is brought to you for free and open access by Digital Commons @ Trinity. It has been accepted for inclusion in Faculty Authored and Edited
Books & CDs by an authorized administrator of Digital Commons @ Trinity. For more information, please contact jcostanz@trinity.edu.

Recommended Citation
Trench, William F., "Elementary Differential Equations" (2013). Faculty Authored and Edited Books & CDs. 8.
https://digitalcommons.trinity.edu/mono/8

https://digitalcommons.trinity.edu?utm_source=digitalcommons.trinity.edu%2Fmono%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/mono?utm_source=digitalcommons.trinity.edu%2Fmono%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/mono?utm_source=digitalcommons.trinity.edu%2Fmono%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.trinity.edu%2Fmono%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.trinity.edu/mono/8?utm_source=digitalcommons.trinity.edu%2Fmono%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jcostanz@trinity.edu


ELEMENTARY DIFFERENTIAL
EQUATIONS

William F. Trench
Andrew G. Cowles Distinguished Professor Emeritus

Department of Mathematics

Trinity University

San Antonio, Texas, USA

wtrench@trinity.edu

This book has been judged to meet the evaluation criteria set by the Ed-

itorial Board of the American Institute of Mathematics in connection

with the Institute’s Open Textbook Initiative. It may be copied, modi-

fied, redistributed, translated, transported, and built upon subject to the

Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported License

FREE DOWNLOAD: STUDENT SOLUTIONS MANUAL

http://ramanujan.math.trinity.edu/wtrench/index.shtml
mailto:{wtrench @trinity.edu}
http://www.aimath.org/textbooks/
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_G
http://ramanujan.math.trinity.edu/wtrench/texts/TRENCH_DE_STUDENT_MANUAL.PDF


Free Edition 1.01 (December 2013)

This book was published previously by Brooks/Cole Thomson Learning, 2001. This free edition is made

available in the hope that it will be useful as a textbook or reference. Reproduction is permitted for

any valid noncommercial educational, mathematical, or scientific purpose. However, charges for profit

beyond reasonable printing costs are prohibited.



TO BEVERLY



Contents

Chapter 1 Introduction 1

1.1 Applications Leading to Differential Equations

1.2 First Order Equations 5

1.3 Direction Fields for First Order Equations 16

Chapter 2 First Order Equations 30

2.1 Linear First Order Equations 30

2.2 Separable Equations 45

2.3 Existence and Uniqueness of Solutions of Nonlinear Equations 55

2.4 Transformation of Nonlinear Equations into Separable Equations 63

2.5 Exact Equations 73

2.6 Integrating Factors 83

Chapter 3 Numerical Methods

3.1 Euler’s Method 96

3.2 The Improved Euler Method and Related Methods 109

3.3 The Runge-Kutta Method 119

Chapter 4 Applications of First Order Equations1em 130

4.1 Growth and Decay 130

4.2 Cooling and Mixing 140

4.3 Elementary Mechanics 151

4.4 Autonomous Second Order Equations 162

4.5 Applications to Curves 179

Chapter 5 Linear Second Order Equations

5.1 Homogeneous Linear Equations 194

5.2 Constant Coefficient Homogeneous Equations 210

5.3 Nonhomgeneous Linear Equations 221

5.4 The Method of Undetermined Coefficients I 229

iv



5.5 The Method of Undetermined Coefficients II 238

5.6 Reduction of Order 248

5.7 Variation of Parameters 255

Chapter 6 Applcations of Linear Second Order Equations 268

6.1 Spring Problems I 268

6.2 Spring Problems II 279

6.3 The RLC Circuit 291

6.4 Motion Under a Central Force 297

Chapter 7 Series Solutions of Linear Second Order Equations

7.1 Review of Power Series 307

7.2 Series Solutions Near an Ordinary Point I 320

7.3 Series Solutions Near an Ordinary Point II 335

7.4 Regular Singular Points Euler Equations 343

7.5 The Method of Frobenius I 348

7.6 The Method of Frobenius II 365

7.7 The Method of Frobenius III 379

Chapter 8 Laplace Transforms

8.1 Introduction to the Laplace Transform 394

8.2 The Inverse Laplace Transform 406

8.3 Solution of Initial Value Problems 414

8.4 The Unit Step Function 421

8.5 Constant Coefficient Equations with Piecewise Continuous Forcing

Functions 431

8.6 Convolution 441

8.7 Constant Cofficient Equations with Impulses 453

8.8 A Brief Table of Laplace Transforms

Chapter 9 Linear Higher Order Equations

9.1 Introduction to Linear Higher Order Equations 466

9.2 Higher Order Constant Coefficient Homogeneous Equations 476

9.3 Undetermined Coefficients for Higher Order Equations 488

9.4 Variation of Parameters for Higher Order Equations 498

Chapter 10 Linear Systems of Differential Equations

10.1 Introduction to Systems of Differential Equations 508

10.2 Linear Systems of Differential Equations 516

10.3 Basic Theory of Homogeneous Linear Systems 522

10.4 Constant Coefficient Homogeneous Systems I 530



vi Contents

10.5 Constant Coefficient Homogeneous Systems II 543

10.6 Constant Coefficient Homogeneous Systems II 557

10.7 Variation of Parameters for Nonhomogeneous Linear Systems 570



Preface
Elementary Differential Equations with Boundary Value Problems is written for students in science, en-

gineering, and mathematics who have completed calculus through partial differentiation. If your syllabus
includes Chapter 10 (Linear Systems of Differential Equations), your students should have some prepa-

ration in linear algebra.

In writing this book I have been guided by the these principles:

� An elementary text should be written so the student can read it with comprehension without too
much pain. I have tried to put myself in the student’s place, and have chosen to err on the side of

too much detail rather than not enough.

� An elementary text can’t be better than its exercises. This text includes 1695 numbered exercises,

many with several parts. They range in difficulty from routine to very challenging.

� An elementary text should be written in an informal but mathematically accurate way, illustrated

by appropriate graphics. I have tried to formulate mathematical concepts succinctly in language

that students can understand. I have minimized the number of explicitly stated theorems and def-

initions, preferring to deal with concepts in a more conversational way, copiously illustrated by
250 completely worked out examples. Where appropriate, concepts and results are depicted in 144

figures.

Although I believe that the computer is an immensely valuable tool for learning, doing, and writing

mathematics, the selection and treatment of topics in this text reflects my pedagogical orientation along

traditional lines. However, I have incorporated what I believe to be the best use of modern technology,
so you can select the level of technology that you want to include in your course. The text includes 336

exercises – identified by the symbols C and C/G – that call for graphics or computation and graphics.

There are also 73 laboratory exercises – identified by L – that require extensive use of technology. In
addition, several sections include informal advice on the use of technology. If you prefer not to emphasize

technology, simply ignore these exercises and the advice.

There are two schools of thought on whether techniques and applications should be treated together or

separately. I have chosen to separate them; thus, Chapter 2 deals with techniques for solving first order

equations, and Chapter 4 deals with applications. Similarly, Chapter 5 deals with techniques for solving

second order equations, and Chapter 6 deals with applications. However, the exercise sets of the sections
dealing with techniques include some applied problems.

Traditionally oriented elementary differential equations texts are occasionally criticized as being col-

lections of unrelated methods for solving miscellaneous problems. To some extent this is true; after all,

no single method applies to all situations. Nevertheless, I believe that one idea can go a long way toward

unifying some of the techniques for solving diverse problems: variation of parameters. I use variation of
parameters at the earliest opportunity in Section 2.1, to solve the nonhomogeneous linear equation, given

a nontrivial solution of the complementary equation. You may find this annoying, since most of us learned

that one should use integrating factors for this task, while perhaps mentioning the variation of parameters

option in an exercise. However, there’s little difference between the two approaches, since an integrating

factor is nothing more than the reciprocal of a nontrivial solution of the complementary equation. The
advantage of using variation of parameters here is that it introduces the concept in its simplest form and

vii



viii Preface

focuses the student’s attention on the idea of seeking a solution y of a differential equation by writing it

as y D uy1, where y1 is a known solution of related equation and u is a function to be determined. I use

this idea in nonstandard ways, as follows:

� In Section 2.4 to solve nonlinear first order equations, such as Bernoulli equations and nonlinear

homogeneous equations.

� In Chapter 3 for numerical solution of semilinear first order equations.

� In Section 5.2 to avoid the necessity of introducing complex exponentials in solving a second or-

der constant coefficient homogeneous equation with characteristic polynomials that have complex

zeros.

� In Sections 5.4, 5.5, and 9.3 for the method of undetermined coefficients. (If the method of an-

nihilators is your preferred approach to this problem, compare the labor involved in solving, for

example, y00 C y0 C y D x4ex by the method of annihilators and the method used in Section 5.4.)

Introducing variation of parameters as early as possible (Section 2.1) prepares the student for the con-

cept when it appears again in more complex forms in Section 5.6, where reduction of order is used not
merely to find a second solution of the complementary equation, but also to find the general solution of the

nonhomogeneous equation, and in Sections 5.7, 9.4, and 10.7, that treat the usual variation of parameters

problem for second and higher order linear equations and for linear systems.

You may also find the following to be of interest:

� Section 2.6 deals with integrating factors of the form � D p.x/q.y/, in addition to those of the

form � D p.x/ and � D q.y/ discussed in most texts.

� Section 4.4 makes phase plane analysis of nonlinear second order autonomous equations accessi-

ble to students who have not taken linear algebra, since eigenvalues and eigenvectors do not enter

into the treatment. Phase plane analysis of constant coefficient linear systems is included in Sec-

tions 10.4-6.

� Section 4.5 presents an extensive discussion of applications of differential equations to curves.

� Section 6.4 studies motion under a central force, which may be useful to students interested in the
mathematics of satellite orbits.

� Sections 7.5-7 present the method of Frobenius in more detail than in most texts. The approach

is to systematize the computations in a way that avoids the necessity of substituting the unknown

Frobenius series into each equation. This leads to efficiency in the computation of the coefficients

of the Frobenius solution. It also clarifies the case where the roots of the indicial equation differ by

an integer (Section 7.7).

� The free Student Solutions Manual contains solutions of most of the even-numbered exercises.

� The free Instructor’s Solutions Manual is available by email to wtrench@trinity.edu, subject to

verification of the requestor’s faculty status.

The following observations may be helpful as you choose your syllabus:

� Section 2.3 is the only specific prerequisite for Chapter 3. To accomodate institutions that offer a

separate course in numerical analysis, Chapter 3 is not a prerequisite for any other section in the

text.

mailto:wtrench@trinity.edu
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� The sections in Chapter 4 are independent of each other, and are not prerequisites for any of the

later chapters. This is also true of the sections in Chapter 6, except that Section 6.1 is a prerequisite

for Section 6.2.

� Chapters 7, 8, and 9 can be covered in any order after the topics selected from Chapter 5. For

example, you can proceed directly from Chapter 5 to Chapter 9.

� The second order Euler equation is discussed in Section 7.4, where it sets the stage for the method

of Frobenius. As noted at the beginning of Section 7.4, if you want to include Euler equations in

your syllabus while omitting the method of Frobenius, you can skip the introductory paragraphs
in Section 7.4 and begin with Definition 7.4.2. You can then cover Section 7.4 immediately after

Section 5.2.

William F. Trench



CHAPTER 1

Introduction

IN THIS CHAPTER we begin our study of differential equations.

SECTION 1.1 presents examples of applications that lead to differential equations.

SECTION 1.2 introduces basic concepts and definitions concerning differential equations.

SECTION 1.3 presents a geometric method for dealing with differential equations that has been known

for a very long time, but has become particularly useful and important with the proliferation of readily
available differential equations software.

1



2 Chapter 1 Introduction

1.1 APPLICATIONS LEADING TO DIFFERENTIAL EQUATIONS

In order to apply mathematical methods to a physical or “real life” problem, we must formulate the prob-
lem in mathematical terms; that is, we must construct a mathematical model for the problem. Many

physical problems concern relationships between changing quantities. Since rates of change are repre-

sented mathematically by derivatives, mathematical models often involve equations relating an unknown

function and one or more of its derivatives. Such equations are differential equations. They are the subject

of this book.
Much of calculus is devoted to learning mathematical techniques that are applied in later courses in

mathematics and the sciences; you wouldn’t have time to learn much calculus if you insisted on seeing

a specific application of every topic covered in the course. Similarly, much of this book is devoted to

methods that can be applied in later courses. Only a relatively small part of the book is devoted to

the derivation of specific differential equations from mathematical models, or relating the differential
equations that we study to specific applications. In this section we mention a few such applications.

The mathematical model for an applied problem is almost always simpler than the actual situation

being studied, since simplifying assumptions are usually required to obtain a mathematical problem that

can be solved. For example, in modeling the motion of a falling object, we might neglect air resistance

and the gravitational pull of celestial bodies other than Earth, or in modeling population growth we might

assume that the population grows continuously rather than in discrete steps.
A good mathematical model has two important properties:

� It’s sufficiently simple so that the mathematical problem can be solved.

� It represents the actual situation sufficiently well so that the solution to the mathematical problem

predicts the outcome of the real problem to within a useful degree of accuracy. If results predicted
by the model don’t agree with physical observations, the underlying assumptions of the model must

be revised until satisfactory agreement is obtained.

We’ll now give examples of mathematical models involving differential equations. We’ll return to these

problems at the appropriate times, as we learn how to solve the various types of differential equations that

occur in the models.

All the examples in this section deal with functions of time, which we denote by t . If y is a function

of t , y0 denotes the derivative of y with respect to t ; thus,

y0 D dy

dt
:

Population Growth and Decay

Although the number of members of a population (people in a given country, bacteria in a laboratory cul-

ture, wildflowers in a forest, etc.) at any given time t is necessarily an integer, models that use differential

equations to describe the growth and decay of populations usually rest on the simplifying assumption that

the number of members of the population can be regarded as a differentiable functionP D P.t/. In most
models it is assumed that the differential equation takes the form

P 0 D a.P /P; (1.1.1)

where a is a continuous function of P that represents the rate of change of population per unit time per

individual. In the Malthusian model, it is assumed that a.P / is a constant, so (1.1.1) becomes

P 0 D aP: (1.1.2)

http://en.wikipedia.org/wiki/Thomas_Robert_Malthus
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(When you see a name in blue italics, just click on it for information about the person.) This model

assumes that the numbers of births and deaths per unit time are both proportional to the population. The

constants of proportionality are the birth rate (births per unit time per individual) and the death rate

(deaths per unit time per individual); a is the birth rate minus the death rate. You learned in calculus that

if c is any constant then

P D ceat (1.1.3)

satisfies (1.1.2), so (1.1.2) has infinitely many solutions. To select the solution of the specific problem

that we’re considering, we must know the population P0 at an initial time, say t D 0. Setting t D 0 in
(1.1.3) yields c D P.0/ D P0, so the applicable solution is

P.t/ D P0e
at :

This implies that

lim
t!1

P.t/ D
�

1 if a > 0;

0 if a < 0I
that is, the population approaches infinity if the birth rate exceeds the death rate, or zero if the death rate

exceeds the birth rate.

To see the limitations of the Malthusian model, suppose we’re modeling the population of a country,

starting from a time t D 0 when the birth rate exceeds the death rate (so a > 0), and the country’s
resources in terms of space, food supply, and other necessities of life can support the existing popula-

tion. Then the prediction P D P0e
at may be reasonably accurate as long as it remains within limits

that the country’s resources can support. However, the model must inevitably lose validity when the pre-

diction exceeds these limits. (If nothing else, eventually there won’t be enough space for the predicted

population!)

This flaw in the Malthusian model suggests the need for a model that accounts for limitations of space
and resources that tend to oppose the rate of population growth as the population increases. Perhaps the

most famous model of this kind is the Verhulst model, where (1.1.2) is replaced by

P 0 D aP.1 � ˛P /; (1.1.4)

where ˛ is a positive constant. As long as P is small compared to 1=˛, the ratio P 0=P is approximately

equal to a. Therefore the growth is approximately exponential; however, as P increases, the ratio P 0=P

decreases as opposing factors become significant.

Equation (1.1.4) is the logistic equation. You will learn how to solve it in Section 1.2. (See Exer-

cise 2.2.28.) The solution is

P D P0

˛P0 C .1 � ˛P0/e�at
;

where P0 D P.0/ > 0. Therefore limt!1P.t/ D 1=˛, independent of P0.

Figure 1.1.1 shows typical graphs of P versus t for various values of P0.

Newton’s Law of Cooling

According to Newton’s law of cooling, the temperature of a body changes at a rate proportional to the

difference between the temperature of the body and the temperature of the surrounding medium. Thus, if
Tm is the temperature of the medium and T D T .t/ is the temperature of the body at time t , then

T 0 D �k.T � Tm/; (1.1.5)

where k is a positive constant and the minus sign indicates; that the temperature of the body increases with
time if it’s less than the temperature of the medium, or decreases if it’s greater. We’ll see in Section 4.2

that if Tm is constant then the solution of (1.1.5) is

T D Tm C .T0 � Tm/e
�kt ; (1.1.6)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Verhulst.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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 P

 t

 1/α

Figure 1.1.1 Solutions of the logistic equation

where T0 is the temperature of the body when t D 0. Therefore limt!1 T .t/ D Tm, independent of T0.
(Common sense suggests this. Why?)

Figure 1.1.2 shows typical graphs of T versus t for various values of T0.

Assuming that the medium remains at constant temperature seems reasonable if we’re considering a

cup of coffee cooling in a room, but not if we’re cooling a huge cauldron of molten metal in the same

room. The difference between the two situations is that the heat lost by the coffee isn’t likely to raise the
temperature of the room appreciably, but the heat lost by the cooling metal is. In this second situation we

must use a model that accounts for the heat exchanged between the object and the medium. Let T D T .t/

and Tm D Tm.t/ be the temperatures of the object and the medium respectively, and let T0 and Tm0 be

their initial values. Again, we assume that T and Tm are related by (1.1.5). We also assume that the

change in heat of the object as its temperature changes from T0 to T is a.T � T0/ and the change in heat
of the medium as its temperature changes from Tm0 to Tm is am.Tm �Tm0/, where a and am are positive

constants depending upon the masses and thermal properties of the object and medium respectively. If

we assume that the total heat of the in the object and the medium remains constant (that is, energy is

conserved), then

a.T � T0/C am.Tm � Tm0/ D 0:

Solving this for Tm and substituting the result into (1.1.6) yields the differential equation

T 0 D �k
�

1C a

am

�

T C k

�

Tm0 C a

am

T0

�

for the temperature of the object. After learning to solve linear first order equations, you’ll be able to

show (Exercise 4.2.17) that

T D aT0 C amTm0

a C am

C am.T0 � Tm0/

aC am

e�k.1Ca=am/t :
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 T

 t t

 T
m

Figure 1.1.2 Temperature according to Newton’s Law of Cooling

Glucose Absorption by the Body

Glucose is absorbed by the body at a rate proportional to the amount of glucose present in the bloodstream.

Let � denote the (positive) constant of proportionality. Suppose there are G0 units of glucose in the

bloodstream when t D 0, and let G D G.t/ be the number of units in the bloodstream at time t > 0.

Then, since the glucose being absorbed by the body is leaving the bloodstream, G satisfies the equation

G0 D ��G: (1.1.7)

From calculus you know that if c is any constant then

G D ce��t (1.1.8)

satisfies (1.1.7), so (1.1.7) has infinitely many solutions. Setting t D 0 in (1.1.8) and requiring that

G.0/ D G0 yields c D G0, so

G.t/ D G0e
��t :

Now let’s complicate matters by injecting glucose intravenously at a constant rate of r units of glucose

per unit of time. Then the rate of change of the amount of glucose in the bloodstream per unit time is

G0 D ��G C r; (1.1.9)

where the first term on the right is due to the absorption of the glucose by the body and the second term

is due to the injection. After you’ve studied Section 2.1, you’ll be able to show (Exercise 2.1.43) that the
solution of (1.1.9) that satisfies G.0/ D G0 is

G D r

�
C
�

G0 � r

�

�

e��t :
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Graphs of this function are similar to those in Figure 1.1.2. (Why?)

Spread of Epidemics

One model for the spread of epidemics assumes that the number of people infected changes at a rate
proportional to the product of the number of people already infected and the number of people who are

susceptible, but not yet infected. Therefore, if S denotes the total population of susceptible people and

I D I.t/ denotes the number of infected people at time t , then S � I is the number of people who are

susceptible, but not yet infected. Thus,

I 0 D rI.S � I /;
where r is a positive constant. Assuming that I.0/ D I0, the solution of this equation is

I D SI0

I0 C .S � I0/e�rSt

(Exercise 2.2.29). Graphs of this function are similar to those in Figure 1.1.1. (Why?) Since limt!1 I.t/ D
S , this model predicts that all the susceptible people eventually become infected.

Newton’s Second Law of Motion

According to Newton’s second law of motion, the instantaneous acceleration a of an object with con-

stant mass m is related to the force F acting on the object by the equation F D ma. For simplicity, let’s

assume that m D 1 and the motion of the object is along a vertical line. Let y be the displacement of the

object from some reference point on Earth’s surface, measured positive upward. In many applications,

there are three kinds of forces that may act on the object:
(a) A force such as gravity that depends only on the position y, which we write as �p.y/, where

p.y/ > 0 if y � 0.

(b) A force such as atmospheric resistance that depends on the position and velocity of the object, which

we write as �q.y; y0/y0 , where q is a nonnegative function and we’ve put y0 “outside” to indicate

that the resistive force is always in the direction opposite to the velocity.

(c) A force f D f .t/, exerted from an external source (such as a towline from a helicopter) that

depends only on t .

In this case, Newton’s second law implies that

y00 D �q.y; y0/y0 � p.y/ C f .t/;

which is usually rewritten as

y00 C q.y; y0/y0 C p.y/ D f .t/:

Since the second (and no higher) order derivative of y occurs in this equation, we say that it is a second

order differential equation.

Interacting Species: Competition

Let P D P.t/ andQ D Q.t/ be the populations of two species at time t , and assume that each population
would grow exponentially if the other didn’t exist; that is, in the absence of competition we would have

P 0 D aP and Q0 D bQ; (1.1.10)

where a and b are positive constants. One way to model the effect of competition is to assume that

the growth rate per individual of each population is reduced by an amount proportional to the other

population, so (1.1.10) is replaced by

P 0 D aP � ˛Q
Q0 D �ˇP C bQ;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Newton.html
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where ˛ and ˇ are positive constants. (Since negative population doesn’t make sense, this system works

only while P and Q are both positive.) Now suppose P.0/ D P0 > 0 and Q.0/ D Q0 > 0. It can

be shown (Exercise 10.4.42) that there’s a positive constant � such that if .P0; Q0/ is above the line L

through the origin with slope �, then the species with population P becomes extinct in finite time, but if

.P0; Q0/ is belowL, the species with populationQ becomes extinct in finite time. Figure 1.1.3 illustrates

this. The curves shown there are given parametrically by P D P.t/;Q D Q.t/; t > 0. The arrows
indicate direction along the curves with increasing t .

 P

 Q
 L

Figure 1.1.3 Populations of competing species

1.2 BASIC CONCEPTS

A differential equation is an equation that contains one or more derivatives of an unknown function.

The order of a differential equation is the order of the highest derivative that it contains. A differential

equation is an ordinary differential equation if it involves an unknown function of only one variable, or a
partial differential equation if it involves partial derivatives of a function of more than one variable. For

now we’ll consider only ordinary differential equations, and we’ll just call them differential equations.

Throughout this text, all variables and constants are real unless it’s stated otherwise. We’ll usually use

x for the independent variable unless the independent variable is time; then we’ll use t .

The simplest differential equations are first order equations of the form

dy

dx
D f .x/ or, equivalently, y0 D f .x/;

where f is a known function of x. We already know from calculus how to find functions that satisfy this

kind of equation. For example, if
y0 D x3;
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then

y D
Z

x3 dx D x4

4
C c;

where c is an arbitrary constant. If n > 1 we can find functions y that satisfy equations of the form

y.n/ D f .x/ (1.2.1)

by repeated integration. Again, this is a calculus problem.

Except for illustrative purposes in this section, there’s no need to consider differential equations like

(1.2.1).We’ll usually consider differential equations that can be written as

y.n/ D f .x; y; y0; : : : ; y.n�1//; (1.2.2)

where at least one of the functions y, y0, . . . , y.n�1/ actually appears on the right. Here are some
examples:

dy

dx
� x2 D 0 (first order);

dy

dx
C 2xy2 D �2 (first order);

d 2y

dx2
C 2

dy

dx
C y D 2x (second order);

xy000 C y2 D sin x (third order);

y.n/ C xy0 C 3y D x (n-th order):

Although none of these equations is written as in (1.2.2), all of them can be written in this form:

y0 D x2;

y0 D �2 � 2xy2;

y00 D 2x � 2y0 � y;

y000 D sin x � y2

x
;

y.n/ D x � xy0 � 3y:

Solutions of Differential Equations

A solution of a differential equation is a function that satisfies the differential equation on some open

interval; thus, y is a solution of (1.2.2) if y is n times differentiable and

y.n/.x/ D f .x; y.x/; y0.x/; : : : ; y.n�1/.x//

for all x in some open interval .a; b/. In this case, we also say that y is a solution of (1.2.2) on .a; b/.
Functions that satisfy a differential equation at isolated points are not interesting. For example, y D x2

satisfies

xy0 C x2 D 3x

if and only if x D 0 or x D 1, but it’s not a solution of this differential equation because it does not

satisfy the equation on an open interval.
The graph of a solution of a differential equation is a solution curve. More generally, a curve C is said

to be an integral curve of a differential equation if every function y D y.x/ whose graph is a segment

of C is a solution of the differential equation. Thus, any solution curve of a differential equation is an

integral curve, but an integral curve need not be a solution curve.
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Example 1.2.1 If a is any positive constant, the circle

x2 C y2 D a2 (1.2.3)

is an integral curve of

y0 D �x
y
: (1.2.4)

To see this, note that the only functions whose graphs are segments of (1.2.3) are

y1 D
p
a2 � x2 and y2 D �

p
a2 � x2:

We leave it to you to verify that these functions both satisfy (1.2.4) on the open interval .�a; a/. However,
(1.2.3) is not a solution curve of (1.2.4), since it’s not the graph of a function.

Example 1.2.2 Verify that

y D x2

3
C 1

x
(1.2.5)

is a solution of

xy0 C y D x2 (1.2.6)

on .0;1/ and on .�1; 0/.

Solution Substituting (1.2.5) and

y0 D 2x

3
� 1

x2

into (1.2.6) yields

xy0.x/C y.x/ D x

�

2x

3
� 1

x2

�

C
�

x2

3
C 1

x

�

D x2

for all x ¤ 0. Therefore y is a solution of (1.2.6) on .�1; 0/ and .0;1/. However, y isn’t a solution of

the differential equation on any open interval that contains x D 0, since y is not defined at x D 0.

Figure 1.2.1 shows the of (1.2.5). The part of the graph of (1.2.5) on .0;1/ is a solution curve of
(1.2.6), as is the part of the graph on .�1; 0/.

Example 1.2.3 Show that if c1 and c2 are constants then

y D .c1 C c2x/e
�x C 2x � 4 (1.2.7)

is a solution of

y00 C 2y0 C y D 2x (1.2.8)

on .�1;1/.

Solution Differentiating (1.2.7) twice yields

y0 D �.c1 C c2x/e
�x C c2e

�x C 2

and

y00 D .c1 C c2x/e
�x � 2c2e

�x ;
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Figure 1.2.1 y D x2

3
C 1

x

so

y00 C 2y0 C y D .c1 C c2x/e
�x � 2c2e

�x

C2 Œ�.c1 C c2x/e
�x C c2e

�x C 2�

C.c1 C c2x/e
�x C 2x � 4

D .1 � 2C 1/.c1 C c2x/e
�x C .�2C 2/c2e

�x

C4C 2x � 4 D 2x

for all values of x. Therefore y is a solution of (1.2.8) on .�1;1/.

Example 1.2.4 Find all solutions of

y.n/ D e2x: (1.2.9)

Solution Integrating (1.2.9) yields

y.n�1/ D e2x

2
C k1;

where k1 is a constant. If n � 2, integrating again yields

y.n�2/ D e2x

4
C k1x C k2:

If n � 3, repeatedly integrating yields

y D e2x

2n
C k1

xn�1

.n � 1/Š C k2

xn�2

.n � 2/Š C � � � C kn; (1.2.10)
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where k1, k2, . . . , kn are constants. This shows that every solution of (1.2.9) has the form (1.2.10) for

some choice of the constants k1, k2, . . . , kn. On the other hand, differentiating (1.2.10) n times shows

that if k1, k2, . . . , kn are arbitrary constants, then the function y in (1.2.10) satisfies (1.2.9).

Since the constants k1, k2, . . . , kn in (1.2.10) are arbitrary, so are the constants

k1

.n � 1/Š ;
k2

.n � 2/Š
; � � � ; kn:

Therefore Example 1.2.4 actually shows that all solutions of (1.2.9) can be written as

y D e2x

2n
C c1 C c2x C � � � C cnx

n�1;

where we renamed the arbitrary constants in (1.2.10) to obtain a simpler formula. As a general rule,

arbitrary constants appearing in solutions of differential equations should be simplified if possible. You’ll

see examples of this throughout the text.

Initial Value Problems

In Example 1.2.4 we saw that the differential equation y.n/ D e2x has an infinite family of solutions that

depend upon the n arbitrary constants c1, c2, . . . , cn. In the absence of additional conditions, there’s no

reason to prefer one solution of a differential equation over another. However, we’ll often be interested

in finding a solution of a differential equation that satisfies one or more specific conditions. The next

example illustrates this.

Example 1.2.5 Find a solution of

y0 D x3

such that y.1/ D 2.

Solution At the beginning of this section we saw that the solutions of y0 D x3 are

y D x4

4
C c:

To determine a value of c such that y.1/ D 2, we set x D 1 and y D 2 here to obtain

2 D y.1/ D 1

4
C c; so c D 7

4
:

Therefore the required solution is

y D x4 C 7

4
:

Figure 1.2.2 shows the graph of this solution. Note that imposing the condition y.1/ D 2 is equivalent

to requiring the graph of y to pass through the point .1; 2/.

We can rewrite the problem considered in Example 1.2.5 more briefly as

y0 D x3; y.1/ D 2:

We call this an initial value problem. The requirement y.1/ D 2 is an initial condition. Initial value

problems can also be posed for higher order differential equations. For example,

y00 � 2y0 C 3y D ex; y.0/ D 1; y0.0/ D 2 (1.2.11)
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is an initial value problem for a second order differential equation where y and y0 are required to have

specified values at x D 0. In general, an initial value problem for an n-th order differential equation

requires y and its first n�1 derivatives to have specified values at some point x0. These requirements are

the initial conditions.

1

2

3

4

5

0 1 2−1−2

(1,2)

 x

 y

Figure 1.2.2 y D x2 C 7

4

We’ll denote an initial value problem for a differential equation by writing the initial conditions after

the equation, as in (1.2.11). For example, we would write an initial value problem for (1.2.2) as

y.n/ D f .x; y; y0; : : : ; y.n�1//; y.x0/ D k0; y
0.x0/ D k1; : : : ; y

.n�1/ D kn�1: (1.2.12)

Consistent with our earlier definition of a solution of the differential equation in (1.2.12), we say that y
is a solution of the initial value problem (1.2.12) if y is n times differentiable and

y.n/.x/ D f .x; y.x/; y0.x/; : : : ; y.n�1/.x//

for all x in some open interval .a; b/ that contains x0, and y satisfies the initial conditions in (1.2.12).

The largest open interval that contains x0 on which y is defined and satisfies the differential equation is

the interval of validity of y.

Example 1.2.6 In Example 1.2.5 we saw that

y D x4 C 7

4
(1.2.13)

is a solution of the initial value problem

y0 D x3; y.1/ D 2:

Since the function in (1.2.13) is defined for all x, the interval of validity of this solution is .�1;1/.
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Example 1.2.7 In Example 1.2.2 we verified that

y D x2

3
C 1

x
(1.2.14)

is a solution of

xy0 C y D x2

on .0;1/ and on .�1; 0/. By evaluating (1.2.14) at x D ˙1, you can see that (1.2.14) is a solution of
the initial value problems

xy0 C y D x2; y.1/ D 4

3
(1.2.15)

and

xy0 C y D x2; y.�1/ D �2
3
: (1.2.16)

The interval of validity of (1.2.14) as a solution of (1.2.15) is .0;1/, since this is the largest interval that

contains x0 D 1 on which (1.2.14) is defined. Similarly, the interval of validity of (1.2.14) as a solution of
(1.2.16) is .�1; 0/, since this is the largest interval that contains x0 D �1 on which (1.2.14) is defined.

Free Fall Under Constant Gravity

The term initial value problem originated in problems of motion where the independent variable is t

(representing elapsed time), and the initial conditions are the position and velocity of an object at the
initial (starting) time of an experiment.

Example 1.2.8 An object falls under the influence of gravity near Earth’s surface, where it can be as-

sumed that the magnitude of the acceleration due to gravity is a constant g.

(a) Construct a mathematical model for the motion of the object in the form of an initial value problem
for a second order differential equation, assuming that the altitude and velocity of the object at time

t D 0 are known. Assume that gravity is the only force acting on the object.

(b) Solve the initial value problem derived in (a) to obtain the altitude as a function of time.

SOLUTION(a) Let y.t/ be the altitude of the object at time t . Since the acceleration of the object has

constant magnitude g and is in the downward (negative) direction, y satisfies the second order equation

y00 D �g;

where the prime now indicates differentiation with respect to t . If y0 and v0 denote the altitude and

velocity when t D 0, then y is a solution of the initial value problem

y00 D �g; y.0/ D y0; y0.0/ D v0: (1.2.17)

SOLUTION(b) Integrating (1.2.17) twice yields

y0 D �gt C c1;

y D �gt
2

2
C c1t C c2:

Imposing the initial conditions y.0/ D y0 and y0.0/ D v0 in these two equations shows that c1 D v0 and

c2 D y0. Therefore the solution of the initial value problem (1.2.17) is

y D �gt
2

2
C v0t C y0:
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1.2 Exercises

1. Find the order of the equation.

(a)
d 2y

dx2
C 2

dy

dx

d 3y

dx3
C x D 0 (b) y00 � 3y0 C 2y D x7

(c) y0 � y7 D 0 (d) y00y � .y0/2 D 2

2. Verify that the function is a solution of the differential equation on some interval, for any choice
of the arbitrary constants appearing in the function.

(a) y D ce2xI y0 D 2y

(b) y D x2

3
C c

x
I xy0 C y D x2

(c) y D 1

2
C ce�x2 I y0 C 2xy D x

(d) y D .1 C ce�x2=2/I .1 � ce�x2=2/�1 2y0 C x.y2 � 1/ D 0

(e) y D tan

�

x3

3
C c

�

I y0 D x2.1C y2/

(f) y D .c1 C c2x/e
x C sinx C x2I y00 � 2y0 C y D �2 cos x C x2 � 4x C 2

(g) y D c1e
x C c2x C 2

x
I .1 � x/y00 C xy0 � y D 4.1 � x � x2/x�3

(h) y D x�1=2.c1 sinx C c2 cos x/C 4x C 8;

x2y00 C xy0 C
�

x2 � 1

4

�

y D 4x3 C 8x2 C 3x � 2

3. Find all of the equation.

(a) y0 D �x (b) y0 D �x sinx

(c) y0 D x lnx (d) y00 D x cos x

(e) y00 D 2xex (f) y00 D 2x C sin x C ex

(g) y000 D � cos x (h) y000 D �x2 C ex

(i) y000 D 7e4x

4. Solve the initial value problem.

(a) y0 D �xex; y.0/ D 1

(b) y0 D x sinx2; y

�
r

�

2

�

D 1

(c) y0 D tan x; y.�=4/ D 3

(d) y00 D x4; y.2/ D �1; y0.2/ D �1
(e) y00 D xe2x; y.0/ D 7; y0.0/ D 1

(f) y00 D �x sin x; y.0/ D 1; y0.0/ D �3
(g) y000 D x2ex; y.0/ D 1; y0.0/ D �2; y00.0/ D 3

(h) y000 D 2C sin 2x; y.0/ D 1; y0.0/ D �6; y00.0/ D 3

(i) y000 D 2x C 1; y.2/ D 1; y0.2/ D �4; y00.2/ D 7

5. Verify that the function is a solution of the initial value problem.

(a) y D x cos xI y0 D cos x � y tan x; y.�=4/ D �

4
p
2
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(b) y D 1C 2 lnx

x2
C 1

2
I y0 D x2 � 2x2y C 2

x3
; y.1/ D 3

2

(c) y D tan

�

x2

2

�

I y0 D x.1C y2/; y.0/ D 0

(d) y D 2

x � 2
I y0 D �y.y C 1/

x
; y.1/ D �2

6. Verify that the function is a solution of the initial value problem.

(a) y D x2.1 C lnx/I y00 D 3xy0 � 4y
x2

; y.e/ D 2e2; y0.e/ D 5e

(b) y D x2

3
C x � 1I y00 D x2 � xy0 C y C 1

x2
; y.1/ D 1

3
; y0.1/ D 5

3

(c) y D .1 C x2/�1=2I y00 D .x2 � 1/y � x.x2 C 1/y0

.x2 C 1/2
; y.0/ D 1;

y0.0/ D 0

(d) y D x2

1 � x
I y00 D 2.x C y/.xy0 � y/

x3
; y.1=2/ D 1=2; y0.1=2/ D 3

7. Suppose an object is launched from a point 320 feet above the earth with an initial velocity of 128

ft/sec upward, and the only force acting on it thereafter is gravity. Take g D 32 ft/sec2.

(a) Find the highest altitude attained by the object.

(b) Determine how long it takes for the object to fall to the ground.

8. Let a be a nonzero real number.

(a) Verify that if c is an arbitrary constant then

y D .x � c/a .A/

is a solution of
y0 D ay.a�1/=a .B/

on .c;1/.

(b) Suppose a < 0 or a > 1. Can you think of a solution of (B) that isn’t of the form (A)?

9. Verify that

y D
(

ex � 1; x � 0;

1 � e�x; x < 0;

is a solution of
y0 D jyj C 1

on .�1;1/. HINT: Use the definition of derivative at x D 0.

10. (a) Verify that if c is any real number then

y D c2 C cx C 2c C 1 .A/

satisfies

y0 D �.x C 2/C
p

x2 C 4x C 4y

2
.B/

on some open interval. Identify the open interval.
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(b) Verify that

y1 D �x.x C 4/

4

also satisfies (B) on some open interval, and identify the open interval. (Note that y1 can’t

be obtained by selecting a value of c in (A).)

1.3 DIRECTION FIELDS FOR FIRST ORDER EQUATIONS

It’s impossible to find explicit formulas for solutions of some differential equations. Even if there are
such formulas, they may be so complicated that they’re useless. In this case we may resort to graphical

or numerical methods to get some idea of how the solutions of the given equation behave.

In Section 2.3 we’ll take up the question of existence of solutions of a first order equation

y0 D f .x; y/: (1.3.1)

In this section we’ll simply assume that (1.3.1) has solutions and discuss a graphical method for ap-
proximating them. In Chapter 3 we discuss numerical methods for obtaining approximate solutions of

(1.3.1).

Recall that a solution of (1.3.1) is a function y D y.x/ such that

y0.x/ D f .x; y.x//

for all values of x in some interval, and an integral curve is either the graph of a solution or is made up

of segments that are graphs of solutions. Therefore, not being able to solve (1.3.1) is equivalent to not
knowing the equations of integral curves of (1.3.1). However, it’s easy to calculate the slopes of these

curves. To be specific, the slope of an integral curve of (1.3.1) through a given point .x0; y0/ is given by

the number f .x0; y0/. This is the basis of the method of direction fields.

If f is defined on a set R, we can construct a direction field for (1.3.1) in R by drawing a short line

segment through each point .x; y/ in R with slope f .x; y/. Of course, as a practical matter, we can’t
actually draw line segments through every point in R; rather, we must select a finite set of points in R.

For example, suppose f is defined on the closed rectangular region

R W fa � x � b; c � y � d g:

Let

a D x0 < x1 < � � � < xm D b

be equally spaced points in Œa; b� and

c D y0 < y1 < � � � < yn D d

be equally spaced points in Œc; d �. We say that the points

.xi ; yj /; 0 � i � m; 0 � j � n;

form a rectangular grid (Figure 1.3.1). Through each point in the grid we draw a short line segment with
slope f .xi ; yj /. The result is an approximation to a direction field for (1.3.1) in R. If the grid points are

sufficiently numerous and close together, we can draw approximate integral curves of (1.3.1) by drawing

curves through points in the grid tangent to the line segments associated with the points in the grid.
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 y

 x
 a  b

 c

 d

Figure 1.3.1 A rectangular grid

Unfortunately, approximating a direction field and graphing integral curves in this way is too tedious

to be done effectively by hand. However, there is software for doing this. As you’ll see, the combina-

tion of direction fields and integral curves gives useful insights into the behavior of the solutions of the

differential equation even if we can’t obtain exact solutions.
We’ll study numerical methods for solving a single first order equation (1.3.1) in Chapter 3. These

methods can be used to plot solution curves of (1.3.1) in a rectangular region R if f is continuous on R.

Figures 1.3.2, 1.3.3, and 1.3.4 show direction fields and solution curves for the differential equations

y0 D x2 � y2

1C x2 C y2
; y0 D 1C xy2; and y0 D x � y

1C x2
;

which are all of the form (1.3.1) with f continuous for all .x; y/.
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Figure 1.3.2 A direction field and integral curves

for y D x2 � y2

1C x2 C y2
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Figure 1.3.3 A direction field and integral curves for

y0 D 1C xy2
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Figure 1.3.4 A direction and integral curves for y0 D x � y
1C x2

The methods of Chapter 3 won’t work for the equation

y0 D �x=y (1.3.2)

if R contains part of the x-axis, since f .x; y/ D �x=y is undefined when y D 0. Similarly, they won’t

work for the equation

y0 D x2

1 � x2 � y2
(1.3.3)

if R contains any part of the unit circle x2 C y2 D 1, because the right side of (1.3.3) is undefined if

x2 C y2 D 1. However, (1.3.2) and (1.3.3) can written as

y0 D A.x; y/

B.x; y/
(1.3.4)

where A and B are continuous on any rectangle R. Because of this, some differential equation software

is based on numerically solving pairs of equations of the form

dx

dt
D B.x; y/;

dy

dt
D A.x; y/ (1.3.5)

where x and y are regarded as functions of a parameter t . If x D x.t/ and y D y.t/ satisfy these

equations, then

y0 D dy

dx
D dy

dt

�

dx

dt
D A.x; y/

B.x; y/
;

so y D y.x/ satisfies (1.3.4).
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Eqns. (1.3.2) and (1.3.3) can be reformulated as in (1.3.4) with

dx

dt
D �y; dy

dt
D x

and
dx

dt
D 1 � x2 � y2;

dy

dt
D x2;

respectively. Even if f is continuous and otherwise “nice” throughoutR, your software may require you

to reformulate the equation y0 D f .x; y/ as

dx

dt
D 1;

dy

dt
D f .x; y/;

which is of the form (1.3.5) with A.x; y/ D f .x; y/ and B.x; y/ D 1.

Figure 1.3.5 shows a direction field and some integral curves for (1.3.2). As we saw in Example 1.2.1

and will verify again in Section 2.2, the integral curves of (1.3.2) are circles centered at the origin.

 x

 y

Figure 1.3.5 A direction field and integral curves for y0 D �x
y

Figure 1.3.6 shows a direction field and some integral curves for (1.3.3). The integral curves near the
top and bottom are solution curves. However, the integral curves near the middle are more complicated.

For example, Figure 1.3.7 shows the integral curve through the origin. The vertices of the dashed rectangle

are on the circle x2 C y2 D 1 (a � :846, b � :533), where all integral curves of (1.3.3) have infinite

slope. There are three solution curves of (1.3.3) on the integral curve in the figure: the segment above the

level y D b is the graph of a solution on .�1; a/, the segment below the level y D �b is the graph of a

solution on .�a;1/, and the segment between these two levels is the graph of a solution on .�a; a/.

USING TECHNOLOGY
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As you study from this book, you’ll often be asked to use computer software and graphics. Exercises

with this intent are marked as C (computer or calculator required), C/G (computer and/or graphics

required), or L (laboratory work requiring software and/or graphics). Often you may not completely
understand how the software does what it does. This is similar to the situation most people are in when

they drive automobiles or watch television, and it doesn’t decrease the value of using modern technology

as an aid to learning. Just be careful that you use the technology as a supplement to thought rather than a

substitute for it.

 y

 x

Figure 1.3.6 A direction field and integral curves for

y0 D x2

1 � x2 � y2

 x

 y

 (a,−b)

 (a,b)(−a,b)

 (−a,−b)

1 2−1−2

1

2

−1

−2

Figure 1.3.7

1.3 Exercises

In Exercises 1–11 a direction field is drawn for the given equation. Sketch some integral curves.
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2 A direction field for y0 D 2xy2
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3 A direction field for y0 D x2.1C y2/
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0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

 x

 y

7 A direction field for y0 D sin xy



Section 1.3 Direction Fields for First Order Equations 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x

 y

8 A direction field for y0 D exy

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

 y

9 A direction field for y0 D .x � y2/.x2 � y/



26 Chapter 1 Introduction

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 x

 y

10 A direction field for y0 D x3y2 C xy3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

 x

 y

11 A direction field for y0 D sin.x � 2y/



Section 1.3 Direction Fields for First Order Equations 27

In Exercises 12-22 construct a direction field and plot some integral curves in the indicated rectangular

region.

12. C/G y0 D y.y � 1/I f�1 � x � 2; �2 � y � 2g

13. C/G y0 D 2 � 3xyI f�1 � x � 4; �4 � y � 4g

14. C/G y0 D xy.y � 1/I f�2 � x � 2; �4 � y � 4g

15. C/G y0 D 3x C yI f�2 � x � 2; 0 � y � 4g

16. C/G y0 D y � x3I f�2 � x � 2; �2 � y � 2g

17. C/G y0 D 1 � x2 � y2I f�2 � x � 2; �2 � y � 2g
18. C/G y0 D x.y2 � 1/I f�3 � x � 3; �3 � y � 2g

19. C/G y0 D x

y.y2 � 1/
I f�2 � x � 2; �2 � y � 2g

20. C/G y0 D xy2

y � 1 I f�2 � x � 2; �1 � y � 4g

21. C/G y0 D x.y2 � 1/

y
I f�1 � x � 1; �2 � y � 2g

22. C/G y0 D � x2 C y2

1 � x2 � y2
I f�2 � x � 2; �2 � y � 2g

23. L By suitably renaming the constants and dependent variables in the equations

T 0 D �k.T � Tm/ .A/

and

G0 D ��G C r .B/

discussed in Section 1.2 in connection with Newton’s law of cooling and absorption of glucose in
the body, we can write both as

y0 D �ay C b; .C/

where a is a positive constant and b is an arbitrary constant. Thus, (A) is of the form (C) with

y D T , a D k, and b D kTm, and (B) is of the form (C) with y D G, a D �, and b D r . We’ll

encounter equations of the form (C) in many other applications in Chapter 2.

Choose a positive a and an arbitrary b. Construct a direction field and plot some integral curves
for (C) in a rectangular region of the form

f0 � t � T; c � y � d g

of the ty-plane. Vary T , c, and d until you discover a common property of all the solutions of (C).

Repeat this experiment with various choices of a and b until you can state this property precisely

in terms of a and b.

24. L By suitably renaming the constants and dependent variables in the equations

P 0 D aP.1 � ˛P / .A/

and
I 0 D rI.S � I / .B/
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discussed in Section 1.1 in connection with Verhulst’s population model and the spread of an

epidemic, we can write both in the form

y0 D ay � by2; .C/

where a and b are positive constants. Thus, (A) is of the form (C) with y D P , a D a, and

b D a˛, and (B) is of the form (C) with y D I , a D rS , and b D r . In Chapter 2 we’ll encounter

equations of the form (C) in other applications..

(a) Choose positive numbers a and b. Construct a direction field and plot some integral curves

for (C) in a rectangular region of the form

f0 � t � T; 0 � y � d g

of the ty-plane. Vary T and d until you discover a common property of all solutions of (C)

with y.0/ > 0. Repeat this experiment with various choices of a and b until you can state

this property precisely in terms of a and b.

(b) Choose positive numbers a and b. Construct a direction field and plot some integral curves

for (C) in a rectangular region of the form

f0 � t � T; c � y � 0g

of the ty-plane. Vary a, b, T and c until you discover a common property of all solutions of
(C) with y.0/ < 0.

You can verify your results later by doing Exercise 2.2.27.



CHAPTER 2

First Order Equations

IN THIS CHAPTER we study first order equations for which there are general methods of solution.

SECTION 2.1 deals with linear equations, the simplest kind of first order equations. In this section we

introduce the method of variation of parameters. The idea underlying this method will be a unifying

theme for our approach to solving many different kinds of differential equations throughout the book.

SECTION 2.2 deals with separable equations, the simplest nonlinear equations. In this section we intro-

duce the idea of implicit and constant solutions of differential equations, and we point out some differ-
ences between the properties of linear and nonlinear equations.

SECTION 2.3 discusses existence and uniqueness of solutions of nonlinear equations. Although it may

seem logical to place this section before Section 2.2, we presented Section 2.2 first so we could have

illustrative examples in Section 2.3.

SECTION 2.4 deals with nonlinear equations that are not separable, but can be transformed into separable

equations by a procedure similar to variation of parameters.

SECTION 2.5 covers exact differential equations, which are given this name because the method for

solving them uses the idea of an exact differential from calculus.

SECTION 2.6 deals with equations that are not exact, but can made exact by multiplying them by a

function known called integrating factor.

29
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2.1 LINEAR FIRST ORDER EQUATIONS

A first order differential equation is said to be linear if it can be written as

y0 C p.x/y D f .x/: (2.1.1)

A first order differential equation that can’t be written like this is nonlinear. We say that (2.1.1) is

homogeneous if f � 0; otherwise it’s nonhomogeneous. Since y � 0 is obviously a solution of the

homgeneous equation

y0 C p.x/y D 0;

we call it the trivial solution. Any other solution is nontrivial.

Example 2.1.1 The first order equations

x2y0 C 3y D x2;

xy0 � 8x2y D sinx;

xy0 C .lnx/y D 0;

y0 D x2y � 2;

are not in the form (2.1.1), but they are linear, since they can be rewritten as

y0 C 3

x2
y D 1;

y0 � 8xy D sin x

x
;

y0 C lnx

x
y D 0;

y0 � x2y D �2:

Example 2.1.2 Here are some nonlinear first order equations:

xy0 C 3y2 D 2x (because y is squared);

yy0 D 3 (because of the product yy0);

y0 C xey D 12 (because of ey):

General Solution of a Linear First Order Equation

To motivate a definition that we’ll need, consider the simple linear first order equation

y0 D 1

x2
: (2.1.2)

From calculus we know that y satisfies this equation if and only if

y D � 1
x

C c; (2.1.3)

where c is an arbitrary constant. We call c a parameter and say that (2.1.3) defines a one–parameter

family of functions. For each real number c, the function defined by (2.1.3) is a solution of (2.1.2) on
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.�1; 0/ and .0;1/; moreover, every solution of (2.1.2) on either of these intervals is of the form (2.1.3)

for some choice of c. We say that (2.1.3) is the general solution of (2.1.2).

We’ll see that a similar situation occurs in connection with any first order linear equation

y0 C p.x/y D f .x/I (2.1.4)

that is, if p and f are continuous on some open interval .a; b/ then there’s a unique formula y D y.x; c/

analogous to (2.1.3) that involves x and a parameter c and has the these properties:

� For each fixed value of c, the resulting function of x is a solution of (2.1.4) on .a; b/.

� If y is a solution of (2.1.4) on .a; b/, then y can be obtained from the formula by choosing c

appropriately.

We’ll call y D y.x; c/ the general solution of (2.1.4).

When this has been established, it will follow that an equation of the form

P0.x/y
0 C P1.x/y D F.x/ (2.1.5)

has a general solution on any open interval .a; b/ on which P0, P1, and F are all continuous and P0 has

no zeros, since in this case we can rewrite (2.1.5) in the form (2.1.4) with p D P1=P0 and f D F=P0,

which are both continuous on .a; b/.

To avoid awkward wording in examples and exercises, we won’t specify the interval .a; b/ when we

ask for the general solution of a specific linear first order equation. Let’s agree that this always means
that we want the general solution on every open interval on which p and f are continuous if the equation

is of the form (2.1.4), or on which P0, P1, and F are continuous and P0 has no zeros, if the equation is

of the form (2.1.5). We leave it to you to identify these intervals in specific examples and exercises.

For completeness, we point out that if P0, P1, and F are all continuous on an open interval .a; b/, but

P0 does have a zero in .a; b/, then (2.1.5) may fail to have a general solution on .a; b/ in the sense just

defined. Since this isn’t a major point that needs to be developed in depth, we won’t discuss it further;
however, see Exercise 44 for an example.

Homogeneous Linear First Order Equations

We begin with the problem of finding the general solution of a homogeneous linear first order equation.
The next example recalls a familiar result from calculus.

Example 2.1.3 Let a be a constant.

(a) Find the general solution of

y0 � ay D 0: (2.1.6)

(b) Solve the initial value problem

y0 � ay D 0; y.x0/ D y0:

SOLUTION(a) You already know from calculus that if c is any constant, then y D ceax satisfies (2.1.6).

However, let’s pretend you’ve forgotten this, and use this problem to illustrate a general method for

solving a homogeneous linear first order equation.
We know that (2.1.6) has the trivial solution y � 0. Now suppose y is a nontrivial solution of (2.1.6).

Then, since a differentiable function must be continuous, there must be some open interval I on which y

has no zeros. We rewrite (2.1.6) as
y0

y
D a
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Figure 2.1.1 Solutions of y0 � ay D 0, y.0/ D 1

for x in I . Integrating this shows that

ln jyj D ax C k; so jyj D ekeax;

where k is an arbitrary constant. Since eax can never equal zero, y has no zeros, so y is either always

positive or always negative. Therefore we can rewrite y as

y D ceax (2.1.7)

where

c D
�

ek if y > 0;

�ek if y < 0:

This shows that every nontrivial solution of (2.1.6) is of the form y D ceax for some nonzero constant c.

Since setting c D 0 yields the trivial solution, all solutions of (2.1.6) are of the form (2.1.7). Conversely,

(2.1.7) is a solution of (2.1.6) for every choice of c, since differentiating (2.1.7) yields y0 D aceax D ay.

SOLUTION(b) Imposing the initial condition y.x0/ D y0 yields y0 D ceax0, so c D y0e
�ax0 and

y D y0e
�ax0eax D y0e

a.x�x0/:

Figure 2.1.1 show the graphs of this function with x0 D 0, y0 D 1, and various values of a.

Example 2.1.4 (a) Find the general solution of

xy0 C y D 0: (2.1.8)

(b) Solve the initial value problem

xy0 C y D 0; y.1/ D 3: (2.1.9)
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SOLUTION(a) We rewrite (2.1.8) as

y0 C 1

x
y D 0; (2.1.10)

where x is restricted to either .�1; 0/ or .0;1/. If y is a nontrivial solution of (2.1.10), there must be

some open interval I on which y has no zeros. We can rewrite (2.1.10) as

y0

y
D � 1

x

for x in I . Integrating shows that

ln jyj D � ln jxj C k; so jyj D ek

jxj :

Since a function that satisfies the last equation can’t change sign on either .�1; 0/ or .0;1/, we can

rewrite this result more simply as

y D c

x
(2.1.11)

where

c D
�

ek if y > 0;

�ek if y < 0:

We’ve now shown that every solution of (2.1.10) is given by (2.1.11) for some choice of c. (Even though

we assumed that y was nontrivial to derive (2.1.11), we can get the trivial solution by setting c D 0 in
(2.1.11).) Conversely, any function of the form (2.1.11) is a solution of (2.1.10), since differentiating

(2.1.11) yields

y0 D � c

x2
;

and substituting this and (2.1.11) into (2.1.10) yields

y0 C 1

x
y D � c

x2
C 1

x

c

x

D � c

x2
C c

x2
D 0:

Figure 2.1.2 shows the graphs of some solutions corresponding to various values of c

SOLUTION(b) Imposing the initial condition y.1/ D 3 in (2.1.11) yields c D 3. Therefore the solution

of (2.1.9) is

y D 3

x
:

The interval of validity of this solution is .0;1/.

The results in Examples 2.1.3(a) and 2.1.4(b) are special cases of the next theorem.

Theorem 2.1.1 If p is continuous on .a; b/; then the general solution of the homogeneous equation

y0 C p.x/y D 0 (2.1.12)

on .a; b/ is

y D ce�P.x/;

where

P.x/ D
Z

p.x/ dx (2.1.13)
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 c > 0 c < 0
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Figure 2.1.2 Solutions of xy0 C y D 0 on .0;1/ and .�1; 0/

is any antiderivative of p on .a; b/I that is;

P 0.x/ D p.x/; a < x < b: (2.1.14)

Proof If y D ce�P.x/, differentiating y and using (2.1.14) shows that

y0 D �P 0.x/ce�P.x/ D �p.x/ce�P.x/ D �p.x/y;

so y0 C p.x/y D 0; that is, y is a solution of (2.1.12), for any choice of c.

Now we’ll show that any solution of (2.1.12) can be written as y D ce�P.x/ for some constant c. The

trivial solution can be written this way, with c D 0. Now suppose y is a nontrivial solution. Then there’s

an open subinterval I of .a; b/ on which y has no zeros. We can rewrite (2.1.12) as

y0

y
D �p.x/ (2.1.15)

for x in I . Integrating (2.1.15) and recalling (2.1.13) yields

ln jyj D �P.x/C k;

where k is a constant. This implies that

jyj D eke�P.x/:

Since P is defined for all x in .a; b/ and an exponential can never equal zero, we can take I D .a; b/, so

y has zeros on .a; b/ .a; b/, so we can rewrite the last equation as y D ce�P.x/, where

c D
�

ek if y > 0 on .a; b/;

�ek if y < 0 on .a; b/:
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REMARK: Rewriting a first order differential equation so that one side depends only on y and y0 and the

other depends only on x is called separation of variables. We did this in Examples 2.1.3 and 2.1.4, and

in rewriting (2.1.12) as (2.1.15).We’llapply this method to nonlinear equations in Section 2.2.

Linear Nonhomogeneous First Order Equations

We’ll now solve the nonhomogeneous equation

y0 C p.x/y D f .x/: (2.1.16)

When considering this equation we call

y0 C p.x/y D 0

the complementary equation.
We’ll find solutions of (2.1.16) in the form y D uy1, where y1 is a nontrivial solution of the com-

plementary equation and u is to be determined. This method of using a solution of the complementary

equation to obtain solutions of a nonhomogeneous equation is a special case of a method called variation

of parameters, which you’ll encounter several times in this book. (Obviously, u can’t be constant, since

if it were, the left side of (2.1.16) would be zero. Recognizing this, the early users of this method viewed
u as a “parameter” that varies; hence, the name “variation of parameters.”)

If

y D uy1; then y0 D u0y1 C uy0
1:

Substituting these expressions for y and y0 into (2.1.16) yields

u0y1 C u.y0
1 C p.x/y1/ D f .x/;

which reduces to
u0y1 D f .x/; (2.1.17)

since y1 is a solution of the complementary equation; that is,

y0
1 C p.x/y1 D 0:

In the proof of Theorem 2.2.1 we saw that y1 has no zeros on an interval where p is continuous. Therefore

we can divide (2.1.17) through by y1 to obtain

u0 D f .x/=y1.x/:

We can integrate this (introducing a constant of integration), and multiply the result by y1 to get the gen-

eral solution of (2.1.16). Before turning to the formal proof of this claim, let’s consider some examples.

Example 2.1.5 Find the general solution of

y0 C 2y D x3e�2x : (2.1.18)

By applying (a) of Example 2.1.3 with a D �2, we see that y1 D e�2x is a solution of the com-

plementary equation y0 C 2y D 0. Therefore we seek solutions of (2.1.18) in the form y D ue�2x, so
that

y0 D u0e�2x � 2ue�2x and y0 C 2y D u0e�2x � 2ue�2x C 2ue�2x D u0e�2x: (2.1.19)

Therefore y is a solution of (2.1.18) if and only if

u0e�2x D x3e�2x or, equivalently, u0 D x3:
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Figure 2.1.3 A direction field and integral curves for y0 C 2y D x2e�2x

Therefore

u D x4

4
C c;

and

y D ue�2x D e�2x

�

x4

4
C c

�

is the general solution of (2.1.18).

Figure 2.1.3 shows a direction field and some integral curves for (2.1.18).

Example 2.1.6

(a) Find the general solution

y0 C .cot x/y D x csc x: (2.1.20)

(b) Solve the initial value problem

y0 C .cot x/y D x csc x; y.�=2/ D 1: (2.1.21)

SOLUTION(a) Here p.x/ D cotx and f .x/ D x csc x are both continuous except at the points x D r� ,
where r is an integer. Therefore we seek solutions of (2.1.20) on the intervals .r�; .r C 1/�/. We need

a nontrival solution y1 of the complementary equation; thus, y1 must satisfy y0
1 C .cot x/y1 D 0, which

we rewrite as
y0

1

y1

D � cotx D �cos x

sin x
: (2.1.22)

Integrating this yields
ln jy1j D � ln j sinxj;
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where we take the constant of integration to be zero since we need only one function that satisfies (2.1.22).

Clearly y1 D 1= sinx is a suitable choice. Therefore we seek solutions of (2.1.20) in the form

y D u

sin x
;

so that

y0 D u0

sinx
� u cos x

sin2 x
(2.1.23)

and

y0 C .cot x/y D u0

sin x
� u cos x

sin2 x
C u cot x

sinx

D u0

sin x
� u cos x

sin2 x
C u cos x

sin2 x

D u0

sin x
:

(2.1.24)

Therefore y is a solution of (2.1.20) if and only if

u0= sinx D x csc x D x= sinx or, equivalently, u0 D x:

Integrating this yields

u D x2

2
C c; and y D u

sinx
D x2

2 sinx
C c

sinx
: (2.1.25)

is the general solution of (2.1.20) on every interval .r�; .r C 1/�/ (r Dinteger).

SOLUTION(b) Imposing the initial condition y.�=2/ D 1 in (2.1.25) yields

1 D �2

8
C c or c D 1� �2

8
:

Thus,

y D x2

2 sinx
C .1 � �2=8/

sinx
is a solution of (2.1.21). The interval of validity of this solution is .0; �/; Figure 2.1.4 shows its graph.

1 2 3
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− 10

 − 5

  5

 10

 15
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 y

Figure 2.1.4 Solution of y0 C .cot x/y D x csc x; y.�=2/ D 1
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REMARK: It wasn’t necessary to do the computations (2.1.23) and (2.1.24) in Example 2.1.6, since we

showed in the discussion preceding Example 2.1.5 that if y D uy1 where y0
1 C p.x/y1 D 0, then

y0Cp.x/y D u0y1. We did these computations so you would see this happen in this specific example. We

recommend that you include these “unnecesary” computations in doing exercises, until you’re confident

that you really understand the method. After that, omit them.

We summarize the method of variation of parameters for solving

y0 C p.x/y D f .x/ (2.1.26)

as follows:

(a) Find a function y1 such that
y0

1

y1

D �p.x/:

For convenience, take the constant of integration to be zero.

(b) Write

y D uy1 (2.1.27)

to remind yourself of what you’re doing.

(c) Write u0y1 D f and solve for u0; thus, u0 D f=y1.

(d) Integrate u0 to obtain u, with an arbitrary constant of integration.

(e) Substitute u into (2.1.27) to obtain y.

To solve an equation written as

P0.x/y
0 C P1.x/y D F.x/;

we recommend that you divide through by P0.x/ to obtain an equation of the form (2.1.26) and then

follow this procedure.

Solutions in Integral Form

Sometimes the integrals that arise in solving a linear first order equation can’t be evaluated in terms of

elementary functions. In this case the solution must be left in terms of an integral.

Example 2.1.7

(a) Find the general solution of

y0 � 2xy D 1:

(b) Solve the initial value problem

y0 � 2xy D 1; y.0/ D y0: (2.1.28)

SOLUTION(a) To apply variation of parameters, we need a nontrivial solution y1 of the complementary

equation; thus, y0
1 � 2xy1 D 0, which we rewrite as

y0
1

y1

D 2x:
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Integrating this and taking the constant of integration to be zero yields

ln jy1j D x2; so jy1j D ex2

:

We choose y1 D ex2

and seek solutions of (2.1.28) in the form y D uex2

, where

u0ex2 D 1; so u0 D e�x2

:

Therefore

u D c C
Z

e�x2

dx;

but we can’t simplify the integral on the right because there’s no elementary function with derivative

equal to e�x2
. Therefore the best available form for the general solution of (2.1.28) is

y D uex2 D ex2

�

c C
Z

e�x2

dx

�

: (2.1.29)

SOLUTION(b) Since the initial condition in (2.1.28) is imposed at x0 D 0, it is convenient to rewrite

(2.1.29) as

y D ex2

�

c C
Z x

0

e�t2

dt

�

; since

Z 0

0

e�t2

dt D 0:

Setting x D 0 and y D y0 here shows that c D y0. Therefore the solution of the initial value problem is

y D ex2

�

y0 C
Z x

0

e�t2

dt

�

: (2.1.30)

For a given value of y0 and each fixed x, the integral on the right can be evaluated by numerical methods.

An alternate procedure is to apply the numerical integration procedures discussed in Chapter 3 directly to
the initial value problem (2.1.28). Figure 2.1.5 shows graphs of of (2.1.30) for several values of y0.

 x

 y

Figure 2.1.5 Solutions of y0 � 2xy D 1, y.0/ D y0
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An Existence and Uniqueness Theorem

The method of variation of parameters leads to this theorem.

Theorem 2.1.2 Suppose p and f are continuous on an open interval .a; b/; and let y1 be any nontrivial

solution of the complementary equation

y0 C p.x/y D 0

on .a; b/. ThenW
(a) The general solution of the nonhomogeneous equation

y0 C p.x/y D f .x/ (2.1.31)

on .a; b/ is

y D y1.x/

�

c C
Z

f .x/=y1.x/ dx

�

: (2.1.32)

(b) If x0 is an arbitrary point in .a; b/ and y0 is an arbitrary real number; then the initial value problem

y0 C p.x/y D f .x/; y.x0/ D y0

has the unique solution

y D y1.x/

�

y0

y1.x0/
C
Z x

x0

f .t/

y1.t/
dt

�

on .a; b/:

Proof (a) To show that (2.1.32) is the general solution of (2.1.31) on .a; b/, we must prove that:

(i) If c is any constant, the function y in (2.1.32) is a solution of (2.1.31) on .a; b/.

(ii) If y is a solution of (2.1.31) on .a; b/ then y is of the form (2.1.32) for some constant c.

To prove (i), we first observe that any function of the form (2.1.32) is defined on .a; b/, since p and f

are continuous on .a; b/. Differentiating (2.1.32) yields

y0 D y0
1.x/

�

c C
Z

f .x/=y1.x/ dx

�

C f .x/:

Since y0
1 D �p.x/y1, this and (2.1.32) imply that

y0 D �p.x/y1.x/

�

c C
Z

f .x/=y1.x/ dx

�

C f .x/

D �p.x/y.x/ C f .x/;

which implies that y is a solution of (2.1.31).
To prove (ii), suppose y is a solution of (2.1.31) on .a; b/. From the proof of Theorem 2.1.1, we know

that y1 has no zeros on .a; b/, so the function u D y=y1 is defined on .a; b/. Moreover, since

y0 D �py C f and y0
1 D �py1;

u0 D y1y
0 � y0

1y

y2
1

D y1.�py C f /� .�py1/y

y2
1

D f

y1

:
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Integrating u0 D f=y1 yields

u D
�

c C
Z

f .x/=y1.x/ dx

�

;

which implies (2.1.32), since y D uy1.

(b) We’ve proved (a), where
R

f .x/=y1.x/ dx in (2.1.32) is an arbitrary antiderivative of f=y1. Now

it’s convenient to choose the antiderivative that equals zero when x D x0, and write the general solution
of (2.1.31) as

y D y1.x/

�

c C
Z x

x0

f .t/

y1.t/
dt

�

:

Since

y.x0/ D y1.x0/

�

c C
Z x0

x0

f .t/

y1.t/
dt

�

D cy1.x0/;

we see that y.x0/ D y0 if and only if c D y0=y1.x0/.

2.1 Exercises

In Exercises 1–5 find the general solution.

1. y0 C ay D 0 (a=constant) 2. y0 C 3x2y D 0

3. xy0 C .ln x/y D 0 4. xy0 C 3y D 0

5. x2y0 C y D 0

In Exercises 6–11 solve the initial value problem.

6. y0 C
�

1C x

x

�

y D 0; y.1/ D 1

7. xy0 C
�

1C 1

lnx

�

y D 0; y.e/ D 1

8. xy0 C .1 C x cot x/y D 0; y
��

2

�

D 2

9. y0 �
�

2x

1C x2

�

y D 0; y.0/ D 2

10. y0 C k

x
y D 0; y.1/ D 3 (k= constant)

11. y0 C .tan kx/y D 0; y.0/ D 2 (k D constant)

In Exercises 12 –15 find the general solution. Also, plot a direction field and some integral curves on the

rectangular region f�2 � x � 2; �2 � y � 2}.

12. C/G y0 C 3y D 1 13. C/G y0 C
�

1

x
� 1

�

y D � 2
x

14. C/G y0 C 2xy D xe�x2

15. C/G y0 C 2x

1C x2
y D e�x

1C x2
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In Exercises 16 –24 find the general solution.

16. y0 C 1

x
y D 7

x2
C 3 17. y0 C 4

x � 1
y D 1

.x � 1/5
C sinx

.x � 1/4

18. xy0 C .1 C 2x2/y D x3e�x2 19. xy0 C 2y D 2

x2
C 1

20. y0 C .tan x/y D cos x 21. .1C x/y0 C 2y D sin x

1C x

22. .x � 2/.x � 1/y0 � .4x � 3/y D .x � 2/3

23. y0 C .2 sin x cos x/y D e� sin2 x 24. x2y0 C 3xy D ex

In Exercises 25–29 solve the initial value problem and sketch the graph of the solution.

25. C/G y0 C 7y D e3x; y.0/ D 0

26. C/G .1 C x2/y0 C 4xy D 2

1C x2
; y.0/ D 1

27. C/G xy0 C 3y D 2

x.1C x2/
; y.�1/ D 0

28. C/G y0 C .cot x/y D cos x; y
��

2

�

D 1

29. C/G y0 C 1

x
y D 2

x2
C 1; y.�1/ D 0

In Exercises 30–37 solve the initial value problem.

30. .x � 1/y0 C 3y D 1

.x � 1/3 C sinx

.x � 1/2
; y.0/ D 1

31. xy0 C 2y D 8x2; y.1/ D 3

32. xy0 � 2y D �x2; y.1/ D 1

33. y0 C 2xy D x; y.0/ D 3

34. .x � 1/y0 C 3y D 1C .x � 1/ sec2 x

.x � 1/3 ; y.0/ D �1

35. .x C 2/y0 C 4y D 1C 2x2

x.x C 2/3
; y.�1/ D 2

36. .x2 � 1/y0 � 2xy D x.x2 � 1/; y.0/ D 4

37. .x2 � 5/y0 � 2xy D �2x.x2 � 5/; y.2/ D 7

In Exercises 38–42 solve the initial value problem and leave the answer in a form involving a definite

integral. .You can solve these problems numerically by methods discussed in Chapter 3./

38. y0 C 2xy D x2; y.0/ D 3

39. y0 C 1

x
y D sin x

x2
; y.1/ D 2
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40. y0 C y D e�x tan x

x
; y.1/ D 0

41. y0 C 2x

1C x2
y D ex

.1 C x2/2
; y.0/ D 1

42. xy0 C .x C 1/y D ex2
; y.1/ D 2

43. Experiments indicate that glucose is absorbed by the body at a rate proportional to the amount of

glucose present in the bloodstream. Let � denote the (positive) constant of proportionality. Now

suppose glucose is injected into a patient’s bloodstream at a constant rate of r units per unit of
time. Let G D G.t/ be the number of units in the patient’s bloodstream at time t > 0. Then

G0 D ��G C r;

where the first term on the right is due to the absorption of the glucose by the patient’s body and

the second term is due to the injection. Determine G for t > 0, given that G.0/ D G0. Also, find

limt!1 G.t/.

44. (a) L Plot a direction field and some integral curves for

xy0 � 2y D �1 .A/

on the rectangular region f�1 � x � 1;�:5 � y � 1:5g. What do all the integral curves

have in common?

(b) Show that the general solution of (A) on .�1; 0/ and .0;1/ is

y D 1

2
C cx2:

(c) Show that y is a solution of (A) on .�1;1/ if and only if

y D

8

ˆ

<

ˆ

:

1

2
C c1x

2; x � 0;

1

2
C c2x

2; x < 0;

where c1 and c2 are arbitrary constants.

(d) Conclude from (c) that all solutions of (A) on .�1;1/ are solutions of the initial value

problem

xy0 � 2y D �1; y.0/ D 1

2
:

(e) Use (b) to show that if x0 ¤ 0 and y0 is arbitrary, then the initial value problem

xy0 � 2y D �1; y.x0/ D y0

has infinitely many solutions on (�1;1). Explain why this does’nt contradict Theorem 2.1.1(b).

45. Suppose f is continuous on an open interval .a; b/ and ˛ is a constant.

(a) Derive a formula for the solution of the initial value problem

y0 C ˛y D f .x/; y.x0/ D y0; .A/

where x0 is in .a; b/ and y0 is an arbitrary real number.
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(b) Suppose .a; b/ D .a;1/, ˛ > 0 and lim
x!1

f .x/ D L. Show that if y is the solution of (A),

then lim
x!1

y.x/ D L=˛.

46. Assume that all functions in this exercise are defined on a common interval .a; b/.

(a) Prove: If y1 and y2 are solutions of

y0 C p.x/y D f1.x/

and

y0 C p.x/y D f2.x/

respectively, and c1 and c2 are constants, then y D c1y1 C c2y2 is a solution of

y0 C p.x/y D c1f1.x/C c2f2.x/:

(This is theprinciple of superposition.)

(b) Use (a) to show that if y1 and y2 are solutions of the nonhomogeneous equation

y0 C p.x/y D f .x/; .A/

then y1 � y2 is a solution of the homogeneous equation

y0 C p.x/y D 0: .B/

(c) Use (a) to show that if y1 is a solution of (A) and y2 is a solution of (B), then y1 C y2 is a

solution of (A).

47. Some nonlinear equations can be transformed into linear equations by changing the dependent

variable. Show that if

g0.y/y0 C p.x/g.y/ D f .x/

where y is a function of x and g is a function of y, then the new dependent variable ´ D g.y/

satisfies the linear equation

´0 C p.x/´ D f .x/:

48. Solve by the method discussed in Exercise 47.

(a) .sec2 y/y0 � 3 tany D �1 (b) ey2

�

2yy0 C 2

x

�

D 1

x2

(c)
xy0

y
C 2 lny D 4x2 (d)

y0

.1 C y/2
� 1

x.1C y/
D � 3

x2

49. We’ve shown that if p and f are continuous on .a; b/ then every solution of

y0 C p.x/y D f .x/ .A/

on .a; b/ can be written as y D uy1, where y1 is a nontrivial solution of the complementary
equation for (A) and u0 D f=y1. Now suppose f , f 0, . . . , f .m/ and p, p0, . . . , p.m�1/ are

continuous on .a; b/, where m is a positive integer, and define

f0 D f;

fj D f 0
j �1 C pfj �1; 1 � j � m:

Show that

u.j C1/ D fj

y1

; 0 � j � m:
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2.2 SEPARABLE EQUATIONS

A first order differential equation is separable if it can be written as

h.y/y0 D g.x/; (2.2.1)

where the left side is a product of y0 and a function of y and the right side is a function of x. Rewriting
a separable differential equation in this form is called separation of variables. In Section 2.1 we used

separation of variables to solve homogeneous linear equations. In this section we’ll apply this method to

nonlinear equations.

To see how to solve (2.2.1), let’s first assume that y is a solution. Let G.x/ andH.y/ be antiderivatives

of g.x/ and h.y/; that is,
H 0.y/ D h.y/ and G0.x/ D g.x/: (2.2.2)

Then, from the chain rule,

d

dx
H.y.x// D H 0.y.x//y0 .x/ D h.y/y0.x/:

Therefore (2.2.1) is equivalent to
d

dx
H.y.x// D d

dx
G.x/:

Integrating both sides of this equation and combining the constants of integration yields

H.y.x// D G.x/C c: (2.2.3)

Although we derived this equation on the assumption that y is a solution of (2.2.1), we can now view it

differently: Any differentiable function y that satisfies (2.2.3) for some constant c is a solution of (2.2.1).

To see this, we differentiate both sides of (2.2.3), using the chain rule on the left, to obtain

H 0.y.x//y0 .x/ D G0.x/;

which is equivalent to

h.y.x//y0.x/ D g.x/

because of (2.2.2).

In conclusion, to solve (2.2.1) it suffices to find functions G D G.x/ and H D H.y/ that satisfy

(2.2.2). Then any differentiable function y D y.x/ that satisfies (2.2.3) is a solution of (2.2.1).

Example 2.2.1 Solve the equation

y0 D x.1C y2/:

Solution Separating variables yields
y0

1C y2
D x:

Integrating yields

tan�1 y D x2

2
C c

Therefore

y D tan

�

x2

2
C c

�

:
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Example 2.2.2

(a) Solve the equation

y0 D �x
y
: (2.2.4)

(b) Solve the initial value problem

y0 D �x
y
; y.1/ D 1: (2.2.5)

(c) Solve the initial value problem

y0 D �x
y
; y.1/ D �2: (2.2.6)

SOLUTION(a) Separating variables in (2.2.4) yields

yy0 D �x:

Integrating yields
y2

2
D �x

2

2
C c; or, equivalently, x2 C y2 D 2c:

The last equation shows that c must be positive if y is to be a solution of (2.2.4) on an open interval.

Therefore we let 2c D a2 (with a > 0) and rewrite the last equation as

x2 C y2 D a2: (2.2.7)

This equation has two differentiable solutions for y in terms of x:

y D
p
a2 � x2; �a < x < a; (2.2.8)

and

y D �
p
a2 � x2; �a < x < a: (2.2.9)

The solution curves defined by (2.2.8) are semicircles above the x-axis and those defined by (2.2.9) are
semicircles below the x-axis (Figure 2.2.1).

SOLUTION(b) The solution of (2.2.5) is positive when x D 1; hence, it is of the form (2.2.8). Substituting

x D 1 and y D 1 into (2.2.7) to satisfy the initial condition yields a2 D 2; hence, the solution of (2.2.5)
is

y D
p
2 � x2; �

p
2 < x <

p
2:

SOLUTION(c) The solution of (2.2.6) is negative when x D 1 and is therefore of the form (2.2.9).

Substituting x D 1 and y D �2 into (2.2.7) to satisfy the initial condition yields a2 D 5. Hence, the

solution of (2.2.6) is

y D �
p
5 � x2; �

p
5 < x <

p
5:
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 x

 y

1 2−1−2

1

2

−1

−2

(a)

(b)

Figure 2.2.1 (a) y D
p
2 � x2, �

p
2 < x <

p
2; (b) y D �

p
5 � x2, �

p
5 < x <

p
5

Implicit Solutions of Separable Equations

In Examples 2.2.1 and 2.2.2 we were able to solve the equation H.y/ D G.x/ C c to obtain explicit

formulas for solutions of the given separable differential equations. As we’ll see in the next example,

this isn’t always possible. In this situation we must broaden our definition of a solution of a separable

equation. The next theorem provides the basis for this modification. We omit the proof, which requires a
result from advanced calculus called as the implicit function theorem.

Theorem 2.2.1 Suppose g D g.x/ is continous on .a; b/ and h D h.y/ are continuous on .c; d /: LetG

be an antiderivative of g on .a; b/ and let H be an antiderivative of h on .c; d /: Let x0 be an arbitrary

point in .a; b/; let y0 be a point in .c; d / such that h.y0/ ¤ 0; and define

c D H.y0/ �G.x0/: (2.2.10)

Then there’s a function y D y.x/ defined on some open interval .a1; b1/; where a � a1 < x0 < b1 � b;

such that y.x0/ D y0 and

H.y/ D G.x/C c (2.2.11)

for a1 < x < b1. Therefore y is a solution of the initial value problem

h.y/y0 D g.x/; y.x0/ D x0: (2.2.12)

It’s convenient to say that (2.2.11) with c arbitrary is an implicit solution of h.y/y0 D g.x/. Curves

defined by (2.2.11) are integral curves of h.y/y0 D g.x/. If c satisfies (2.2.10), we’ll say that (2.2.11) is

an implicit solution of the initial value problem (2.2.12). However, keep these points in mind:

� For some choices of c there may not be any differentiable functions y that satisfy (2.2.11).
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� The function y in (2.2.11) (not (2.2.11) itself) is a solution of h.y/y0 D g.x/.

Example 2.2.3

(a) Find implicit solutions of

y0 D 2x C 1

5y4 C 1
: (2.2.13)

(b) Find an implicit solution of

y0 D 2x C 1

5y4 C 1
; y.2/ D 1: (2.2.14)

SOLUTION(a) Separating variables yields

.5y4 C 1/y0 D 2x C 1:

Integrating yields the implicit solution

y5 C y D x2 C x C c: (2.2.15)

of (2.2.13).

SOLUTION(b) Imposing the initial condition y.2/ D 1 in (2.2.15) yields 1C 1 D 4C 2C c, so c D �4.
Therefore

y5 C y D x2 C x � 4
is an implicit solution of the initial value problem (2.2.14). Although more than one differentiable func-

tion y D y.x/ satisfies 2.2.13) near x D 1, it can be shown that there’s only one such function that

satisfies the initial condition y.1/ D 2.

Figure 2.2.2 shows a direction field and some integral curves for (2.2.13).

Constant Solutions of Separable Equations

An equation of the form
y0 D g.x/p.y/

is separable, since it can be rewritten as

1

p.y/
y0 D g.x/:

However, the division by p.y/ is not legitimate if p.y/ D 0 for some values of y. The next two examples
show how to deal with this problem.

Example 2.2.4 Find all solutions of

y0 D 2xy2: (2.2.16)

Solution Here we must divide by p.y/ D y2 to separate variables. This isn’t legitimate if y is a solution

of (2.2.16) that equals zero for some value of x. One such solution can be found by inspection: y � 0.
Now suppose y is a solution of (2.2.16) that isn’t identically zero. Since y is continuous there must be an

interval on which y is never zero. Since division by y2 is legitimate for x in this interval, we can separate

variables in (2.2.16) to obtain
y0

y2
D 2x:
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Figure 2.2.2 A direction field and integral curves for y0 D 2x C 1

5y4 C 1

Integrating this yields

� 1
y

D x2 C c;

which is equivalent to

y D � 1

x2 C c
: (2.2.17)

We’ve now shown that if y is a solution of (2.2.16) that is not identically zero, then y must be of the

form (2.2.17). By substituting (2.2.17) into (2.2.16), you can verify that (2.2.17) is a solution of (2.2.16).

Thus, solutions of (2.2.16) are y � 0 and the functions of the form (2.2.17). Note that the solution y � 0

isn’t of the form (2.2.17) for any value of c.

Figure 2.2.3 shows a direction field and some integral curves for (2.2.16)

Example 2.2.5 Find all solutions of

y0 D 1

2
x.1 � y2/: (2.2.18)

Solution Here we must divide by p.y/ D 1 � y2 to separate variables. This isn’t legitimate if y is a

solution of (2.2.18) that equals ˙1 for some value of x. Two such solutions can be found by inspection:

y � 1 and y � �1. Now suppose y is a solution of (2.2.18) such that 1� y2 isn’t identically zero. Since

1� y2 is continuous there must be an interval on which 1� y2 is never zero. Since division by 1� y2 is
legitimate for x in this interval, we can separate variables in (2.2.18) to obtain

2y0

y2 � 1
D �x:
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Figure 2.2.3 A direction field and integral curves for y0 D 2xy2

A partial fraction expansion on the left yields

�

1

y � 1 � 1

y C 1

�

y0 D �x;

and integrating yields

ln

ˇ

ˇ

ˇ

ˇ

y � 1
y C 1

ˇ

ˇ

ˇ

ˇ

D �x
2

2
C kI

hence,
ˇ

ˇ

ˇ

ˇ

y � 1
y C 1

ˇ

ˇ

ˇ

ˇ

D eke�x2=2:

Since y.x/ ¤ ˙1 for x on the interval under discussion, the quantity .y � 1/=.y C 1/ can’t change sign
in this interval. Therefore we can rewrite the last equation as

y � 1

y C 1
D ce�x2=2;

where c D ˙ek, depending upon the sign of .y � 1/=.y C 1/ on the interval. Solving for y yields

y D 1C ce�x2=2

1 � ce�x2=2
: (2.2.19)

We’ve now shown that if y is a solution of (2.2.18) that is not identically equal to ˙1, then y must be

as in (2.2.19). By substituting (2.2.19) into (2.2.18) you can verify that (2.2.19) is a solution of (2.2.18).
Thus, the solutions of (2.2.18) are y � 1, y � �1 and the functions of the form (2.2.19). Note that the
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constant solution y � 1 can be obtained from this formula by taking c D 0; however, the other constant

solution, y � �1, can’t be obtained in this way.

Figure 2.2.4 shows a direction field and some integrals for (2.2.18).
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Figure 2.2.4 A direction field and integral curves for y0 D x.1 � y2/

2

Differences Between Linear and Nonlinear Equations

Theorem 2.1.2 states that if p and f are continuous on .a; b/ then every solution of

y0 C p.x/y D f .x/

on .a; b/ can be obtained by choosing a value for the constant c in the general solution, and if x0 is any

point in .a; b/ and y0 is arbitrary, then the initial value problem

y0 C p.x/y D f .x/; y.x0/ D y0

has a solution on .a; b/.

The not true for nonlinear equations. First, we saw in Examples 2.2.4 and 2.2.5 that a nonlinear

equation may have solutions that can’t be obtained by choosing a specific value of a constant appearing

in a one-parameter family of solutions. Second, it is in general impossible to determine the interval
of validity of a solution to an initial value problem for a nonlinear equation by simply examining the

equation, since the interval of validity may depend on the initial condition. For instance, in Example 2.2.2

we saw that the solution of
dy

dx
D �x

y
; y.x0/ D y0

is valid on .�a; a/, where a D
q

x2
0 C y2

0 .
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Example 2.2.6 Solve the initial value problem

y0 D 2xy2; y.0/ D y0

and determine the interval of validity of the solution.

Solution First suppose y0 ¤ 0. From Example 2.2.4, we know that y must be of the form

y D � 1

x2 C c
: (2.2.20)

Imposing the initial condition shows that c D �1=y0. Substituting this into (2.2.20) and rearranging

terms yields the solution

y D y0

1 � y0x2
:

This is also the solution if y0 D 0. If y0 < 0, the denominator isn’t zero for any value of x, so the the

solution is valid on .�1;1/. If y0 > 0, the solution is valid only on .�1=py0; 1=
p
y0/.

2.2 Exercises

In Exercises 1–6 find all solutions.

1. y0 D 3x2 C 2x C 1

y � 2 2. .sin x/.sin y/C .cos y/y0 D 0

3. xy0 C y2 C y D 0 4. y0 ln jyj C x2y D 0

5. .3y3 C 3y cosy C 1/y0 C .2x C 1/y

1C x2
D 0

6. x2yy0 D .y2 � 1/3=2

In Exercises 7–10 find all solutions. Also, plot a direction field and some integral curves on the indicated

rectangular region.

7. C/G y0 D x2.1 C y2/I f�1 � x � 1; �1 � y � 1g
8. C/G y0.1C x2/C xy D 0I f�2 � x � 2; �1 � y � 1g

9. C/G y0 D .x � 1/.y � 1/.y � 2/I f�2 � x � 2; �3 � y � 3g
10. C/G .y � 1/2y0 D 2x C 3I f�2 � x � 2; �2 � y � 5g

In Exercises 11 and 12 solve the initial value problem.

11. y0 D x2 C 3x C 2

y � 2
; y.1/ D 4

12. y0 C x.y2 C y/ D 0; y.2/ D 1

In Exercises 13-16 solve the initial value problem and graph the solution.

13. C/G .3y2 C 4y/y0 C 2x C cos x D 0; y.0/ D 1
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14. C/G y0 C .y C 1/.y � 1/.y � 2/

x C 1
D 0; y.1/ D 0

15. C/G y0 C 2x.y C 1/ D 0; y.0/ D 2

16. C/G y0 D 2xy.1 C y2/; y.0/ D 1

In Exercises 17–23 solve the initial value problem and find the interval of validity of the solution.

17. y0.x2 C 2/C 4x.y2 C 2y C 1/ D 0; y.1/ D �1
18. y0 D �2x.y2 � 3y C 2/; y.0/ D 3

19. y0 D 2x

1C 2y
; y.2/ D 0 20. y0 D 2y � y2; y.0/ D 1

21. x C yy0 D 0; y.3/ D �4
22. y0 C x2.y C 1/.y � 2/2 D 0; y.4/ D 2

23. .x C 1/.x � 2/y0 C y D 0; y.1/ D �3

24. Solve y0 D .1C y2/

.1 C x2/
explicitly. HINT: Use the identity tan.AC B/ D tanAC tanB

1 � tanA tanB
.

25. Solve y0
p
1 � x2 C

p

1 � y2 D 0 explicitly. HINT: Use the identity sin.A�B/ D sinA cosB �
cosA sinB .

26. Solve y0 D cos x

siny
; y.�/ D �

2
explicitly. HINT: Use the identity cos.x C �=2/ D � sinx and

the periodicity of the cosine.

27. Solve the initial value problem

y0 D ay � by2; y.0/ D y0:

Discuss the behavior of the solution if (a) y0 � 0; (b) y0 < 0.

28. The populationP D P.t/ of a species satisfies the logistic equation

P 0 D aP.1 � ˛P /

and P.0/ D P0 > 0. Find P for t > 0, and find limt!1 P.t/.

29. An epidemic spreads through a population at a rate proportional to the product of the number of

people already infected and the number of people susceptible, but not yet infected. Therefore, if

S denotes the total population of susceptible people and I D I.t/ denotes the number of infected

people at time t , then

I 0 D rI.S � I /;
where r is a positive constant. Assuming that I.0/ D I0, find I.t/ for t > 0, and show that

limt!1 I.t/ D S .

30. L The result of Exercise 29 is discouraging: if any susceptible member of the group is initially

infected, then in the long run all susceptible members are infected! On a more hopeful note,

suppose the disease spreads according to the model of Exercise 29, but there’s a medication that
cures the infected population at a rate proportional to the number of infected individuals. Now the

equation for the number of infected individuals becomes

I 0 D rI.S � I / � qI .A/

where q is a positive constant.
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(a) Choose r and S positive. By plotting direction fields and solutions of (A) on suitable rectan-

gular grids

R D f0 � t � T; 0 � I � d g
in the .t; I /-plane, verify that if I is any solution of (A) such that I.0/ > 0, then limt!1 I.t/ D
S � q=r if q < rS and limt!1 I.t/ D 0 if q � rS .

(b) To verify the experimental results of (a), use separation of variables to solve (A) with initial
condition I.0/ D I0 > 0, and find limt!1 I.t/. HINT: There are three cases to consider:

(i) q < rS ; (ii) q > rS ; (iii) q D rS .

31. L Consider the differential equation

y0 D ay � by2 � q; .A/

where a, b are positive constants, and q is an arbitrary constant. Suppose y denotes a solution of

this equation that satisfies the initial condition y.0/ D y0.

(a) Choose a and b positive and q < a2=4b. By plotting direction fields and solutions of (A) on

suitable rectangular grids

R D f0 � t � T; c � y � d g .B/

in the .t; y/-plane, discover that there are numbers y1 and y2 with y1 < y2 such that if

y0 > y1 then limt!1 y.t/ D y2, and if y0 < y1 then y.t/ D �1 for some finite value of t .
(What happens if y0 D y1?)

(b) Choose a and b positive and q D a2=4b. By plotting direction fields and solutions of (A)

on suitable rectangular grids of the form (B), discover that there’s a number y1 such that if

y0 � y1 then limt!1 y.t/ D y1, while if y0 < y1 then y.t/ D �1 for some finite value

of t .

(c) Choose positive a, b and q > a2=4b. By plotting direction fields and solutions of (A) on

suitable rectangular grids of the form (B), discover that no matter what y0 is, y.t/ D �1
for some finite value of t .

(d) Verify your results experiments analytically. Start by separating variables in (A) to obtain

y0

ay � by2 � q D 1:

To decide what to do next you’ll have to use the quadratic formula. This should lead you to

see why there are three cases. Take it from there!

Because of its role in the transition between these three cases, q0 D a2=4b is called a

bifurcation value of q. In general, if q is a parameter in any differential equation, q0 is said

to be a bifurcation value of q if the nature of the solutions of the equation with q < q0 is

qualitatively different from the nature of the solutions with q > q0.

32. L By plotting direction fields and solutions of

y0 D qy � y3;

convince yourself that q0 D 0 is a bifurcation value of q for this equation. Explain what makes

you draw this conclusion.

33. Suppose a disease spreads according to the model of Exercise 29, but there’s a medication that

cures the infected population at a constant rate of q individuals per unit time, where q > 0. Then

the equation for the number of infected individuals becomes

I 0 D rI.S � I / � q:
Assuming that I.0/ D I0 > 0, use the results of Exercise 31 to describe what happens as t ! 1.
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34. Assuming that p 6� 0, state conditions under which the linear equation

y0 C p.x/y D f .x/

is separable. If the equation satisfies these conditions, solve it by separation of variables and by

the method developed in Section 2.1.

Solve the equations in Exercises 35–38 using variation of parameters followed by separation of variables.

35. y0 C y D 2xe�x

1C yex
36. xy0 � 2y D x6

y C x2

37. y0 � y D .x C 1/e4x

.y C ex/2
38. y0 � 2y D xe2x

1 � ye�2x

39. Use variation of parameters to show that the solutions of the following equations are of the form

y D uy1, where u satisfies a separable equation u0 D g.x/p.u/. Find y1 and g for each equation.

(a) xy0 C y D h.x/p.xy/ (b) xy0 � y D h.x/p
�y

x

�

(c) y0 C y D h.x/p.exy/ (d) xy0 C ry D h.x/p.xry/

(e) y0 C v0.x/

v.x/
y D h.x/p .v.x/y/

2.3 EXISTENCE AND UNIQUENESS OF SOLUTIONS OF NONLINEAR EQUATIONS

Although there are methods for solving some nonlinear equations, it’s impossible to find useful formulas

for the solutions of most. Whether we’re looking for exact solutions or numerical approximations, it’s

useful to know conditions that imply the existence and uniqueness of solutions of initial value problems

for nonlinear equations. In this section we state such a condition and illustrate it with examples.

 y

 x
 a  b

 c

 d

Figure 2.3.1 An open rectangle
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Some terminology: an open rectangle R is a set of points .x; y/ such that

a < x < b and c < y < d

(Figure 2.3.1). We’ll denote this set by R W fa < x < b; c < y < d g. “Open” means that the boundary
rectangle (indicated by the dashed lines in Figure 2.3.1) isn’t included in R .

The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value

problems for first order nonlinear differential equations. We omit the proof, which is beyond the scope of

this book.

Theorem 2.3.1

(a) If f is continuous on an open rectangle

R W fa < x < b; c < y < d g

that contains .x0; y0/ then the initial value problem

y0 D f .x; y/; y.x0/ D y0 (2.3.1)

has at least one solution on some open subinterval of .a; b/ that contains x0:

(b) If both f and fy are continuous on R then (2.3.1) has a unique solution on some open subinterval

of .a; b/ that contains x0.

It’s important to understand exactly what Theorem 2.3.1 says.

� (a) is an existence theorem. It guarantees that a solution exists on some open interval that contains
x0, but provides no information on how to find the solution, or to determine the open interval on

which it exists. Moreover, (a) provides no information on the number of solutions that (2.3.1) may

have. It leaves open the possibility that (2.3.1) may have two or more solutions that differ for values

of x arbitrarily close to x0. We will see in Example 2.3.6 that this can happen.

� (b) is a uniqueness theorem. It guarantees that (2.3.1) has a unique solution on some open interval

(a,b) that contains x0. However, if .a; b/ ¤ .�1;1/, (2.3.1) may have more than one solution

on a larger interval that contains .a; b/. For example, it may happen that b < 1 and all solutions

have the same values on .a; b/, but two solutions y1 and y2 are defined on some interval .a; b1/

with b1 > b, and have different values for b < x < b1; thus, the graphs of the y1 and y2 “branch
off” in different directions at x D b. (See Example 2.3.7 and Figure 2.3.3). In this case, continuity

implies that y1.b/ D y2.b/ (call their common value y), and y1 and y2 are both solutions of the

initial value problem

y0 D f .x; y/; y.b/ D y (2.3.2)

that differ on every open interval that contains b. Therefore f or fy must have a discontinuity

at some point in each open rectangle that contains .b; y/, since if this were not so, (2.3.2) would

have a unique solution on some open interval that contains b. We leave it to you to give a similar

analysis of the case where a > �1.

Example 2.3.1 Consider the initial value problem

y0 D x2 � y2

1C x2 C y2
; y.x0/ D y0: (2.3.3)

Since

f .x; y/ D x2 � y2

1C x2 C y2
and fy.x; y/ D � 2y.1 C 2x2/

.1 C x2 C y2/2
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are continuous for all .x; y/, Theorem 2.3.1 implies that if .x0; y0/ is arbitrary, then (2.3.3) has a unique

solution on some open interval that contains x0.

Example 2.3.2 Consider the initial value problem

y0 D x2 � y2

x2 C y2
; y.x0/ D y0: (2.3.4)

Here

f .x; y/ D x2 � y2

x2 C y2
and fy.x; y/ D � 4x2y

.x2 C y2/2

are continuous everywhere except at .0; 0/. If .x0; y0/ ¤ .0; 0/, there’s an open rectangle R that contains

.x0; y0/ that does not contain .0; 0/. Since f and fy are continuous on R, Theorem 2.3.1 implies that if

.x0; y0/ ¤ .0; 0/ then (2.3.4) has a unique solution on some open interval that contains x0.

Example 2.3.3 Consider the initial value problem

y0 D x C y

x � y ; y.x0/ D y0: (2.3.5)

Here

f .x; y/ D x C y

x � y and fy.x; y/ D 2x

.x � y/2

are continuous everywhere except on the line y D x. If y0 ¤ x0, there’s an open rectangleR that contains

.x0; y0/ that does not intersect the line y D x. Since f and fy are continuous on R, Theorem 2.3.1
implies that if y0 ¤ x0, (2.3.5) has a unique solution on some open interval that contains x0.

Example 2.3.4 In Example 2.2.4 we saw that the solutions of

y0 D 2xy2 (2.3.6)

are

y � 0 and y D � 1

x2 C c
;

where c is an arbitrary constant. In particular, this implies that no solution of (2.3.6) other than y � 0

can equal zero for any value of x. Show that Theorem 2.3.1(b) implies this.

Solution We’ll obtain a contradiction by assuming that (2.3.6) has a solutiony1 that equals zero for some

value of x, but isn’t identically zero. If y1 has this property, there’s a point x0 such that y1.x0/ D 0, but
y1.x/ ¤ 0 for some value of x in every open interval that contains x0. This means that the initial value

problem

y0 D 2xy2; y.x0/ D 0 (2.3.7)

has two solutions y � 0 and y D y1 that differ for some value of x on every open interval that contains

x0. This contradicts Theorem 2.3.1(b), since in (2.3.6) the functions

f .x; y/ D 2xy2 and fy.x; y/ D 4xy:

are both continuous for all .x; y/, which implies that (2.3.7) has a unique solution on some open interval

that contains x0.
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Example 2.3.5 Consider the initial value problem

y0 D 10

3
xy2=5; y.x0/ D y0: (2.3.8)

(a) For what points .x0; y0/ does Theorem 2.3.1(a) imply that (2.3.8) has a solution?

(b) For what points .x0; y0/ does Theorem 2.3.1(b) imply that (2.3.8) has a unique solution on some

open interval that contains x0?

SOLUTION(a) Since

f .x; y/ D 10

3
xy2=5

is continuous for all .x; y/, Theorem 2.3.1 implies that (2.3.8) has a solution for every .x0; y0/.

SOLUTION(b) Here

fy.x; y/ D 4

3
xy�3=5

is continuous for all .x; y/ with y ¤ 0. Therefore, if y0 ¤ 0 there’s an open rectangle on which both

f and fy are continuous, and Theorem 2.3.1 implies that (2.3.8) has a unique solution on some open

interval that contains x0.

If y D 0 then fy.x; y/ is undefined, and therefore discontinuous; hence, Theorem 2.3.1 does not apply

to (2.3.8) if y0 D 0.

Example 2.3.6 Example 2.3.5 leaves open the possibility that the initial value problem

y0 D 10

3
xy2=5; y.0/ D 0 (2.3.9)

has more than one solution on every open interval that contains x0 D 0. Show that this is true.

Solution By inspection, y � 0 is a solution of the differential equation

y0 D 10

3
xy2=5: (2.3.10)

Since y � 0 satisfies the initial condition y.0/ D 0, it’s a solution of (2.3.9).

Now suppose y is a solution of (2.3.10) that isn’t identically zero. Separating variables in (2.3.10)

yields

y�2=5y0 D 10

3
x

on any open interval where y has no zeros. Integrating this and rewriting the arbitrary constant as 5c=3

yields
5

3
y3=5 D 5

3
.x2 C c/:

Therefore

y D .x2 C c/5=3: (2.3.11)

Since we divided by y to separate variables in (2.3.10), our derivation of (2.3.11) is legitimate only on

open intervals where y has no zeros. However, (2.3.11) actually defines y for all x, and differentiating

(2.3.11) shows that

y0 D 10

3
x.x2 C c/2=3 D 10

3
xy2=5; �1 < x < 1:
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 x

 y

Figure 2.3.2 Two solutions (y D 0 and y D x1=2) of (2.3.9) that differ on every interval containing

x0 D 0

Therefore (2.3.11) satisfies (2.3.10) on .�1;1/ even if c � 0, so that y.
p

jcj/ D y.�
p

jcj/ D 0. In

particular, taking c D 0 in (2.3.11) yields

y D x10=3

as a second solution of (2.3.9). Both solutions are defined on .�1;1/, and they differ on every open
interval that contains x0 D 0 (see Figure 2.3.2.) In fact, there are four distinct solutions of (2.3.9) defined

on .�1;1/ that differ from each other on every open interval that contains x0 D 0. Can you identify

the other two?

Example 2.3.7 From Example 2.3.5, the initial value problem

y0 D 10

3
xy2=5; y.0/ D �1 (2.3.12)

has a unique solution on some open interval that contains x0 D 0. Find a solution and determine the

largest open interval .a; b/ on which it’s unique.

Solution Let y be any solution of (2.3.12). Because of the initial condition y.0/ D �1 and the continuity

of y, there’s an open interval I that contains x0 D 0 on which y has no zeros, and is consequently of the

form (2.3.11). Setting x D 0 and y D �1 in (2.3.11) yields c D �1, so

y D .x2 � 1/5=3 (2.3.13)

for x in I . Therefore every solution of (2.3.12) differs from zero and is given by (2.3.13) on .�1; 1/;
that is, (2.3.13) is the unique solution of (2.3.12) on .�1; 1/. This is the largest open interval on which
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(2.3.12) has a unique solution. To see this, note that (2.3.13) is a solution of (2.3.12) on .�1;1/. From

Exercise 2.2.15, there are infinitely many other solutions of (2.3.12) that differ from (2.3.13) on every

open interval larger than .�1; 1/. One such solution is

y D
(

.x2 � 1/5=3; �1 � x � 1;

0; jxj > 1:

(Figure 2.3.3).

1−1
 x

 y

(0, −1)

Figure 2.3.3 Two solutions of (2.3.12) on .�1;1/

that coincide on .�1; 1/, but on no larger open

interval

 x

 y

(0,1)

Figure 2.3.4 The unique solution of (2.3.14)

Example 2.3.8 From Example 2.3.5, the initial value problem

y0 D 10

3
xy2=5; y.0/ D 1 (2.3.14)

has a unique solution on some open interval that contains x0 D 0. Find the solution and determine the

largest open interval on which it’s unique.

Solution Let y be any solution of (2.3.14). Because of the initial condition y.0/ D 1 and the continuity
of y, there’s an open interval I that contains x0 D 0 on which y has no zeros, and is consequently of the

form (2.3.11). Setting x D 0 and y D 1 in (2.3.11) yields c D 1, so

y D .x2 C 1/5=3 (2.3.15)

for x in I . Therefore every solution of (2.3.14) differs from zero and is given by (2.3.15) on .�1;1/;

that is, (2.3.15) is the unique solution of (2.3.14) on .�1;1/. Figure 2.3.4 shows the graph of this
solution.

2.3 Exercises

In Exercises 1-13 find all .x0; y0/ for which Theorem 2.3.1 implies that the initial value problem y0 D
f .x; y/; y.x0/ D y0 has (a) a solution (b) a unique solution on some open interval that contains x0.
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1. y0 D x2 C y2

sin x
2. y0 D ex C y

x2 C y2

3. y0 D tanxy
4. y0 D x2 C y2

lnxy

5. y0 D .x2 C y2/y1=3
6. y0 D 2xy

7. y0 D ln.1C x2 C y2/ 8. y0 D 2x C 3y

x � 4y

9. y0 D .x2 C y2/1=2 10. y0 D x.y2 � 1/2=3

11. y0 D .x2 C y2/2 12. y0 D .x C y/1=2

13. y0 D tan y

x � 1
14. Apply Theorem 2.3.1 to the initial value problem

y0 C p.x/y D q.x/; y.x0/ D y0

for a linear equation, and compare the conclusions that can be drawn from it to those that follow

from Theorem 2.1.2.

15. (a) Verify that the function

y D
(

.x2 � 1/5=3; �1 < x < 1;
0; jxj � 1;

is a solution of the initial value problem

y0 D 10

3
xy2=5; y.0/ D �1

on .�1;1/. HINT: You’ll need the definition

y0.x/ D lim
x!x

y.x/ � y.x/
x � x

to verify that y satisfies the differential equation at x D ˙1.

(b) Verify that if �i D 0 or 1 for i D 1, 2 and a, b > 1, then the function

y D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�1.x
2 � a2/5=3; �1 < x < �a;
0; �a � x � �1;

.x2 � 1/5=3; �1 < x < 1;
0; 1 � x � b;

�2.x
2 � b2/5=3; b < x < 1;

is a solution of the initial value problem of (a) on .�1;1/.
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16. Use the ideas developed in Exercise 15 to find infinitely many solutions of the initial value problem

y0 D y2=5; y.0/ D 1

on .�1;1/.

17. Consider the initial value problem

y0 D 3x.y � 1/1=3; y.x0/ D y0: .A/

(a) For what points .x0; y0/ does Theorem 2.3.1 imply that (A) has a solution?

(b) For what points .x0; y0/ does Theorem 2.3.1 imply that (A) has a unique solution on some

open interval that contains x0?

18. Find nine solutions of the initial value problem

y0 D 3x.y � 1/1=3; y.0/ D 1

that are all defined on .�1;1/ and differ from each other for values of x in every open interval

that contains x0 D 0.

19. From Theorem 2.3.1, the initial value problem

y0 D 3x.y � 1/1=3; y.0/ D 9

has a unique solution on an open interval that contains x0 D 0. Find the solution and determine

the largest open interval on which it’s unique.

20. (a) From Theorem 2.3.1, the initial value problem

y0 D 3x.y � 1/1=3; y.3/ D �7 .A/

has a unique solution on some open interval that contains x0 D 3. Determine the largest such
open interval, and find the solution on this interval.

(b) Find infinitely many solutions of (A), all defined on .�1;1/.

21. Prove:

(a) If

f .x; y0/ D 0; a < x < b; .A/

and x0 is in .a; b/, then y � y0 is a solution of

y0 D f .x; y/; y.x0/ D y0

on .a; b/.

(b) If f and fy are continuous on an open rectangle that contains .x0; y0/ and (A) holds, no

solution of y0 D f .x; y/ other than y � y0 can equal y0 at any point in .a; b/.

2.4 TRANSFORMATION OF NONLINEAR EQUATIONS INTO SEPARABLE EQUATIONS

In Section 2.1 we found that the solutions of a linear nonhomogeneous equation

y0 C p.x/y D f .x/
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are of the form y D uy1, where y1 is a nontrivial solution of the complementary equation

y0 C p.x/y D 0 (2.4.1)

and u is a solution of

u0y1.x/ D f .x/:

Note that this last equation is separable, since it can be rewritten as

u0 D f .x/

y1.x/
:

In this section we’ll consider nonlinear differential equations that are not separable to begin with, but can

be solved in a similar fashion by writing their solutions in the form y D uy1, where y1 is a suitably

chosen known function and u satisfies a separable equation. We’llsay in this case that we transformed

the given equation into a separable equation.

Bernoulli Equations

A Bernoulli equation is an equation of the form

y0 C p.x/y D f .x/yr ; (2.4.2)

where r can be any real number other than 0 or 1. (Note that (2.4.2) is linear if and only if r D 0

or r D 1.) We can transform (2.4.2) into a separable equation by variation of parameters: if y1 is a
nontrivial solution of (2.4.1), substituting y D uy1 into (2.4.2) yields

u0y1 C u.y0
1 C p.x/y1/ D f .x/.uy1/

r ;

which is equivalent to the separable equation

u0y1.x/ D f .x/ .y1.x//
r ur or

u0

ur
D f .x/ .y1.x//

r�1 ;

since y0
1 C p.x/y1 D 0.

Example 2.4.1 Solve the Bernoulli equation

y0 � y D xy2: (2.4.3)

Solution Since y1 D ex is a solution of y0 �y D 0, we look for solutions of (2.4.3) in the form y D uex,

where
u0ex D xu2e2x or, equivalently, u0 D xu2ex:

Separating variables yields
u0

u2
D xex;

and integrating yields

� 1
u

D .x � 1/ex C c:

Hence,

u D � 1

.x � 1/ex C c

http://www-history.mcs.st-and.ac.uk/Mathematicians/Bernoulli_Jacob.html
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Figure 2.4.1 A direction field and integral curves for y0 � y D xy2

and

y D � 1

x � 1C ce�x
:

Figure 2.4.1 shows direction field and some integral curves of (2.4.3).

Other Nonlinear Equations That Can be Transformed Into Separable Equations

We’ve seen that the nonlinear Bernoulli equation can be transformed into a separable equation by the

substitution y D uy1 if y1 is suitably chosen. Now let’s discover a sufficient condition for a nonlinear

first order differential equation
y0 D f .x; y/ (2.4.4)

to be transformable into a separable equation in the same way. Substituting y D uy1 into (2.4.4) yields

u0y1.x/C uy0
1.x/ D f .x; uy1.x//;

which is equivalent to
u0y1.x/ D f .x; uy1.x// � uy0

1.x/: (2.4.5)

If

f .x; uy1.x// D q.u/y0
1.x/

for some function q, then (2.4.5) becomes

u0y1.x/ D .q.u/ � u/y0
1.x/; (2.4.6)

which is separable. After checking for constant solutions u � u0 such that q.u0/ D u0, we can separate

variables to obtain
u0

q.u/ � u D y0
1.x/

y1.x/
:
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Homogeneous Nonlinear Equations

In the text we’ll consider only the most widely studied class of equations for which the method of the

preceding paragraph works. Other types of equations appear in Exercises 44–51.

The differential equation (2.4.4) is said to be homogeneous if x and y occur in f in such a way that

f .x; y/ depends only on the ratio y=x; that is, (2.4.4) can be written as

y0 D q.y=x/; (2.4.7)

where q D q.u/ is a function of a single variable. For example,

y0 D y C xe�y=x

x
D y

x
C e�y=x

and

y0 D y2 C xy � x2

x2
D
�y

x

�2

C y

x
� 1

are of the form (2.4.7), with

q.u/ D uC e�u and q.u/ D u2 C u� 1;

respectively. The general method discussed above can be applied to (2.4.7) with y1 D x (and therefore

y0
1 D 1/. Thus, substituting y D ux in (2.4.7) yields

u0x C u D q.u/;

and separation of variables (after checking for constant solutions u � u0 such that q.u0/ D u0) yields

u0

q.u/ � u D 1

x
:

Before turning to examples, we point out something that you may’ve have already noticed: the defini-
tion of homogeneous equation given here isn’t the same as the definition given in Section 2.1, where we

said that a linear equation of the form

y0 C p.x/y D 0

is homogeneous. We make no apology for this inconsistency, since we didn’t create it historically, homo-

geneous has been used in these two inconsistent ways. The one having to do with linear equations is the

most important. This is the only section of the book where the meaning defined here will apply.

Since y=x is in general undefined if x D 0, we’ll consider solutions of nonhomogeneous equations
only on open intervals that do not contain the point x D 0.

Example 2.4.2 Solve

y0 D y C xe�y=x

x
: (2.4.8)

Solution Substituting y D ux into (2.4.8) yields

u0x C u D ux C xe�ux=x

x
D uC e�u:

Simplifying and separating variables yields

euu0 D 1

x
:
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Integrating yields eu D ln jxj C c. Therefore u D ln.ln jxj C c/ and y D ux D x ln.ln jxj C c/.

Figure 2.4.2 shows a direction field and integral curves for (2.4.8).

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 x

 y

Figure 2.4.2 A direction field and some integral curves for y0 D y C xe�y=x

x

Example 2.4.3

(a) Solve

x2y0 D y2 C xy � x2: (2.4.9)

(b) Solve the initial value problem

x2y0 D y2 C xy � x2; y.1/ D 2: (2.4.10)

SOLUTION(a) We first find solutions of (2.4.9) on open intervals that don’t contain x D 0. We can
rewrite (2.4.9) as

y0 D y2 C xy � x2

x2

for x in any such interval. Substituting y D ux yields

u0x C u D .ux/2 C x.ux/ � x2

x2
D u2 C u� 1;

so

u0x D u2 � 1: (2.4.11)
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By inspection this equation has the constant solutions u � 1 and u � �1. Therefore y D x and y D �x
are solutions of (2.4.9). If u is a solution of (2.4.11) that doesn’t assume the values ˙1 on some interval,

separating variables yields
u0

u2 � 1 D 1

x
;

or, after a partial fraction expansion,

1

2

�

1

u � 1 � 1

uC 1

�

u0 D 1

x
:

Multiplying by 2 and integrating yields

ln

ˇ

ˇ

ˇ

ˇ

u� 1
uC 1

ˇ

ˇ

ˇ

ˇ

D 2 ln jxj C k;

or
ˇ

ˇ

ˇ

ˇ

u � 1
uC 1

ˇ

ˇ

ˇ

ˇ

D ekx2;

which holds if
u � 1
uC 1

D cx2 (2.4.12)

where c is an arbitrary constant. Solving for u yields

u D 1C cx2

1 � cx2
:
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Figure 2.4.3 A direction field and integral curves for

x2y0 D y2 C xy � x2
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Figure 2.4.4 Solutions of x2y0 D y2 C xy � x2,

y.1/ D 2

Therefore

y D ux D x.1C cx2/

1 � cx2
(2.4.13)

is a solution of (2.4.10) for any choice of the constant c. Setting c D 0 in (2.4.13) yields the solution

y D x. However, the solution y D �x can’t be obtained from (2.4.13). Thus, the solutions of (2.4.9) on
intervals that don’t contain x D 0 are y D �x and functions of the form (2.4.13).
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The situation is more complicated if x D 0 is the open interval. First, note that y D �x satisfies (2.4.9)

on .�1;1/. If c1 and c2 are arbitrary constants, the function

y D

8

ˆ

ˆ

<

ˆ

ˆ

:

x.1C c1x
2/

1 � c1x2
; a < x < 0;

x.1C c2x
2/

1 � c2x2
; 0 � x < b;

(2.4.14)

is a solution of (2.4.9) on .a; b/, where

a D

8

<

:

� 1
p
c1

if c1 > 0;

�1 if c1 � 0;

and b D

8

<

:

1
p
c2

if c2 > 0;

1 if c2 � 0:

We leave it to you to verify this. To do so, note that if y is any function of the form (2.4.13) then y.0/ D 0

and y0.0/ D 1.

Figure 2.4.3 shows a direction field and some integral curves for (2.4.9).

SOLUTION(b) We could obtain c by imposing the initial condition y.1/ D 2 in (2.4.13), and then solving

for c. However, it’s easier to use (2.4.12). Since u D y=x, the initial condition y.1/ D 2 implies that

u.1/ D 2. Substituting this into (2.4.12) yields c D 1=3. Hence, the solution of (2.4.10) is

y D x.1C x2=3/

1 � x2=3
:

The interval of validity of this solution is .�
p
3;

p
3/. However, the largest interval on which (2.4.10)

has a unique solution is .0;
p
3/. To see this, note from (2.4.14) that any function of the form

y D

8

ˆ

ˆ

<

ˆ

ˆ

:

x.1C cx2/

1 � cx2
; a < x � 0;

x.1C x2=3/

1 � x2=3
; 0 � x <

p
3;

(2.4.15)

is a solution of (2.4.10) on .a;
p
3/, where a D �1=

p
c if c > 0 or a D �1 if c � 0. (Why doesn’t this

contradict Theorem 2.3.1?)

Figure 2.4.4 shows several solutions of the initial value problem (2.4.10). Note that these solutions
coincide on .0;

p
3/.

In the last two examples we were able to solve the given equations explicitly. However, this isn’t always

possible, as you’ll see in the exercises.

2.4 Exercises

In Exercises 1–4 solve the given Bernoulli equation.

1. y0 C y D y2 2. 7xy0 � 2y D �x
2

y6

3. x2y0 C 2y D 2e1=xy1=2 4. .1C x2/y0 C 2xy D 1

.1 C x2/y

In Exercises 5 and 6 find all solutions. Also, plot a direction field and some integral curves on the

indicated rectangular region.
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5. C/G y0 � xy D x3y3I f�3 � x � 3; 2 � y � 2g

6. C/G y0 � 1C x

3x
y D y4I f�2 � x � 2;�2 � y � 2g

In Exercises 7–11 solve the initial value problem.

7. y0 � 2y D xy3; y.0/ D 2
p
2

8. y0 � xy D xy3=2; y.1/ D 4

9. xy0 C y D x4y4; y.1/ D 1=2

10. y0 � 2y D 2y1=2; y.0/ D 1

11. y0 � 4y D 48x

y2
; y.0/ D 1

In Exercises 12 and 13 solve the initial value problem and graph the solution.

12. C/G x2y0 C 2xy D y3; y.1/ D 1=
p
2

13. C/G y0 � y D xy1=2; y.0/ D 4

14. You may have noticed that the logistic equation

P 0 D aP.1 � ˛P /

from Verhulst’s model for population growth can be written in Bernoulli form as

P 0 � aP D �a˛P 2:

This isn’t particularly interesting, since the logistic equation is separable, and therefore solvable

by the method studied in Section 2.2. So let’s consider a more complicated model, where a is

a positive constant and ˛ is a positive continuous function of t on Œ0;1/. The equation for this
model is

P 0 � aP D �a˛.t/P 2;

a non-separable Bernoulli equation.

(a) Assuming that P.0/ D P0 > 0, find P for t > 0. HINT: Express your result in terms of the

integral
R t

0
˛.�/ea� d� .

(b) Verify that your result reduces to the known results for the Malthusian model where ˛ D 0,

and the Verhulst model where ˛ is a nonzero constant.

(c) Assuming that

lim
t!1

e�at

Z t

0

˛.�/ea� d� D L

exists (finite or infinite), find limt!1 P.t/.

In Exercises 15–18 solve the equation explicitly.

15. y0 D y C x

x
16. y0 D y2 C 2xy

x2

17. xy3y0 D y4 C x4
18. y0 D y

x
C sec

y

x



70 Chapter 2 First Order Equations

In Exercises 19-21 solve the equation explicitly. Also, plot a direction field and some integral curves on

the indicated rectangular region.

19. C/G x2y0 D xy C x2 C y2I f�8 � x � 8;�8 � y � 8g

20. C/G xyy0 D x2 C 2y2I f�4 � x � 4;�4 � y � 4g

21. C/G y0 D 2y2 C x2e�.y=x/2

2xy
I f�8 � x � 8;�8 � y � 8g

In Exercises 22–27 solve the initial value problem.

22. y0 D xy C y2

x2
; y.�1/ D 2

23. y0 D x3 C y3

xy2
; y.1/ D 3

24. xyy0 C x2 C y2 D 0; y.1/ D 2

25. y0 D y2 � 3xy � 5x2

x2
; y.1/ D �1

26. x2y0 D 2x2 C y2 C 4xy; y.1/ D 1

27. xyy0 D 3x2 C 4y2; y.1/ D
p
3

In Exercises 28–34 solve the given homogeneous equation implicitly.

28. y0 D x C y

x � y
29. .y0x � y/.ln jyj � ln jxj/ D x

30. y0 D y3 C 2xy2 C x2y C x3

x.y C x/2
31. y0 D x C 2y

2x C y

32. y0 D y

y � 2x 33. y0 D xy2 C 2y3

x3 C x2y C xy2

34. y0 D x3 C x2y C 3y3

x3 C 3xy2

35. L

(a) Find a solution of the initial value problem

x2y0 D y2 C xy � 4x2; y.�1/ D 0 .A/

on the interval .�1; 0/. Verify that this solution is actually valid on .�1;1/.

(b) Use Theorem 2.3.1 to show that (A) has a unique solution on .�1; 0/.

(c) Plot a direction field for the differential equation in (A) on a square

f�r � x � r;�r � y � rg;

where r is any positive number. Graph the solution you obtained in (a) on this field.

(d) Graph other solutions of (A) that are defined on .�1;1/.
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(e) Graph other solutions of (A) that are defined only on intervals of the form .�1; a/, where is

a finite positive number.

36. L

(a) Solve the equation
xyy0 D x2 � xy C y2 .A/

implicitly.

(b) Plot a direction field for (A) on a square

f0 � x � r; 0 � y � rg

where r is any positive number.

(c) Let K be a positive integer. (You may have to try several choices for K.) Graph solutions of

the initial value problems

xyy0 D x2 � xy C y2; y.r=2/ D kr

K
;

for k D 1, 2, . . . , K. Based on your observations, find conditions on the positive numbers

x0 and y0 such that the initial value problem

xyy0 D x2 � xy C y2; y.x0/ D y0; .B/

has a unique solution (i) on .0;1/ or (ii) only on an interval .a;1/, where a > 0?

(d) What can you say about the graph of the solution of (B) as x ! 1? (Again, assume that

x0 > 0 and y0 > 0.)

37. L

(a) Solve the equation

y0 D 2y2 � xy C 2x2

xy C 2x2
.A/

implicitly.

(b) Plot a direction field for (A) on a square

f�r � x � r;�r � y � rg

where r is any positive number. By graphing solutions of (A), determine necessary and

sufficient conditions on .x0; y0/ such that (A) has a solution on (i) .�1; 0/ or (ii) .0;1/

such that y.x0/ D y0.

38. L Follow the instructions of Exercise 37 for the equation

y0 D xy C x2 C y2

xy
:

39. L Pick any nonlinear homogeneous equation y0 D q.y=x/ you like, and plot direction fields on

the square f�r � x � r; �r � y � rg, where r > 0. What happens to the direction field as you
vary r? Why?
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40. Prove: If ad � bc ¤ 0, the equation

y0 D ax C by C ˛

cx C dy C ˇ

can be transformed into the homogeneous nonlinear equation

dY

dX
D aX C bY

cX C dY

by the substitution x D X �X0; y D Y � Y0, where X0 and Y0 are suitably chosen constants.

In Exercises 41-43 use a method suggested by Exercise 40 to solve the given equation implicitly.

41. y0 D �6x C y � 3
2x � y � 1 42. y0 D 2x C y C 1

x C 2y � 4

43. y0 D �x C 3y � 14
x C y � 2

In Exercises 44–51 find a function y1 such that the substitution y D uy1 transforms the given equation

into a separable equation of the form (2.4.6). Then solve the given equation explicitly.

44. 3xy2y0 D y3 C x 45. xyy0 D 3x6 C 6y2

46. x3y0 D 2.y2 C x2y � x4/ 47. y0 D y2e�x C 4y C 2ex

48. y0 D y2 C y tan x C tan2 x

sin2 x

49. x.lnx/2y0 D �4.lnx/2 C y lnx C y2

50. 2x.y C 2
p
x/y0 D .y C p

x/2 51. .y C ex2

/y0 D 2x.y2 C yex2 C e2x2

/

52. Solve the initial value problem

y0 C 2

x
y D 3x2y2 C 6xy C 2

x2.2xy C 3/
; y.2/ D 2:

53. Solve the initial value problem

y0 C 3

x
y D 3x4y2 C 10x2y C 6

x3.2x2y C 5/
; y.1/ D 1:

54. Prove: If y is a solution of a homogeneous nonlinear equation y0 D q.y=x/, so is y1 D y.ax/=a,

where a is any nonzero constant.

55. A generalized Riccati equation is of the form

y0 D P.x/ CQ.x/y CR.x/y2 : .A/

(If R � �1, (A) is a Riccati equation.) Let y1 be a known solution and y an arbitrary solution of
(A). Let ´ D y � y1. Show that ´ is a solution of a Bernoulli equation with n D 2.

http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
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In Exercises 56–59, given that y1 is a solution of the given equation, use the method suggested by Exercise

55 to find other solutions.

56. y0 D 1C x � .1C 2x/y C xy2; y1 D 1

57. y0 D e2x C .1 � 2ex/y C y2; y1 D ex

58. xy0 D 2 � x C .2x � 2/y � xy2; y1 D 1

59. xy0 D x3 C .1 � 2x2/y C xy2; y1 D x

2.5 EXACT EQUATIONS

In this section it’s convenient to write first order differential equations in the form

M.x; y/ dx CN.x; y/ dy D 0: (2.5.1)

This equation can be interpreted as

M.x; y/ CN.x; y/
dy

dx
D 0; (2.5.2)

where x is the independent variable and y is the dependent variable, or as

M.x; y/
dx

dy
CN.x; y/ D 0; (2.5.3)

where y is the independent variable and x is the dependent variable. Since the solutions of (2.5.2) and

(2.5.3) will often have to be left in implicit, form we’ll say that F.x; y/ D c is an implicit solution of

(2.5.1) if every differentiable function y D y.x/ that satisfies F.x; y/ D c is a solution of (2.5.2) and

every differentiable function x D x.y/ that satisfies F.x; y/ D c is a solution of (2.5.3).
Here are some examples:

Equation (2.5.1) Equation (2.5.2) Equation (2.5.3)

3x2y2 dx C 2x3y dy D 0 3x2y2 C 2x3y
dy

dx
D 0 3x2y2

dx

dy
C 2x3y D 0

.x2 C y2/ dx C 2xy dy D 0 .x2 C y2/C 2xy
dy

dx
D 0 .x2 C y2/

dx

dy
C 2xy D 0

3y sinx dx � 2xy cos x dy D 0 3y sin x � 2xy cos x
dy

dx
D 0 3y sinx

dx

dy
� 2xy cos x D 0

Note that a separable equation can be written as (2.5.1) as

M.x/ dx CN.y/ dy D 0:

We’ll develop a method for solving (2.5.1) under appropriate assumptions on M and N . This method

is an extension of the method of separation of variables (Exercise 41). Before stating it we consider an
example.
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Example 2.5.1 Show that

x4y3 C x2y5 C 2xy D c (2.5.4)

is an implicit solution of

.4x3y3 C 2xy5 C 2y/ dx C .3x4y2 C 5x2y4 C 2x/ dy D 0: (2.5.5)

Solution Regarding y as a function of x and differentiating (2.5.4) implicitly with respect to x yields

.4x3y3 C 2xy5 C 2y/C .3x4y2 C 5x2y4 C 2x/
dy

dx
D 0:

Similarly, regarding x as a function of y and differentiating (2.5.4) implicitly with respect to y yields

.4x3y3 C 2xy5 C 2y/
dx

dy
C .3x4y2 C 5x2y4 C 2x/ D 0:

Therefore (2.5.4) is an implicit solution of (2.5.5) in either of its two possible interpretations.

You may think this example is pointless, since concocting a differential equation that has a given
implicit solution isn’t particularly interesting. However, it illustrates the next important theorem, which

we’ll prove by using implicit differentiation, as in Example 2.5.1.

Theorem 2.5.1 If F D F.x; y/ has continuous partial derivatives Fx and Fy , then

F.x; y/ D c (c=constant); (2.5.6)

is an implicit solution of the differential equation

Fx.x; y/ dx C Fy.x; y/ dy D 0: (2.5.7)

Proof Regarding y as a function of x and differentiating (2.5.6) implicitly with respect to x yields

Fx.x; y/C Fy.x; y/
dy

dx
D 0:

On the other hand, regarding x as a function of y and differentiating (2.5.6) implicitly with respect to y

yields

Fx.x; y/
dx

dy
C Fy.x; y/ D 0:

Thus, (2.5.6) is an implicit solution of (2.5.7) in either of its two possible interpretations.

We’ll say that the equation

M.x; y/ dx CN.x; y/ dy D 0 (2.5.8)

is exact on an an open rectangle R if there’s a function F D F.x; y/ such Fx and Fy are continuous, and

Fx.x; y/ D M.x; y/ and Fy .x; y/ D N.x; y/ (2.5.9)

for all .x; y/ in R. This usage of “exact” is related to its usage in calculus, where the expression

Fx.x; y/ dx C Fy.x; y/ dy

(obtained by substituting (2.5.9) into the left side of (2.5.8)) is the exact differential of F .

Example 2.5.1 shows that it’s easy to solve (2.5.8) if it’s exact and we know a function F that satisfies
(2.5.9). The important questions are:
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QUESTION 1. Given an equation (2.5.8), how can we determine whether it’s exact?

QUESTION 2. If (2.5.8) is exact, how do we find a function F satisfying (2.5.9)?

To discover the answer to Question 1, assume that there’s a function F that satisfies (2.5.9) on some

open rectangle R, and in addition that F has continuous mixed partial derivatives Fxy and Fyx . Then a

theorem from calculus implies that

Fxy D Fyx : (2.5.10)

If Fx D M and Fy D N , differentiating the first of these equations with respect to y and the second with

respect to x yields

Fxy D My and Fyx D Nx : (2.5.11)

From (2.5.10) and (2.5.11), we conclude that a necessary condition for exactness is that My D Nx. This
motivates the next theorem, which we state without proof.

Theorem 2.5.2 ŒThe Exactness Condition� SupposeM andN are continuous and have continuous par-

tial derivatives My and Nx on an open rectangle R: Then

M.x; y/ dx CN.x; y/ dy D 0

is exact onR if and only if

My .x; y/ D Nx.x; y/ (2.5.12)

for all .x; y/ inR:.

To help you remember the exactness condition, observe that the coefficients of dx and dy are differ-

entiated in (2.5.12) with respect to the “opposite” variables; that is, the coefficient of dx is differentiated

with respect to y, while the coefficient of dy is differentiated with respect to x.

Example 2.5.2 Show that the equation

3x2y dx C 4x3 dy D 0

is not exact on any open rectangle.

Solution Here

M.x; y/ D 3x2y and N.x; y/ D 4x3

so

My.x; y/ D 3x2 and Nx.x; y/ D 12x2:

Therefore My D Nx on the line x D 0, but not on any open rectangle, so there’s no function F such that
Fx.x; y/ D M.x; y/ and Fy.x; y/ D N.x; y/ for all .x; y/ on any open rectangle.

The next example illustrates two possible methods for finding a function F that satisfies the condition

Fx D M and Fy D N if M dx CN dy D 0 is exact.

Example 2.5.3 Solve

.4x3y3 C 3x2/ dx C .3x4y2 C 6y2/ dy D 0: (2.5.13)

Solution (Method 1) Here

M.x; y/ D 4x3y3 C 3x2; N.x; y/ D 3x4y2 C 6y2;
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and

My .x; y/ D Nx.x; y/ D 12x3y2

for all .x; y/. Therefore Theorem 2.5.2 implies that there’s a function F such that

Fx.x; y/ D M.x; y/ D 4x3y3 C 3x2 (2.5.14)

and
Fy.x; y/ D N.x; y/ D 3x4y2 C 6y2 (2.5.15)

for all .x; y/. To find F , we integrate (2.5.14) with respect to x to obtain

F.x; y/ D x4y3 C x3 C �.y/; (2.5.16)

where �.y/ is the “constant” of integration. (Here � is “constant” in that it’s independent of x, the

variable of integration.) If � is any differentiable function of y then F satisfies (2.5.14). To determine �
so that F also satisfies (2.5.15), assume that � is differentiable and differentiateF with respect to y. This

yields

Fy.x; y/ D 3x4y2 C �0.y/:

Comparing this with (2.5.15) shows that

�0.y/ D 6y2:

We integrate this with respect to y and take the constant of integration to be zero because we’re interested

only in finding some F that satisfies (2.5.14) and (2.5.15). This yields

�.y/ D 2y3:

Substituting this into (2.5.16) yields

F.x; y/ D x4y3 C x3 C 2y3: (2.5.17)

Now Theorem 2.5.1 implies that

x4y3 C x3 C 2y3 D c

is an implicit solution of (2.5.13). Solving this for y yields the explicit solution

y D
�

c � x3

2C x4

�1=3

:

Solution (Method 2) Instead of first integrating (2.5.14) with respect to x, we could begin by integrating

(2.5.15) with respect to y to obtain

F.x; y/ D x4y3 C 2y3 C  .x/; (2.5.18)

where is an arbitrary function of x. To determine , we assume that is differentiable and differentiate

F with respect to x, which yields

Fx.x; y/ D 4x3y3 C  0.x/:

Comparing this with (2.5.14) shows that

 0.x/ D 3x2:
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Figure 2.5.1 A direction field and integral curves for .4x3y3 C 3x2/ dx C .3x4y2 C 6y2/ dy D 0

Integrating this and again taking the constant of integration to be zero yields

 .x/ D x3:

Substituting this into (2.5.18) yields (2.5.17).
Figure 2.5.1 shows a direction field and some integral curves of (2.5.13),

Here’s a summary of the procedure used in Method 1 of this example. You should summarize procedure

used in Method 2.

Procedure For Solving An Exact Equation

Step 1. Check that the equation

M.x; y/ dx CN.x; y/ dy D 0 (2.5.19)

satisfies the exactness conditionMy D Nx. If not, don’t go further with this procedure.

Step 2. Integrate
@F.x; y/

@x
D M.x; y/

with respect to x to obtain

F.x; y/ D G.x; y/C �.y/; (2.5.20)

where G is an antiderivative of M with respect to x, and � is an unknown function of y.

Step 3. Differentiate (2.5.20) with respect to y to obtain

@F.x; y/

@y
D @G.x; y/

@y
C �0.y/:
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Step 4. Equate the right side of this equation to N and solve for �0; thus,

@G.x; y/

@y
C �0.y/ D N.x; y/; so �0.y/ D N.x; y/ � @G.x; y/

@y
:

Step 5. Integrate �0 with respect to y, taking the constant of integration to be zero, and substitute the

result in (2.5.20) to obtain F.x; y/.

Step 6. Set F.x; y/ D c to obtain an implicit solution of (2.5.19). If possible, solve for y explicitly as

a function of x.

It’s a common mistake to omit Step 6. However, it’s important to include this step, since F isn’t itself

a solution of (2.5.19).
Many equations can be conveniently solved by either of the two methods used in Example 2.5.3. How-

ever, sometimes the integration required in one approach is more difficult than in the other. In such cases

we choose the approach that requires the easier integration.

Example 2.5.4 Solve the equation

.yexy tan x C exy sec2 x/ dx C xexy tan x dy D 0: (2.5.21)

Solution We leave it to you to check that My D Nx on any open rectangle where tan x and sec x are

defined. Here we must find a function F such that

Fx.x; y/ D yexy tanx C exy sec2 x (2.5.22)

and

Fy.x; y/ D xexy tan x: (2.5.23)

It’s difficult to integrate (2.5.22) with respect to x, but easy to integrate (2.5.23) with respect to y. This

yields

F.x; y/ D exy tanx C  .x/: (2.5.24)

Differentiating this with respect to x yields

Fx.x; y/ D yexy tanx C exy sec2 x C  0.x/:

Comparing this with (2.5.22) shows that  0.x/ D 0. Hence,  is a constant, which we can take to be

zero in (2.5.24), and
exy tanx D c

is an implicit solution of (2.5.21).
Attempting to apply our procedure to an equation that isn’t exact will lead to failure in Step 4, since

the function

N � @G

@y

won’t be independent of x if My ¤ Nx (Exercise 31), and therefore can’t be the derivative of a function

of y alone. Here’s an example that illustrates this.

Example 2.5.5 Verify that the equation

3x2y2 dx C 6x3y dy D 0 (2.5.25)

is not exact, and show that the procedure for solving exact equations fails when applied to (2.5.25).
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Solution Here

My.x; y/ D 6x2y and Nx.x; y/ D 18x2y;

so (2.5.25) isn’t exact. Nevertheless, let’s try to find a function F such that

Fx.x; y/ D 3x2y2 (2.5.26)

and

Fy.x; y/ D 6x3y: (2.5.27)

Integrating (2.5.26) with respect to x yields

F.x; y/ D x3y2 C �.y/;

and differentiating this with respect to y yields

Fy.x; y/ D 2x3y C �0.y/:

For this equation to be consistent with (2.5.27),

6x3y D 2x3y C �0.y/;

or

�0.y/ D 4x3y:

This is a contradiction, since �0 must be independent of x. Therefore the procedure fails.

2.5 Exercises

In Exercises 1–17 determine which equations are exact and solve them.

1. 6x2y2 dx C 4x3y dy D 0

2. .3y cos x C 4xex C 2x2ex/ dx C .3 sinx C 3/ dy D 0

3. 14x2y3 dx C 21x2y2 dy D 0

4. .2x � 2y2/ dx C .12y2 � 4xy/ dy D 0

5. .x C y/2 dx C .x C y/2 dy D 0 6. .4x C 7y/ dx C .3x C 4y/ dy D 0

7. .�2y2 sin x C 3y3 � 2x/ dx C .4y cos x C 9xy2/ dy D 0

8. .2x C y/ dx C .2y C 2x/ dy D 0

9. .3x2 C 2xy C 4y2/ dx C .x2 C 8xy C 18y/ dy D 0

10. .2x2 C 8xy C y2/ dx C .2x2 C xy3=3/ dy D 0

11.

�

1

x
C 2x

�

dx C
�

1

y
C 2y

�

dy D 0

12. .y sinxy C xy2 cos xy/ dx C .x sinxy C xy2 cos xy/ dy D 0

13.
x dx

.x2 C y2/3=2
C y dy

.x2 C y2/3=2
D 0

14.
�

ex.x2y2 C 2xy2/C 6x
�

dx C .2x2yex C 2/ dy D 0

15.
�

x2ex2Cy .2x2 C 3/C 4x
�

dx C .x3ex2Cy � 12y2/ dy D 0
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16.
�

exy.x4y C 4x3/C 3y
�

dx C .x5exy C 3x/ dy D 0

17. .3x2 cos xy � x3y sinxy C 4x/ dx C .8y � x4 sinxy/ dy D 0

In Exercises 18–22 solve the initial value problem.

18. .4x3y2 � 6x2y � 2x � 3/ dx C .2x4y � 2x3/ dy D 0; y.1/ D 3

19. .�4y cos x C 4 sinx cos x C sec2 x/ dx C .4y � 4 sinx/ dy D 0; y.�=4/ D 0

20. .y3 � 1/ex dx C 3y2.ex C 1/ dy D 0; y.0/ D 0

21. .sinx � y sin x � 2 cos x/ dx C cos x dy D 0; y.0/ D 1

22. .2x � 1/.y � 1/ dx C .x C 2/.x � 3/ dy D 0; y.1/ D �1
23. C/G Solve the exact equation

.7x C 4y/ dx C .4x C 3y/ dy D 0:

Plot a direction field and some integral curves for this equation on the rectangle

f�1 � x � 1;�1 � y � 1g:

24. C/G Solve the exact equation

ex.x4y2 C 4x3y2 C 1/ dx C .2x4yex C 2y/ dy D 0:

Plot a direction field and some integral curves for this equation on the rectangle

f�2 � x � 2;�1 � y � 1g:

25. C/G Plot a direction field and some integral curves for the exact equation

.x3y4 C x/ dx C .x4y3 C y/ dy D 0

on the rectangle f�1 � x � 1;�1 � y � 1g. (See Exercise 37(a)).

26. C/G Plot a direction field and some integral curves for the exact equation

.3x2 C 2y/ dx C .2y C 2x/ dy D 0

on the rectangle f�2 � x � 2;�2 � y � 2g. (See Exercise 37(b)).

27. L

(a) Solve the exact equation

.x3y4 C 2x/ dx C .x4y3 C 3y/ dy D 0 .A/

implicitly.

(b) For what choices of .x0; y0/ does Theorem 2.3.1 imply that the initial value problem

.x3y4 C 2x/ dx C .x4y3 C 3y/ dy D 0; y.x0/ D y0; .B/

has a unique solution on an open interval .a; b/ that contains x0?
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(c) Plot a direction field and some integral curves for (A) on a rectangular region centered at the

origin. What is the interval of validity of the solution of (B)?

28. L

(a) Solve the exact equation

.x2 C y2/ dx C 2xy dy D 0 .A/

implicitly.

(b) For what choices of .x0; y0/ does Theorem 2.3.1 imply that the initial value problem

.x2 C y2/ dx C 2xy dy D 0; y.x0/ D y0; .B/

has a unique solution y D y.x/ on some open interval .a; b/ that contains x0?

(c) Plot a direction field and some integral curves for (A). From the plot determine, the interval

.a; b/ of (b), the monotonicity properties (if any) of the solution of (B), and limx!aC y.x/

and limx!b� y.x/. HINT: Your answers will depend upon which quadrant contains .x0; y0/.

29. Find all functionsM such that the equation is exact.

(a) M.x; y/ dx C .x2 � y2/ dy D 0

(b) M.x; y/ dx C 2xy sinx cosy dy D 0

(c) M.x; y/ dx C .ex � ey sinx/ dy D 0

30. Find all functionsN such that the equation is exact.

(a) .x3y2 C 2xy C 3y2/ dx CN.x; y/ dy D 0

(b) .ln xy C 2y sinx/ dx CN.x; y/ dy D 0

(c) .x sinx C y siny/ dx CN.x; y/ dy D 0

31. Suppose M;N; and their partial derivatives are continuous on an open rectangle R, and G is an
antiderivative of M with respect to x; that is,

@G

@x
D M:

Show that if My ¤ Nx inR then the function

N � @G

@y

is not independent of x.

32. Prove: If the equations M1 dx C N1 dy D 0 and M2 dx C N2 dy D 0 are exact on an open

rectangle R, so is the equation

.M1 CM2/ dx C .N1 CN2/ dy D 0:

33. Find conditions on the constants A, B , C , and D such that the equation

.Ax C By/dx C .Cx CDy/dy D 0

is exact.

34. Find conditions on the constants A, B , C , D, E , and F such that the equation

.Ax2 C Bxy C Cy2/ dx C .Dx2 C Exy C Fy2/ dy D 0

is exact.



82 Chapter 2 First Order Equations

35. SupposeM and N are continuous and have continuous partial derivativesMy and Nx that satisfy

the exactness conditionMy D Nx on an open rectangle R. Show that if .x; y/ is in R and

F.x; y/ D
Z x

x0

M.s; y0/ ds C
Z y

y0

N.x; t/ dt;

then Fx D M and Fy D N .

36. Under the assumptions of Exercise 35, show that

F.x; y/ D
Z y

y0

N.x0; s/ ds C
Z x

x0

M.t; y/ dt:

37. Use the method suggested by Exercise 35, with .x0; y0/ D .0; 0/, to solve the these exact equa-

tions:

(a) .x3y4 C x/ dx C .x4y3 C y/ dy D 0

(b) .x2 C y2/ dx C 2xy dy D 0

(c) .3x2 C 2y/ dx C .2y C 2x/ dy D 0

38. Solve the initial value problem

y0 C 2

x
y D � 2xy

x2 C 2x2y C 1
; y.1/ D �2:

39. Solve the initial value problem

y0 � 3

x
y D 2x4.4x3 � 3y/

3x5 C 3x3 C 2y
; y.1/ D 1:

40. Solve the initial value problem

y0 C 2xy D �e�x2

 

3x C 2yex2

2x C 3yex2

!

; y.0/ D �1:

41. Rewrite the separable equation
h.y/y0 D g.x/ .A/

as an exact equation

M.x; y/ dx CN.x; y/ dy D 0: .B/

Show that applying the method of this section to (B) yields the same solutions that would be
obtained by applying the method of separation of variables to (A)

42. Suppose all second partial derivatives of M D M.x; y/ and N D N.x; y/ are continuous and

M dx C N dy D 0 and �N dx C M dy D 0 are exact on an open rectangle R. Show that

Mxx CMyy D Nxx CNyy D 0 on R.

43. Suppose all second partial derivatives of F D F.x; y/ are continuous and Fxx C Fyy D 0 on an

open rectangle R. (A function with these properties is said to be harmonic; see also Exercise 42.)

Show that �Fy dx C Fx dy D 0 is exact on R, and therefore there’s a function G such that
Gx D �Fy and Gy D Fx in R. (A function G with this property is said to be a harmonic

conjugate of F .)
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44. Verify that the following functions are harmonic, and find all their harmonic conjugates. (See

Exercise 43.)

(a) x2 � y2 (b) ex cosy (c) x3 � 3xy2

(d) cos x cosh y (e) sinx cosh y

2.6 INTEGRATING FACTORS

In Section 2.5 we saw that if M , N , My and Nx are continuous and My D Nx on an open rectangle R

then

M.x; y/ dx CN.x; y/ dy D 0 (2.6.1)

is exact on R. Sometimes an equation that isn’t exact can be made exact by multiplying it by an appro-

priate function. For example,

.3x C 2y2/ dx C 2xy dy D 0 (2.6.2)

is not exact, sinceMy .x; y/ D 4y ¤ Nx.x; y/ D 2y in (2.6.2). However, multiplying (2.6.2) by x yields

.3x2 C 2xy2/ dx C 2x2y dy D 0; (2.6.3)

which is exact, since My.x; y/ D Nx.x; y/ D 4xy in (2.6.3). Solving (2.6.3) by the procedure given in

Section 2.5 yields the implicit solution

x3 C x2y2 D c:

A function � D �.x; y/ is an integrating factor for (2.6.1) if

�.x; y/M.x; y/ dx C �.x; y/N.x; y/ dy D 0 (2.6.4)

is exact. If we know an integrating factor � for (2.6.1), we can solve the exact equation (2.6.4) by the

method of Section 2.5. It would be nice if we could say that (2.6.1) and (2.6.4) always have the same

solutions, but this isn’t so. For example, a solution y D y.x/ of (2.6.4) such that �.x; y.x// D 0 on

some interval a < x < b could fail to be a solution of (2.6.1) (Exercise 1), while (2.6.1) may have a

solution y D y.x/ such that �.x; y.x// isn’t even defined (Exercise 2). Similar comments apply if y is
the independent variable and x is the dependent variable in (2.6.1) and (2.6.4). However, if �.x; y/ is

defined and nonzero for all .x; y/, (2.6.1) and (2.6.4) are equivalent; that is, they have the same solutions.

Finding Integrating Factors

By applying Theorem 2.5.2 (withM and N replaced by �M and �N ), we see that (2.6.4) is exact on an
open rectangle R if �M , �N , .�M/y , and .�N/x are continuous and

@

@y
.�M/ D @

@x
.�N/ or, equivalently, �yM C �My D �xN C �Nx

on R. It’s better to rewrite the last equation as

�.My � Nx/ D �xN � �yM; (2.6.5)

which reduces to the known result for exact equations; that is, ifMy D Nx then (2.6.5) holds with� D 1,

so (2.6.1) is exact.

You may think (2.6.5) is of little value, since it involves partial derivatives of the unknown integrating

factor �, and we haven’t studied methods for solving such equations. However, we’ll now show that
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(2.6.5) is useful if we restrict our search to integrating factors that are products of a function of x and a

function of y; that is, �.x; y/ D P.x/Q.y/. We’re not saying that every equation M dx C N dy D 0

has an integrating factor of this form; rather, we’re saying that some equations have such integrating

factors.We’llnow develop a way to determine whether a given equation has such an integrating factor,

and a method for finding the integrating factor in this case.

If �.x; y/ D P.x/Q.y/, then �x.x; y/ D P 0.x/Q.y/ and �y.x; y/ D P.x/Q0.y/, so (2.6.5) be-
comes

P.x/Q.y/.My � Nx/ D P 0.x/Q.y/N � P.x/Q0.y/M; (2.6.6)

or, after dividing through by P.x/Q.y/,

My �Nx D P 0.x/

P.x/
N � Q0.y/

Q.y/
M: (2.6.7)

Now let

p.x/ D P 0.x/

P.x/
and q.y/ D Q0.y/

Q.y/
;

so (2.6.7) becomes

My �Nx D p.x/N � q.y/M: (2.6.8)

We obtained (2.6.8) by assuming that M dx C N dy D 0 has an integrating factor �.x; y/ D
P.x/Q.y/. However, we can now view (2.6.7) differently: If there are functionsp D p.x/ and q D q.y/

that satisfy (2.6.8) and we define

P.x/ D ˙e
R

p.x/ dx and Q.y/ D ˙e
R

q.y/ dy ; (2.6.9)

then reversing the steps that led from (2.6.6) to (2.6.8) shows that �.x; y/ D P.x/Q.y/ is an integrating
factor for M dx C N dy D 0. In using this result, we take the constants of integration in (2.6.9) to be

zero and choose the signs conveniently so the integrating factor has the simplest form.

There’s no simple general method for ascertaining whether functions p D p.x/ and q D q.y/ satisfy-

ing (2.6.8) exist. However, the next theorem gives simple sufficient conditions for the given equation to

have an integrating factor that depends on only one of the independent variables x and y, and for finding

an integrating factor in this case.

Theorem 2.6.1 Let M; N; My ; and Nx be continuous on an open rectangle R: ThenW
(a) If .My � Nx/=N is independent of y on R and we define

p.x/ D My �Nx

N

then

�.x/ D ˙e
R

p.x/ dx (2.6.10)

is an integrating factor for

M.x; y/ dx CN.x; y/ dy D 0 (2.6.11)

on R:

(b) If .Nx �My/=M is independent of x on R and we define

q.y/ D Nx �My

M
;

then

�.y/ D ˙e
R

q.y/ dy (2.6.12)

is an integrating factor for (2.6.11) on R:
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Proof (a) If .My �Nx/=N is independent of y, then (2.6.8) holds with p D .My �Nx/=N and q � 0.

Therefore

P.x/ D ˙e
R

p.x/ dx and Q.y/ D ˙e
R

q.y/ dy D ˙e0 D ˙1;
so (2.6.10) is an integrating factor for (2.6.11) on R.

(b) If .Nx �My /=M is independent of x then eqrefeq:2.6.8 holds withp � 0 and q D .Nx �My /=M ,

and a similar argument shows that (2.6.12) is an integrating factor for (2.6.11) on R.

The next two examples show how to apply Theorem 2.6.1.

Example 2.6.1 Find an integrating factor for the equation

.2xy3 � 2x3y3 � 4xy2 C 2x/ dx C .3x2y2 C 4y/ dy D 0 (2.6.13)

and solve the equation.

Solution In (2.6.13)

M D 2xy3 � 2x3y3 � 4xy2 C 2x; N D 3x2y2 C 4y;

and

My � Nx D .6xy2 � 6x3y2 � 8xy/ � 6xy2 D �6x3y2 � 8xy;
so (2.6.13) isn’t exact. However,

My �Nx

N
D �6x

3y2 C 8xy

3x2y2 C 4y
D �2x

is independent of y, so Theorem 2.6.1(a) applies with p.x/ D �2x. Since
Z

p.x/ dx D �
Z

2x dx D �x2;

�.x/ D e�x2

is an integrating factor. Multiplying (2.6.13) by � yields the exact equation

e�x2

.2xy3 � 2x3y3 � 4xy2 C 2x/ dx C e�x2

.3x2y2 C 4y/ dy D 0: (2.6.14)

To solve this equation, we must find a function F such that

Fx.x; y/ D e�x2

.2xy3 � 2x3y3 � 4xy2 C 2x/ (2.6.15)

and

Fy.x; y/ D e�x2

.3x2y2 C 4y/: (2.6.16)

Integrating (2.6.16) with respect to y yields

F.x; y/ D e�x2

.x2y3 C 2y2/C  .x/: (2.6.17)

Differentiating this with respect to x yields

Fx.x; y/ D e�x2

.2xy3 � 2x3y3 � 4xy2/C  0.x/:

Comparing this with (2.6.15) shows that  0.x/ D 2xe�x2
; therefore, we can let  .x/ D �e�x2

in

(2.6.17) and conclude that

e�x2 �

y2.x2y C 2/ � 1
�

D c

is an implicit solution of (2.6.14). It is also an implicit solution of (2.6.13).
Figure 2.6.1 shows a direction field and some integal curves for (2.6.13)
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Figure 2.6.1 A direction field and integral curves for

.2xy3 � 2x3y3 � 4xy2 C 2x/ dx C .3x2y2 C 4y/ dy D 0

Example 2.6.2 Find an integrating factor for

2xy3 dx C .3x2y2 C x2y3 C 1/ dy D 0 (2.6.18)

and solve the equation.

Solution In (2.6.18),

M D 2xy3; N D 3x2y2 C x2y3 C 1;

and

My � Nx D 6xy2 � .6xy2 C 2xy3/ D �2xy3;

so (2.6.18) isn’t exact. Moreover,

My �Nx

N
D � 2xy3

3x2y2 C x2y2 C 1

is not independent of y, so Theorem 2.6.1(a) does not apply. However, Theorem 2.6.1(b) does apply,

since
Nx �My

M
D 2xy3

2xy3
D 1

is independent of x, so we can take q.y/ D 1. Since

Z

q.y/ dy D
Z

dy D y;
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�.y/ D ey is an integrating factor. Multiplying (2.6.18) by � yields the exact equation

2xy3ey dx C .3x2y2 C x2y3 C 1/ey dy D 0: (2.6.19)

To solve this equation, we must find a function F such that

Fx.x; y/ D 2xy3ey (2.6.20)

and

Fy.x; y/ D .3x2y2 C x2y3 C 1/ey : (2.6.21)

Integrating (2.6.20) with respect to x yields

F.x; y/ D x2y3ey C �.y/: (2.6.22)

Differentiating this with respect to y yields

Fy D .3x2y2 C x2y3/ey C �0.y/;

and comparing this with (2.6.21) shows that �0.y/ D ey . Therefore we set �.y/ D ey in (2.6.22) and
conclude that

.x2y3 C 1/ey D c

is an implicit solution of (2.6.19). It is also an implicit solution of (2.6.18). Figure 2.6.2 shows a direction

field and some integral curves for (2.6.18).
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Figure 2.6.2 A direction field and integral curves for 2xy3ey dx C .3x2y2 C x2y3 C 1/ey dy D 0

Theorem 2.6.1 does not apply in the next example, but the more general argument that led to Theo-

rem 2.6.1 provides an integrating factor.
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Example 2.6.3 Find an integrating factor for

.3xy C 6y2/ dx C .2x2 C 9xy/ dy D 0 (2.6.23)

and solve the equation.

Solution In (2.6.23)
M D 3xy C 6y2; N D 2x2 C 9xy;

and
My �Nx D .3x C 12y/ � .4x C 9y/ D �x C 3y:

Therefore
My � Nx

M
D �x C 3y

3xy C 6y2
and

Nx �My

N
D x � 3y

2x2 C 9xy
;

so Theorem 2.6.1 does not apply. Following the more general argument that led to Theorem 2.6.1, we

look for functions p D p.x/ and q D q.y/ such that

My � Nx D p.x/N � q.y/M I

that is,

�x C 3y D p.x/.2x2 C 9xy/ � q.y/.3xy C 6y2/:

Since the left side contains only first degree terms in x and y, we rewrite this equation as

xp.x/.2x C 9y/ � yq.y/.3x C 6y/ D �x C 3y:

This will be an identity if

xp.x/ D A and yq.y/ D B; (2.6.24)

where A and B are constants such that

�x C 3y D A.2x C 9y/ � B.3x C 6y/;

or, equivalently,
�x C 3y D .2A � 3B/x C .9A � 6B/y:

Equating the coefficients of x and y on both sides shows that the last equation holds for all .x; y/ if

2A� 3B D �1
9A� 6B D 3;

which has the solutionA D 1, B D 1. Therefore (2.6.24) implies that

p.x/ D 1

x
and q.y/ D 1

y
:

Since
Z

p.x/ dx D ln jxj and

Z

q.y/ dy D ln jyj;

we can let P.x/ D x and Q.y/ D y; hence, �.x; y/ D xy is an integrating factor. Multiplying (2.6.23)

by � yields the exact equation

.3x2y2 C 6xy3/ dx C .2x3y C 9x2y2/ dy D 0:
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Figure 2.6.3 A direction field and integral curves for .3xy C 6y2/ dx C .2x2 C 9xy/ dy D 0

We leave it to you to use the method of Section 2.5 to show that this equation has the implicit solution

x3y2 C 3x2y3 D c: (2.6.25)

This is also an implicit solution of (2.6.23). Since x � 0 and y � 0 satisfy (2.6.25), you should check to
see that x � 0 and y � 0 are also solutions of (2.6.23). (Why is it necesary to check this?)

Figure 2.6.3 shows a direction field and integral curves for (2.6.23).

See Exercise 28 for a general discussion of equations like (2.6.23).

Example 2.6.4 The separable equation

� y dx C .x C x6/ dy D 0 (2.6.26)

can be converted to the exact equation

� dx

x C x6
C dy

y
D 0 (2.6.27)

by multiplying through by the integrating factor

�.x; y/ D 1

y.x C x6/
:

However, to solve (2.6.27) by the method of Section 2.5 we would have to evaluate the nasty integral

Z

dx

x C x6
:

Instead, we solve (2.6.26) explicitly for y by finding an integrating factor of the form �.x; y/ D xayb .
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Figure 2.6.4 A direction field and integral curves for �y dx C .x C x6/ dy D 0

Solution In (2.6.26)

M D �y; N D x C x6;

and
My �Nx D �1 � .1 C 6x5/ D �2 � 6x5:

We look for functions p D p.x/ and q D q.y/ such that

My � Nx D p.x/N � q.y/M I

that is,
� 2 � 6x5 D p.x/.x C x6/C q.y/y: (2.6.28)

The right side will contain the term �6x5 if p.x/ D �6=x. Then (2.6.28) becomes

�2 � 6x5 D �6 � 6x5 C q.y/y;

so q.y/ D 4=y. Since
Z

p.x/ dx D �
Z

6

x
dx D �6 ln jxj D ln

1

x6
;

and
Z

q.y/ dy D
Z

4

y
dy D 4 ln jyj D lny4;

we can take P.x/ D x�6 and Q.y/ D y4, which yields the integrating factor �.x; y/ D x�6y4.

Multiplying (2.6.26) by � yields the exact equation

�y
5

x6
dx C

�

y4

x5
C y4

�

dy D 0:
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We leave it to you to use the method of the Section 2.5 to show that this equation has the implicit solution

�y

x

�5

C y5 D k:

Solving for y yields

y D k1=5x.1C x5/�1=5;

which we rewrite as

y D cx.1C x5/�1=5

by renaming the arbitrary constant. This is also a solution of (2.6.26).

Figure 2.6.4 shows a direction field and some integral curves for (2.6.26).

2.6 Exercises

1. (a) Verify that �.x; y/ D y is an integrating factor for

y dx C
�

2x C 1

y

�

dy D 0 .A/

on any open rectangle that does not intersect the x axis or, equivalently, that

y2 dx C .2xy C 1/ dy D 0 .B/

is exact on any such rectangle.

(b) Verify that y � 0 is a solution of (B), but not of (A).

(c) Show that
y.xy C 1/ D c .C/

is an implicit solution of (B), and explain why every differentiable function y D y.x/ other

than y � 0 that satisfies (C) is also a solution of (A).

2. (a) Verify that �.x; y/ D 1=.x � y/2 is an integrating factor for

�y2 dx C x2 dy D 0 .A/

on any open rectangle that does not intersect the line y D x or, equivalently, that

� y2

.x � y/2 dx C x2

.x � y/2
dy D 0 .B/

is exact on any such rectangle.

(b) Use Theorem 2.2.1 to show that
xy

.x � y/ D c .C/

is an implicit solution of (B), and explain why it’s also an implicit solution of (A)

(c) Verify that y D x is a solution of (A), even though it can’t be obtained from (C).

In Exercises 3–16 find an integrating factor; that is a function of only one variable, and solve the given

equation.

3. y dx � x dy D 0 4. 3x2y dx C 2x3 dy D 0

5. 2y3 dx C 3y2 dy D 0 6. .5xy C 2y C 5/ dx C 2x dy D 0
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7. .xy C x C 2y C 1/ dx C .x C 1/ dy D 0

8. .27xy2 C 8y3/ dx C .18x2y C 12xy2/ dy D 0

9. .6xy2 C 2y/ dx C .12x2y C 6x C 3/ dy D 0

10. y2 dx C
�

xy2 C 3xy C 1

y

�

dy D 0

11. .12x3y C 24x2y2/ dx C .9x4 C 32x3y C 4y/ dy D 0

12. .x2y C 4xy C 2y/ dx C .x2 C x/ dy D 0

13. �y dx C .x4 � x/ dy D 0

14. cos x cosy dx C .sin x cosy � sinx sin y C y/ dy D 0

15. .2xy C y2/ dx C .2xy C x2 � 2x2y2 � 2xy3/ dy D 0

16. y siny dx C x.siny � y cosy/ dy D 0

In Exercises 17–23 find an integrating factor of the form �.x; y/ D P.x/Q.y/ and solve the given

equation.

17. y.1 C 5 ln jxj/ dx C 4x ln jxj dy D 0

18. .˛y C 
xy/ dx C .ˇx C ıxy/ dy D 0

19. .3x2y3 � y2 C y/ dx C .�xy C 2x/ dy D 0

20. 2y dx C 3.x2 C x2y3/ dy D 0

21. .a cos xy � y sinxy/ dx C .b cos xy � x sinxy/ dy D 0

22. x4y4 dx C x5y3 dy D 0

23. y.x cos x C 2 sinx/ dx C x.y C 1/ sinx dy D 0

In Exercises 24–27 find an integrating factor and solve the equation. Plot a direction field and some

integral curves for the equation in the indicated rectangular region.

24. C/G .x4y3 C y/ dx C .x5y2 � x/ dy D 0I f�1 � x � 1;�1 � y � 1g

25. C/G .3xy C 2y2 C y/ dx C .x2 C 2xy C x C 2y/ dy D 0I f�2 � x � 2;�2 � y � 2g

26. C/G .12xy C 6y3/ dx C .9x2 C 10xy2/ dy D 0I f�2 � x � 2;�2 � y � 2g

27. C/G .3x2y2 C 2y/ dx C 2x dy D 0I f�4 � x � 4;�4 � y � 4g
28. Suppose a, b, c, and d are constants such that ad � bc ¤ 0, and let m and n be arbitrary real

numbers. Show that

.axmy C bynC1/ dx C .cxmC1 C dxyn/ dy D 0

has an integrating factor �.x; y/ D x˛yˇ .

29. Suppose M , N , Mx , and Ny are continuous for all .x; y/, and � D �.x; y/ is an integrating

factor for
M.x; y/ dx CN.x; y/ dy D 0: .A/

Assume that �x and �y are continuous for all .x; y/, and suppose y D y.x/ is a differentiable

function such that �.x; y.x// D 0 and �x.x; y.x// ¤ 0 for all x in some interval I . Show that y

is a solution of (A) on I .
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30. According to Theorem 2.1.2, the general solution of the linear nonhomogeneous equation

y0 C p.x/y D f .x/ .A/

is

y D y1.x/

�

c C
Z

f .x/=y1.x/ dx

�

; .B/

where y1 is any nontrivial solution of the complementary equation y0 C p.x/y D 0. In this

exercise we obtain this conclusion in a different way. You may find it instructive to apply the
method suggested here to solve some of the exercises in Section 2.1.

(a) Rewrite (A) as

Œp.x/y � f .x/� dx C dy D 0; .C/

and show that � D ˙e
R

p.x/ dx is an integrating factor for (C).

(b) Multiply (A) through by � D ˙e
R

p.x/ dx and verify that the resulting equation can be

rewritten as

.�.x/y/0 D �.x/f .x/:

Then integrate both sides of this equation and solve for y to show that the general solution

of (A) is

y D 1

�.x/

�

c C
Z

f .x/�.x/ dx

�

:

Why is this form of the general solution equivalent to (B)?





CHAPTER 3

Numerical Methods

In this chapter we study numerical methods for solving a first order differential equation

y0 D f .x; y/:

SECTION 3.1 deals with Euler’s method, which is really too crude to be of much use in practical appli-

cations. However, its simplicity allows for an introduction to the ideas required to understand the better

methods discussed in the other two sections.

SECTION 3.2 discusses improvements on Euler’s method.

SECTION 3.3 deals with the Runge-Kutta method, perhaps the most widely used method for numerical

solution of differential equations.

95

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
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3.1 EULER’S METHOD

If an initial value problem
y0 D f .x; y/; y.x0/ D y0 (3.1.1)

can’t be solved analytically, it’s necessary to resort to numerical methods to obtain useful approximations

to a solution of (3.1.1). We’ll consider such methods in this chapter.
We’re interested in computing approximate values of the solution of (3.1.1) at equally spaced points

x0, x1, . . . , xn D b in an interval Œx0; b�. Thus,

xi D x0 C ih; i D 0; 1; : : : ; n;

where

h D b � x0

n
:

We’ll denote the approximate values of the solution at these points by y0, y1, . . . , yn; thus, yi is an

approximation to y.xi /. We’ll call

ei D y.xi / � yi

the error at the i th step. Because of the initial conditiony.x0/ D y0, we’ll always have e0 D 0. However,

in general ei ¤ 0 if i > 0.

We encounter two sources of error in applying a numerical method to solve an initial value problem:

� The formulas defining the method are based on some sort of approximation. Errors due to the
inaccuracy of the approximation are called truncation errors.

� Computers do arithmetic with a fixed number of digits, and therefore make errors in evaluating

the formulas defining the numerical methods. Errors due to the computer’s inability to do exact

arithmetic are called roundoff errors.

Since a careful analysis of roundoff error is beyond the scope of this book, we’ll consider only trunca-

tion errors.

Euler’s Method

The simplest numerical method for solving (3.1.1) is Euler’s method. This method is so crude that it is

seldom used in practice; however, its simplicity makes it useful for illustrative purposes.

Euler’s method is based on the assumption that the tangent line to the integral curve of (3.1.1) at

.xi ; y.xi // approximates the integral curve over the interval Œxi ; xiC1�. Since the slope of the integral

curve of (3.1.1) at .xi ; y.xi // is y0.xi / D f .xi ; y.xi //, the equation of the tangent line to the integral

curve at .xi ; y.xi // is
y D y.xi /C f .xi ; y.xi //.x � xi /: (3.1.2)

Setting x D xiC1 D xi C h in (3.1.2) yields

yiC1 D y.xi /C hf .xi ; y.xi // (3.1.3)

as an approximation to y.xiC1/. Since y.x0/ D y0 is known, we can use (3.1.3) with i D 0 to compute

y1 D y0 C hf .x0; y0/:

However, setting i D 1 in (3.1.3) yields

y2 D y.x1/C hf .x1; y.x1//;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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which isn’t useful, since we don’t know y.x1/. Therefore we replace y.x1/ by its approximate value y1

and redefine

y2 D y1 C hf .x1; y1/:

Having computed y2, we can compute

y3 D y2 C hf .x2; y2/:

In general, Euler’s method starts with the known value y.x0/ D y0 and computes y1, y2, . . . , yn succes-

sively by with the formula

yiC1 D yi C hf .xi ; yi/; 0 � i � n � 1: (3.1.4)

The next example illustrates the computational procedure indicated in Euler’s method.

Example 3.1.1 Use Euler’s method with h D 0:1 to find approximate values for the solution of the initial

value problem

y0 C 2y D x3e�2x; y.0/ D 1 (3.1.5)

at x D 0:1; 0:2; 0:3.

Solution We rewrite (3.1.5) as

y0 D �2y C x3e�2x ; y.0/ D 1;

which is of the form (3.1.1), with

f .x; y/ D �2y C x3e�2x; x0 D 0; and y0 D 1:

Euler’s method yields

y1 D y0 C hf .x0; y0/

D 1C .:1/f .0; 1/ D 1C .:1/.�2/ D :8;

y2 D y1 C hf .x1; y1/

D :8C .:1/f .:1; :8/ D :8 C .:1/
�

�2.:8/C .:1/3e�:2
�

D :640081873;

y3 D y2 C hf .x2; y2/

D :640081873C .:1/
�

�2.:640081873/C .:2/3e�:4
�

D :512601754:

We’ve written the details of these computations to ensure that you understand the procedure. However,

in the rest of the examples as well as the exercises in this chapter, we’ll assume that you can use a

programmable calculator or a computer to carry out the necessary computations.

Examples Illustrating The Error in Euler’s Method

Example 3.1.2 Use Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approxi-

mate values of the solution of the initial value problem

y0 C 2y D x3e�2x; y.0/ D 1

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. Compare these approximate values with the values of the exact solution

y D e�2x

4
.x4 C 4/; (3.1.6)

which can be obtained by the method of Section 2.1. (Verify.)
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Solution Table 3.1.1 shows the values of the exact solution (3.1.6) at the specified points, and the ap-

proximate values of the solution at these points obtained by Euler’s method with step sizes h D 0:1,

h D 0:05, and h D 0:025. In examining this table, keep in mind that the approximate values in the col-

umn corresponding to h D :05 are actually the results of 20 steps with Euler’s method. We haven’t listed

the estimates of the solution obtained for x D 0:05, 0:15, . . . , since there’s nothing to compare them with

in the column corresponding to h D 0:1. Similarly, the approximate values in the column corresponding
to h D 0:025 are actually the results of 40 steps with Euler’s method.

Table 3.1.1. Numerical solution of y0 C 2y D x3e�2x; y.0/ D 1, by Euler’s method.

x h D 0:1 h D 0:05 h D 0:025 Exact

0.0 1.000000000 1.000000000 1.000000000 1.000000000

0.1 0.800000000 0.810005655 0.814518349 0.818751221

0.2 0.640081873 0.656266437 0.663635953 0.670588174

0.3 0.512601754 0.532290981 0.541339495 0.549922980

0.4 0.411563195 0.432887056 0.442774766 0.452204669
0.5 0.332126261 0.353785015 0.363915597 0.373627557

0.6 0.270299502 0.291404256 0.301359885 0.310952904

0.7 0.222745397 0.242707257 0.252202935 0.261398947

0.8 0.186654593 0.205105754 0.213956311 0.222570721

0.9 0.159660776 0.176396883 0.184492463 0.192412038

1.0 0.139778910 0.154715925 0.162003293 0.169169104

You can see from Table 3.1.1 that decreasing the step size improves the accuracy of Euler’s method.
For example,

yexact.1/ � yapprox.1/ �

8

<

:

:0293 with h D 0:1;

:0144 with h D 0:05;

:0071 with h D 0:025:

Based on this scanty evidence, you might guess that the error in approximating the exact solution at a fixed

value of x by Euler’s method is roughly halved when the step size is halved. You can find more evidence

to support this conjecture by examining Table 3.1.2, which lists the approximate values of yexact � yapprox at

x D 0:1, 0:2, . . . , 1:0.

Table 3.1.2. Errors in approximate solutions of y0 C 2y D x3e�2x ; y.0/ D 1, obtained by

Euler’s method.

x h D 0:1 h D 0:05 h D 0:025

0.1 0.0187 0.0087 0.0042

0.2 0.0305 0.0143 0.0069
0.3 0.0373 0.0176 0.0085

0.4 0.0406 0.0193 0.0094

0.5 0.0415 0.0198 0.0097

0.6 0.0406 0.0195 0.0095

0.7 0.0386 0.0186 0.0091

0.8 0.0359 0.0174 0.0086
0.9 0.0327 0.0160 0.0079

1.0 0.0293 0.0144 0.0071

Example 3.1.3 Tables 3.1.3 and 3.1.4 show analogous results for the nonlinear initial value problem

y0 D �2y2 C xy C x2; y.0/ D 1; (3.1.7)
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except in this case we can’t solve (3.1.7) exactly. The results in the “Exact” column were obtained by

using a more accurate numerical method known as the Runge-Kutta method with a small step size. They

are exact to eight decimal places.

Since we think it’s important in evaluating the accuracy of the numerical methods that we’ll be studying

in this chapter, we often include a column listing values of the exact solution of the initial value problem,
even if the directions in the example or exercise don’t specifically call for it. If quotation marks are

included in the heading, the values were obtained by applying the Runge-Kutta method in a way that’s

explained in Section 3.3. If quotation marks are not included, the values were obtained from a known

formula for the solution. In either case, the values are exact to eight places to the right of the decimal

point.

Table 3.1.3. Numerical solution of y0 D �2y2 C xy C x2; y.0/ D 1, by Euler’s method.

x h D 0:1 h D 0:05 h D 0:025 “Exact”

0.0 1.000000000 1.000000000 1.000000000 1.000000000

0.1 0.800000000 0.821375000 0.829977007 0.837584494

0.2 0.681000000 0.707795377 0.719226253 0.729641890
0.3 0.605867800 0.633776590 0.646115227 0.657580377

0.4 0.559628676 0.587454526 0.600045701 0.611901791

0.5 0.535376972 0.562906169 0.575556391 0.587575491

0.6 0.529820120 0.557143535 0.569824171 0.581942225

0.7 0.541467455 0.568716935 0.581435423 0.593629526
0.8 0.569732776 0.596951988 0.609684903 0.621907458

0.9 0.614392311 0.641457729 0.654110862 0.666250842

1.0 0.675192037 0.701764495 0.714151626 0.726015790

Table 3.1.4. Errors in approximate solutions of y0 D �2y2 C xy C x2; y.0/ D 1, obtained

by Euler’s method.

x h D 0:1 h D 0:05 h D 0:025

0.1 0.0376 0.0162 0.0076

0.2 0.0486 0.0218 0.0104

0.3 0.0517 0.0238 0.0115
0.4 0.0523 0.0244 0.0119

0.5 0.0522 0.0247 0.0121

0.6 0.0521 0.0248 0.0121

0.7 0.0522 0.0249 0.0122

0.8 0.0522 0.0250 0.0122
0.9 0.0519 0.0248 0.0121

1.0 0.0508 0.0243 0.0119

Truncation Error in Euler’s Method

Consistent with the results indicated in Tables 3.1.1–3.1.4, we’ll now show that under reasonable as-

sumptions on f there’s a constant K such that the error in approximating the solution of the initial value
problem

y0 D f .x; y/; y.x0/ D y0;

at a given point b > x0 by Euler’s method with step size h D .b � x0/=n satisfies the inequality

jy.b/ � ynj � Kh;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
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where K is a constant independent of n.

There are two sources of error (not counting roundoff) in Euler’s method:

1. The error committed in approximating the integral curve by the tangent line (3.1.2) over the interval

Œxi ; xiC1�.

2. The error committed in replacing y.xi / by yi in (3.1.2) and using (3.1.4) rather than (3.1.2) to

compute yiC1.

Euler’s method assumes that yiC1 defined in (3.1.2) is an approximation to y.xiC1/. We call the error

in this approximation the local truncation error at the i th step, and denote it by Ti ; thus,

Ti D y.xiC1/ � y.xi / � hf .xi ; y.xi //: (3.1.8)

We’ll now use Taylor’s theorem to estimate Ti , assuming for simplicity that f , fx , and fy are continuous
and bounded for all .x; y/. Then y00 exists and is bounded on Œx0; b�. To see this, we differentiate

y0.x/ D f .x; y.x//

to obtain

y00.x/ D fx.x; y.x// C fy.x; y.x//y
0.x/

D fx.x; y.x// C fy.x; y.x//f .x; y.x//:

Since we assumed that f , fx and fy are bounded, there’s a constant M such that

jfx.x; y.x// C fy.x; y.x//f .x; y.x//j � M; x0 < x < b;

which implies that

jy00.x/j � M; x0 < x < b: (3.1.9)

Since xiC1 D xi C h, Taylor’s theorem implies that

y.xiC1/ D y.xi /C hy0.xi /C h2

2
y00. Qxi /;

where Qxi is some number between xi and xiC1. Since y0.xi / D f .xi ; y.xi // this can be written as

y.xiC1/ D y.xi /C hf .xi ; y.xi //C h2

2
y00. Qxi /;

or, equivalently,

y.xiC1/ � y.xi / � hf .xi ; y.xi // D h2

2
y00. Qxi /:

Comparing this with (3.1.8) shows that

Ti D h2

2
y00. Qxi /:

Recalling (3.1.9), we can establish the bound

jTi j � Mh2

2
; 1 � i � n: (3.1.10)

Although it may be difficult to determine the constantM , what is important is that there’s anM such that

(3.1.10) holds. We say that the local truncation error of Euler’s method is of order h2, which we write as
O.h2/.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
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Note that the magnitude of the local truncation error in Euler’s method is determined by the second

derivative y00 of the solution of the initial value problem. Therefore the local truncation error will be

larger where jy00j is large, or smaller where jy00j is small.

Since the local truncation error for Euler’s method is O.h2/, it’s reasonable to expect that halving h

reduces the local truncation error by a factor of 4. This is true, but halving the step size also requires twice

as many steps to approximate the solution at a given point. To analyze the overall effect of truncation
error in Euler’s method, it’s useful to derive an equation relating the errors

eiC1 D y.xiC1/ � yiC1 and ei D y.xi /� yi :

To this end, recall that

y.xiC1/ D y.xi /C hf .xi ; y.xi //C Ti (3.1.11)

and
yiC1 D yi C hf .xi ; yi /: (3.1.12)

Subtracting (3.1.12) from (3.1.11) yields

eiC1 D ei C h Œf .xi ; y.xi // � f .xi ; yi/� C Ti : (3.1.13)

The last term on the right is the local truncation error at the i th step. The other terms reflect the way

errors made at previous steps affect eiC1. Since jTi j � Mh2=2, we see from (3.1.13) that

jeiC1j � jei j C hjf .xi ; y.xi // � f .xi ; yi/j C Mh2

2
: (3.1.14)

Since we assumed that fy is continuous and bounded, the mean value theorem implies that

f .xi ; y.xi // � f .xi ; yi/ D fy.xi ; y
�
i /.y.xi / � yi / D fy.xi ; y

�
i /ei ;

where y�
i is between yi and y.xi /. Therefore

jf .xi ; y.xi // � f .xi ; yi/j � Rjei j

for some constant R. From this and (3.1.14),

jeiC1j � .1 CRh/jei j C Mh2

2
; 0 � i � n � 1: (3.1.15)

For convenience, let C D 1CRh. Since e0 D y.x0/ � y0 D 0, applying (3.1.15) repeatedly yields

je1j � Mh2

2

je2j � C je1j C Mh2

2
� .1C C/

Mh2

2

je3j � C je2j C Mh2

2
� .1C C C C 2/

Mh2

2
:::

jenj � C jen�1j C Mh2

2
� .1 C C C � � � C C n�1/

Mh2

2
: (3.1.16)

Recalling the formula for the sum of a geometric series, we see that

1C C C � � � C C n�1 D 1 � C n

1 � C D .1CRh/n � 1

Rh
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(since C D 1CRh). From this and (3.1.16),

jy.b/ � ynj D jenj � .1 CRh/n � 1
R

Mh

2
: (3.1.17)

Since Taylor’s theorem implies that

1CRh < eRh

(verify),

.1CRh/n < enRh D eR.b�x0/ .since nh D b � x0/:

This and (3.1.17) imply that

jy.b/ � ynj � Kh; (3.1.18)

with

K D M
eR.b�x0/ � 1

2R
:

Because of (3.1.18) we say that the global truncation error of Euler’s method is of order h, which we
write as O.h/.

Semilinear Equations and Variation of Parameters

An equation that can be written in the form

y0 C p.x/y D h.x; y/ (3.1.19)

with p 6� 0 is said to be semilinear. (Of course, (3.1.19) is linear if h is independent of y.) One way to

apply Euler’s method to an initial value problem

y0 C p.x/y D h.x; y/; y.x0/ D y0 (3.1.20)

for (3.1.19) is to think of it as

y0 D f .x; y/; y.x0/ D y0;

where

f .x; y/ D �p.x/y C h.x; y/:

However, we can also start by applying variation of parameters to (3.1.20), as in Sections 2.1 and 2.4;

thus, we write the solution of (3.1.20) as y D uy1, where y1 is a nontrivial solution of the complementary

equation y0 C p.x/y D 0. Then y D uy1 is a solution of (3.1.20) if and only if u is a solution of the
initial value problem

u0 D h.x; uy1.x//=y1.x/; u.x0/ D y.x0/=y1.x0/: (3.1.21)

We can apply Euler’s method to obtain approximate values u0, u1, . . . , un of this initial value problem,

and then take

yi D uiy1.xi /

as approximate values of the solution of (3.1.20). We’ll call this procedure the Euler semilinear method.

The next two examples show that the Euler and Euler semilinear methods may yield drastically different

results.

Example 3.1.4 In Example 2.1.7 we had to leave the solution of the initial value problem

y0 � 2xy D 1; y.0/ D 3 (3.1.22)

in the form

y D ex2

�

3C
Z x

0

e�t2

dt

�

(3.1.23)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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because it was impossible to evaluate this integral exactly in terms of elementary functions. Use step

sizes h D 0:2, h D 0:1, and h D 0:05 to find approximate values of the solution of (3.1.22) at x D 0,

0:2, 0:4, 0:6, . . . , 2:0 by (a) Euler’s method; (b) the Euler semilinear method.

SOLUTION(a) Rewriting (3.1.22) as

y0 D 1C 2xy; y.0/ D 3 (3.1.24)

and applying Euler’s method with f .x; y/ D 1C 2xy yields the results shown in Table 3.1.5. Because of
the large differences between the estimates obtained for the three values of h, it would be clear that these

results are useless even if the “exact” values were not included in the table.

Table 3.1.5. Numerical solution of y0 � 2xy D 1; y.0/ D 3, with Euler’s method.

x h D 0:2 h D 0:1 h D 0:05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000

0.2 3.200000000 3.262000000 3.294348537 3.327851973

0.4 3.656000000 3.802028800 3.881421103 3.966059348

0.6 4.440960000 4.726810214 4.888870783 5.067039535

0.8 5.706790400 6.249191282 6.570796235 6.936700945
1.0 7.732963328 8.771893026 9.419105620 10.184923955

1.2 11.026148659 13.064051391 14.405772067 16.067111677

1.4 16.518700016 20.637273893 23.522935872 27.289392347

1.6 25.969172024 34.570423758 41.033441257 50.000377775

1.8 42.789442120 61.382165543 76.491018246 98.982969504

2.0 73.797840446 115.440048291 152.363866569 211.954462214

It’s easy to see why Euler’s method yields such poor results. Recall that the constant M in (3.1.10) –

which plays an important role in determining the local truncation error in Euler’s method – must be an

upper bound for the values of the second derivative y00 of the solution of the initial value problem (3.1.22)

on .0; 2/. The problem is that y00 assumes very large values on this interval. To see this, we differentiate
(3.1.24) to obtain

y00.x/ D 2y.x/C 2xy0.x/ D 2y.x/C 2x.1C 2xy.x// D 2.1C 2x2/y.x/ C 2x;

where the second equality follows again from (3.1.24). Since (3.1.23) implies that y.x/ > 3ex2

if x > 0,

y00.x/ > 6.1 C 2x2/ex2 C 2x; x > 0:

For example, letting x D 2 shows that y00.2/ > 2952.

SOLUTION(b) Since y1 D ex2

is a solution of the complementary equation y0 � 2xy D 0, we can apply

the Euler semilinear method to (3.1.22), with

y D uex2

and u0 D e�x2

; u.0/ D 3:

The results listed in Table 3.1.6 are clearly better than those obtained by Euler’s method.

Table 3.1.6. Numerical solution of y0 �2xy D 1; y.0/ D 3, by the Euler semilinear method.
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x h D 0:2 h D 0:1 h D 0:05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000

0.2 3.330594477 3.329558853 3.328788889 3.327851973

0.4 3.980734157 3.974067628 3.970230415 3.966059348
0.6 5.106360231 5.087705244 5.077622723 5.067039535

0.8 7.021003417 6.980190891 6.958779586 6.936700945

1.0 10.350076600 10.269170824 10.227464299 10.184923955

1.2 16.381180092 16.226146390 16.147129067 16.067111677

1.4 27.890003380 27.592026085 27.441292235 27.289392347
1.6 51.183323262 50.594503863 50.298106659 50.000377775

1.8 101.424397595 100.206659076 99.595562766 98.982969504

2.0 217.301032800 214.631041938 213.293582978 211.954462214

We can’t give a general procedure for determining in advance whether Euler’s method or the semilinear

Euler method will produce better results for a given semilinear initial value problem (3.1.19). As a rule of
thumb, the Euler semilinear method will yield better results than Euler’s method if ju00j is small on Œx0; b�,

while Euler’s method yields better results if ju00j is large on Œx0; b�. In many cases the results obtained by

the two methods don’t differ appreciably. However, we propose the an intuitive way to decide which is

the better method: Try both methods with multiple step sizes, as we did in Example 3.1.4, and accept the

results obtained by the method for which the approximations change less as the step size decreases.

Example 3.1.5 Applying Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to the initial

value problem

y0 � 2y D x

1C y2
; y.1/ D 7 (3.1.25)

on Œ1; 2� yields the results in Table 3.1.7. Applying the Euler semilinear method with

y D ue2x and u0 D xe�2x

1C u2e4x
; u.1/ D 7e�2

yields the results in Table 3.1.8. Since the latter are clearly less dependent on step size than the former,

we conclude that the Euler semilinear method is better than Euler’s method for (3.1.25). This conclusion

is supported by comparing the approximate results obtained by the two methods with the “exact” values

of the solution.

Table 3.1.7. Numerical solution of y0 � 2y D x=.1C y2/; y.1/ D 7, by Euler’s method.

x h D 0:1 h D 0:05 h D 0:025 “Exact”

1.0 7.000000000 7.000000000 7.000000000 7.000000000

1.1 8.402000000 8.471970569 8.510493955 8.551744786

1.2 10.083936450 10.252570169 10.346014101 10.446546230
1.3 12.101892354 12.406719381 12.576720827 12.760480158

1.4 14.523152445 15.012952416 15.287872104 15.586440425

1.5 17.428443554 18.166277405 18.583079406 19.037865752

1.6 20.914624471 21.981638487 22.588266217 23.253292359

1.7 25.097914310 26.598105180 27.456479695 28.401914416

1.8 30.117766627 32.183941340 33.373738944 34.690375086
1.9 36.141518172 38.942738252 40.566143158 42.371060528

2.0 43.369967155 47.120835251 49.308511126 51.752229656
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Table 3.1.8. Numerical solution of y0 �2y D x=.1Cy2/; y.1/ D 7, by the Euler semilinear

method.

x h D 0:1 h D 0:05 h D 0:025 “Exact”

1.0 7.000000000 7.000000000 7.000000000 7.000000000
1.1 8.552262113 8.551993978 8.551867007 8.551744786

1.2 10.447568674 10.447038547 10.446787646 10.446546230

1.3 12.762019799 12.761221313 12.760843543 12.760480158

1.4 15.588535141 15.587448600 15.586934680 15.586440425

1.5 19.040580614 19.039172241 19.038506211 19.037865752

1.6 23.256721636 23.254942517 23.254101253 23.253292359
1.7 28.406184597 28.403969107 28.402921581 28.401914416

1.8 34.695649222 34.692912768 34.691618979 34.690375086

1.9 42.377544138 42.374180090 42.372589624 42.371060528

2.0 51.760178446 51.756054133 51.754104262 51.752229656

Example 3.1.6 Applying Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to the initial

value problem

y0 C 3x2y D 1C y2; y.2/ D 2 (3.1.26)

on Œ2; 3� yields the results in Table 3.1.9. Applying the Euler semilinear method with

y D ue�x3

and u0 D ex3

.1C u2e�2x3

/; u.2/ D 2e8

yields the results in Table 3.1.10. Noting the close agreement among the three columns of Table 3.1.9

(at least for larger values of x) and the lack of any such agreement among the columns of Table 3.1.10,
we conclude that Euler’s method is better than the Euler semilinear method for (3.1.26). Comparing the

results with the exact values supports this conclusion.

Table 3.1.9. Numerical solution of y0 C 3x2y D 1C y2; y.2/ D 2, by Euler’s method.

x h D 0:1 h D 0:05 h D 0:025 “Exact”

2.0 2.000000000 2.000000000 2.000000000 2.000000000
2.1 0.100000000 0.493231250 0.609611171 0.701162906

2.2 0.068700000 0.122879586 0.180113445 0.236986800

2.3 0.069419569 0.070670890 0.083934459 0.103815729

2.4 0.059732621 0.061338956 0.063337561 0.068390786

2.5 0.056871451 0.056002363 0.056249670 0.057281091
2.6 0.050560917 0.051465256 0.051517501 0.051711676

2.7 0.048279018 0.047484716 0.047514202 0.047564141

2.8 0.042925892 0.043967002 0.043989239 0.044014438

2.9 0.042148458 0.040839683 0.040857109 0.040875333

3.0 0.035985548 0.038044692 0.038058536 0.038072838

Table 3.1.10. Numerical solution of y0C3x2y D 1Cy2; y.2/ D 2, by the Euler semilinear

method.
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x h D 0:1 h D 0:05 h D 0:025 “Exact”

x h D 0:1 h D 0:05 h D 0:025 h D :0125

2.0 2.000000000 2.000000000 2.000000000 2.000000000

2.1 0.708426286 0.702568171 0.701214274 0.701162906

2.2 0.214501852 0.222599468 0.228942240 0.236986800

2.3 0.069861436 0.083620494 0.092852806 0.103815729

2.4 0.032487396 0.047079261 0.056825805 0.068390786
2.5 0.021895559 0.036030018 0.045683801 0.057281091

2.6 0.017332058 0.030750181 0.040189920 0.051711676

2.7 0.014271492 0.026931911 0.036134674 0.047564141

2.8 0.011819555 0.023720670 0.032679767 0.044014438

2.9 0.009776792 0.020925522 0.029636506 0.040875333

3.0 0.008065020 0.018472302 0.026931099 0.038072838

In the next two sections we’ll study other numerical methods for solving initial value problems, called

the improved Euler method, the midpoint method, Heun’s method and the Runge-Kutta method. If the
initial value problem is semilinear as in (3.1.19), we also have the option of using variation of parameters

and then applying the given numerical method to the initial value problem (3.1.21) for u. By analogy

with the terminology used here, we’ll call the resulting procedure the improved Euler semilinear method,

the midpoint semilinear method, Heun’s semilinear method or the Runge-Kutta semilinear method, as the

case may be.

3.1 Exercises

You may want to save the results of these exercises, sincewe’ll revisit in the next two sections. In Exer-

cises 1–5 use Euler’s method to find approximate values of the solution of the given initial value problem
at the points xi D x0 C ih, where x0 is the point wher the initial condition is imposed and i D 1, 2, 3.

The purpose of these exercises is to familiarize you with the computational procedure of Euler’s method.

1. C y0 D 2x2 C 3y2 � 2; y.2/ D 1I h D 0:05

2. C y0 D y C
p

x2 C y2; y.0/ D 1I h D 0:1

3. C y0 C 3y D x2 � 3xy C y2; y.0/ D 2I h D 0:05

4. C y0 D 1C x

1 � y2
; y.2/ D 3I h D 0:1

5. C y0 C x2y D sinxy; y.1/ D � I h D 0:2

6. C Use Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approximate

values of the solution of the initial value problem

y0 C 3y D 7e4x; y.0/ D 2

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. Compare these approximate values with the values of the exact

solution y D e4x C e�3x, which can be obtained by the method of Section 2.1. Present your

results in a table like Table 3.1.1.

7. C Use Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approximate

values of the solution of the initial value problem

y0 C 2

x
y D 3

x3
C 1; y.1/ D 1

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
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at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0. Compare these approximate values with the values of the exact

solution

y D 1

3x2
.9 lnx C x3 C 2/;

which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.1.1.

8. C Use Euler’s method with step sizes h D 0:05, h D 0:025, and h D 0:0125 to find approximate

values of the solution of the initial value problem

y0 D y2 C xy � x2

x2
; y.1/ D 2

at x D 1:0, 1:05, 1:10, 1:15, . . . , 1:5. Compare these approximate values with the values of the

exact solution

y D x.1C x2=3/

1 � x2=3

obtained in Example 2.4.3. Present your results in a table like Table 3.1.1.

9. C In Example 2.2.3 it was shown that

y5 C y D x2 C x � 4

is an implicit solution of the initial value problem

y0 D 2x C 1

5y4 C 1
; y.2/ D 1: .A/

Use Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approximate values

of the solution of (A) at x D 2:0, 2:1, 2:2, 2:3, . . . , 3:0. Present your results in tabular form. To

check the error in these approximate values, construct another table of values of the residual

R.x; y/ D y5 C y � x2 � x C 4

for each value of .x; y/ appearing in the first table.

10. C You can see from Example 2.5.1 that

x4y3 C x2y5 C 2xy D 4

is an implicit solution of the initial value problem

y0 D � 4x3y3 C 2xy5 C 2y

3x4y2 C 5x2y4 C 2x
; y.1/ D 1: .A/

Use Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approximate values

of the solution of (A) at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0. Present your results in tabular form. To
check the error in these approximate values, construct another table of values of the residual

R.x; y/ D x4y3 C x2y5 C 2xy � 4

for each value of .x; y/ appearing in the first table.

11. C Use Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approximate

values of the solution of the initial value problem

.3y2 C 4y/y0 C 2x C cos x D 0; y.0/ D 1I (Exercise 2.2.13)

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0.
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12. C Use Euler’s method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approximate

values of the solution of the initial value problem

y0 C .y C 1/.y � 1/.y � 2/
x C 1

D 0; y.1/ D 0 (Exercise 2.2.14)

at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0.

13. C Use Euler’s method and the Euler semilinear method with step sizes h D 0:1, h D 0:05, and

h D 0:025 to find approximate values of the solution of the initial value problem

y0 C 3y D 7e�3x; y.0/ D 6

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. Compare these approximate values with the values of the exact

solution y D e�3x.7x C 6/, which can be obtained by the method of Section 2.1. Do you notice

anything special about the results? Explain.

The linear initial value problems in Exercises 14–19 can’t be solved exactly in terms of known elementary

functions. In each exercise, use Euler’s method and the Euler semilinear methods with the indicated step

sizes to find approximate values of the solution of the given initial value problem at 11 equally spaced

points (including the endpoints) in the interval.

14. C y0 � 2y D 1

1C x2
; y.2/ D 2; h D 0:1; 0:05; 0:025 on Œ2; 3�

15. C y0 C 2xy D x2; y.0/ D 3 (Exercise 2.1.38); h D 0:2; 0:1; 0:05 on Œ0; 2�

16. C y0 C 1

x
y D sin x

x2
; y.1/ D 2; (Exercise 2.1.39); h D 0:2; 0:1; 0:05 on Œ1; 3�

17. C y0 C y D e�x tanx

x
; y.1/ D 0; (Exercise 2.1.40); h D 0:05; 0:025; 0:0125 on Œ1; 1:5�

18. C y0 C 2x

1C x2
y D ex

.1 C x2/2
; y.0/ D 1; (Exercise 2.1.41); h D 0:2; 0:1; 0:05 on Œ0; 2�

19. C xy0 C .x C 1/y D ex2

; y.1/ D 2; (Exercise 2.1.42); h D 0:05; 0:025; 0:0125 on Œ1; 1:5�

In Exercises 20–22, use Euler’s method and the Euler semilinear method with the indicated step sizes

to find approximate values of the solution of the given initial value problem at 11 equally spaced points

(including the endpoints) in the interval.

20. C y0 C 3y D xy2.y C 1/; y.0/ D 1; h D 0:1; 0:05; 0:025 on Œ0; 1�

21. C y0 � 4y D x

y2.y C 1/
; y.0/ D 1; h D 0:1; 0:05; 0:025 on Œ0; 1�

22. C y0 C 2y D x2

1C y2
; y.2/ D 1; h D 0:1; 0:05; 0:025 on Œ2; 3�

23. NUMERICAL QUADRATURE. The fundamental theorem of calculus says that if f is continuous

on a closed interval Œa; b� then it has an antiderivative F such that F 0.x/ D f .x/ on Œa; b� and

Z b

a

f .x/ dx D F.b/ � F.a/: .A/

This solves the problem of evaluating a definite integral if the integrand f has an antiderivative
that can be found and evaluated easily. However, if f doesn’t have this property, (A) doesn’t
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provide a useful way to evaluate the definite integral. In this case we must resort to approximate

methods. There’s a class of such methods called numerical quadrature, where the approximation

takes the form
Z b

a

f .x/ dx �
n
X

iD0

cif .xi /; .B/

where a D x0 < x1 < � � � < xn D b are suitably chosen points and c0, c1, . . . , cn are suitably
chosen constants. We call (B) a quadrature formula.

(a) Derive the quadrature formula

Z b

a

f .x/ dx � h

n�1
X

iD0

f .a C ih/ (where h D .b � a/=n/ .C/

by applying Euler’s method to the initial value problem

y0 D f .x/; y.a/ D 0:

(b) The quadrature formula (C) is sometimes called the left rectangle rule. Draw a figure that

justifies this terminology.

(c) L For several choices of a, b, andA, apply (C) to f .x/ D Awith n D 10; 20; 40; 80; 160; 320.

Compare your results with the exact answers and explain what you find.

(d) L For several choices of a, b, A, and B , apply (C) to f .x/ D AC Bx with n D 10, 20,
40, 80, 160, 320. Compare your results with the exact answers and explain what you find.

3.2 THE IMPROVED EULER METHOD AND RELATED METHODS

In Section 3.1 we saw that the global truncation error of Euler’s method is O.h/, which would seem to

imply that we can achieve arbitrarily accurate results with Euler’s method by simply choosing the step size

sufficiently small. However, this isn’t a good idea, for two reasons. First, after a certain point decreasing
the step size will increase roundoff errors to the point where the accuracy will deteriorate rather than

improve. The second and more important reason is that in most applications of numerical methods to an

initial value problem

y0 D f .x; y/; y.x0/ D y0; (3.2.1)

the expensive part of the computation is the evaluation of f . Therefore we want methods that give good

results for a given number of such evaluations. This is what motivates us to look for numerical methods

better than Euler’s.

To clarify this point, suppose we want to approximate the value of e by applying Euler’s method to the
initial value problem

y0 D y; y.0/ D 1; (with solution y D ex)

on Œ0; 1�, with h D 1=12, 1=24, and 1=48, respectively. Since each step in Euler’s method requires
one evaluation of f , the number of evaluations of f in each of these attempts is n D 12, 24, and 48,

respectively. In each case we accept yn as an approximation to e. The second column of Table 3.2.1

shows the results. The first column of the table indicates the number of evaluations of f required to

obtain the approximation, and the last column contains the value of e rounded to ten significant figures.

In this section we’ll study the improved Euler method, which requires two evaluations of f at each
step. We’ve used this method with h D 1=6, 1=12, and 1=24. The required number of evaluations of f

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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were 12, 24, and 48, as in the three applications of Euler’s method; however, you can see from the third

column of Table 3.2.1 that the approximation to e obtained by the improved Euler method with only 12

evaluations of f is better than the approximation obtained by Euler’s method with 48 evaluations.

In Section 3.1 we’ll study the Runge-Kutta method, which requires four evaluations of f at each step.

We’ve used this method with h D 1=3, 1=6, and 1=12. The required number of evaluations of f were

again 12, 24, and 48, as in the three applications of Euler’s method and the improved Euler method;
however, you can see from the fourth column of Table 3.2.1 that the approximation to e obtained by

the Runge-Kutta method with only 12 evaluations of f is better than the approximation obtained by the

improved Euler method with 48 evaluations.

Table 3.2.1. Approximations to e obtained by three numerical methods.

n Euler Improved Euler Runge-Kutta Exact

12 2.613035290 2.707188994 2.718069764 2.718281828

24 2.663731258 2.715327371 2.718266612 2.718281828

48 2.690496599 2.717519565 2.718280809 2.718281828

The Improved Euler Method

The improved Euler method for solving the initial value problem (3.2.1) is based on approximating the

integral curve of (3.2.1) at .xi ; y.xi // by the line through .xi ; y.xi // with slope

mi D f .xi ; y.xi //C f .xiC1; y.xiC1//

2
I

that is, mi is the average of the slopes of the tangents to the integral curve at the endpoints of Œxi ; xiC1�.

The equation of the approximating line is therefore

y D y.xi /C f .xi ; y.xi //C f .xiC1; y.xiC1//

2
.x � xi/: (3.2.2)

Setting x D xiC1 D xi C h in (3.2.2) yields

yiC1 D y.xi /C h

2
.f .xi ; y.xi //C f .xiC1; y.xiC1/// (3.2.3)

as an approximation to y.xiC1/. As in our derivation of Euler’s method, we replace y.xi / (unknown if

i > 0) by its approximate value yi ; then (3.2.3) becomes

yiC1 D yi C h

2
.f .xi ; yi /C f .xiC1; y.xiC1// :

However, this still won’t work, because we don’t know y.xiC1/, which appears on the right. We overcome

this by replacing y.xiC1/ by yi C hf .xi ; yi /, the value that the Euler method would assign to yiC1.

Thus, the improved Euler method starts with the known value y.x0/ D y0 and computes y1, y2, . . . , yn

successively with the formula

yiC1 D yi C h

2
.f .xi ; yi /C f .xiC1; yi C hf .xi ; yi/// : (3.2.4)

The computation indicated here can be conveniently organized as follows: given yi , compute

k1i D f .xi ; yi/;

k2i D f .xi C h; yi C hk1i/ ;

yiC1 D yi C h

2
.k1i C k2i /:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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The improved Euler method requires two evaluations of f .x; y/ per step, while Euler’s method requires

only one. However, we’ll see at the end of this section that if f satisfies appropriate assumptions, the local

truncation error with the improved Euler method is O.h3/, rather than O.h2/ as with Euler’s method.

Therefore the global truncation error with the improved Euler method isO.h2/; however, we won’t prove

this.

We note that the magnitude of the local truncation error in the improved Euler method and other
methods discussed in this section is determined by the third derivative y000 of the solution of the initial

value problem. Therefore the local truncation error will be larger where jy000j is large, or smaller where

jy000j is small.

The next example, which deals with the initial value problem considered in Example 3.1.1, illustrates

the computational procedure indicated in the improved Euler method.

Example 3.2.1 Use the improved Euler method with h D 0:1 to find approximate values of the solution

of the initial value problem

y0 C 2y D x3e�2x; y.0/ D 1 (3.2.5)

at x D 0:1; 0:2; 0:3.

Solution As in Example 3.1.1, we rewrite (3.2.5) as

y0 D �2y C x3e�2x ; y.0/ D 1;

which is of the form (3.2.1), with

f .x; y/ D �2y C x3e�2x; x0 D 0; and y0 D 1:

The improved Euler method yields

k10 D f .x0; y0/ D f .0; 1/ D �2;
k20 D f .x1; y0 C hk10/ D f .:1; 1C .:1/.�2//

D f .:1; :8/ D �2.:8/C .:1/3e�:2 D �1:599181269;

y1 D y0 C h

2
.k10 C k20/;

D 1C .:05/.�2 � 1:599181269/D :820040937;

k11 D f .x1; y1/ D f .:1; :820040937/D �2.:820040937/C .:1/3e�:2 D �1:639263142;
k21 D f .x2; y1 C hk11/ D f .:2; :820040937C :1.�1:639263142//;

D f .:2; :656114622/D �2.:656114622/C .:2/3e�:4 D �1:306866684;

y2 D y1 C h

2
.k11 C k21/;

D :820040937C .:05/.�1:639263142 � 1:306866684/D :672734445;

k12 D f .x2; y2/ D f .:2; :672734445/D �2.:672734445/C .:2/3e�:4 D �1:340106330;
k22 D f .x3; y2 C hk12/ D f .:3; :672734445C :1.�1:340106330//;

D f .:3; :538723812/D �2.:538723812/C .:3/3e�:6 D �1:062629710;

y3 D y2 C h

2
.k12 C k22/

D :672734445C .:05/.�1:340106330 � 1:062629710/D :552597643:

Example 3.2.2 Table 3.2.2 shows results of using the improved Euler method with step sizes h D 0:1

and h D 0:05 to find approximate values of the solution of the initial value problem

y0 C 2y D x3e�2x; y.0/ D 1
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at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. For comparison, it also shows the corresponding approximate values

obtained with Euler’s method in 3.1.2, and the values of the exact solution

y D e�2x

4
.x4 C 4/:

The results obtained by the improved Euler method with h D 0:1 are better than those obtained by Euler’s

method with h D 0:05.

Table 3.2.2. Numerical solution of y0 C 2y D x3e�2x; y.0/ D 1, by Euler’s method and the

improved Euler method.

x h D 0:1 h D 0:05 h D 0:1 h D 0:05 Exact

0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

0.1 0.800000000 0.810005655 0.820040937 0.819050572 0.818751221

0.2 0.640081873 0.656266437 0.672734445 0.671086455 0.670588174
0.3 0.512601754 0.532290981 0.552597643 0.550543878 0.549922980

0.4 0.411563195 0.432887056 0.455160637 0.452890616 0.452204669

0.5 0.332126261 0.353785015 0.376681251 0.374335747 0.373627557

0.6 0.270299502 0.291404256 0.313970920 0.311652239 0.310952904

0.7 0.222745397 0.242707257 0.264287611 0.262067624 0.261398947

0.8 0.186654593 0.205105754 0.225267702 0.223194281 0.222570721
0.9 0.159660776 0.176396883 0.194879501 0.192981757 0.192412038

1.0 0.139778910 0.154715925 0.171388070 0.169680673 0.169169104

Euler Improved Euler Exact

Example 3.2.3 Table 3.2.3 shows analogous results for the nonlinear initial value problem

y0 D �2y2 C xy C x2; y.0/ D 1:

We applied Euler’s method to this problem in Example 3.1.3.

Table 3.2.3. Numerical solution of y0 D �2y2 C xy C x2; y.0/ D 1, by Euler’s method

and the improved Euler method.

x h D 0:1 h D 0:05 h D 0:1 h D 0:05 “Exact”

0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

0.1 0.800000000 0.821375000 0.840500000 0.838288371 0.837584494

0.2 0.681000000 0.707795377 0.733430846 0.730556677 0.729641890
0.3 0.605867800 0.633776590 0.661600806 0.658552190 0.657580377

0.4 0.559628676 0.587454526 0.615961841 0.612884493 0.611901791

0.5 0.535376972 0.562906169 0.591634742 0.588558952 0.587575491

0.6 0.529820120 0.557143535 0.586006935 0.582927224 0.581942225

0.7 0.541467455 0.568716935 0.597712120 0.594618012 0.593629526

0.8 0.569732776 0.596951988 0.626008824 0.622898279 0.621907458
0.9 0.614392311 0.641457729 0.670351225 0.667237617 0.666250842

1.0 0.675192037 0.701764495 0.730069610 0.726985837 0.726015790

Euler Improved Euler “Exact”

Example 3.2.4 Use step sizes h D 0:2, h D 0:1, and h D 0:05 to find approximate values of the solution

of
y0 � 2xy D 1; y.0/ D 3 (3.2.6)
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at x D 0, 0:2, 0:4, 0:6, . . . , 2:0 by (a) the improved Euler method; (b) the improved Euler semilinear

method. (We used Euler’s method and the Euler semilinear method on this problem in 3.1.4.)

SOLUTION(a) Rewriting (3.2.6) as

y0 D 1C 2xy; y.0/ D 3

and applying the improved Euler method with f .x; y/ D 1C2xy yields the results shown in Table 3.2.4.

SOLUTION(b) Since y1 D ex2

is a solution of the complementary equation y0 � 2xy D 0, we can apply

the improved Euler semilinear method to (3.2.6), with

y D uex2

and u0 D e�x2

; u.0/ D 3:

The results listed in Table 3.2.5 are clearly better than those obtained by the improved Euler method.

Table 3.2.4. Numerical solution of y0 � 2xy D 1; y.0/ D 3, by the improved Euler method.

x h D 0:2 h D 0:1 h D 0:05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000

0.2 3.328000000 3.328182400 3.327973600 3.327851973

0.4 3.964659200 3.966340117 3.966216690 3.966059348

0.6 5.057712497 5.065700515 5.066848381 5.067039535
0.8 6.900088156 6.928648973 6.934862367 6.936700945

1.0 10.065725534 10.154872547 10.177430736 10.184923955

1.2 15.708954420 15.970033261 16.041904862 16.067111677

1.4 26.244894192 26.991620960 27.210001715 27.289392347

1.6 46.958915746 49.096125524 49.754131060 50.000377775

1.8 89.982312641 96.200506218 98.210577385 98.982969504
2.0 184.563776288 203.151922739 209.464744495 211.954462214

Table 3.2.5. Numerical solution of y0 � 2xy D 1; y.0/ D 3, by the improved Euler semilin-

ear method.

x h D 0:2 h D 0:1 h D 0:05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000

0.2 3.326513400 3.327518315 3.327768620 3.327851973

0.4 3.963383070 3.965392084 3.965892644 3.966059348

0.6 5.063027290 5.066038774 5.066789487 5.067039535
0.8 6.931355329 6.935366847 6.936367564 6.936700945

1.0 10.178248417 10.183256733 10.184507253 10.184923955

1.2 16.059110511 16.065111599 16.066611672 16.067111677

1.4 27.280070674 27.287059732 27.288809058 27.289392347

1.6 49.989741531 49.997712997 49.999711226 50.000377775
1.8 98.971025420 98.979972988 98.982219722 98.982969504

2.0 211.941217796 211.951134436 211.953629228 211.954462214
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A Family of Methods withO.h3/ Local Truncation Error

We’ll now derive a class of methods withO.h3/ local truncation error for solving (3.2.1). For simplicity,

we assume that f , fx , fy , fxx , fyy , and fxy are continuous and bounded for all .x; y/. This implies that

if y is the solution of (3.2.1 then y00 and y000 are bounded (Exercise 31).

We begin by approximating the integral curve of (3.2.1) at .xi ; y.xi // by the line through .xi ; y.xi //

with slope

mi D �y0.xi /C �y0.xi C �h/;

where � , �, and � are constants that we’ll soon specify; however, we insist at the outset that 0 < � � 1,
so that

xi < xi C �h � xiC1:

The equation of the approximating line is

y D y.xi /Cmi .x � xi /

D y.xi /C Œ�y0.xi /C �y0.xi C �h/� .x � xi/:
(3.2.7)

Setting x D xiC1 D xi C h in (3.2.7) yields

OyiC1 D y.xi /C h
�

�y0.xi /C �y0.xi C �h/
�

as an approximation to y.xiC1/.

To determine � , �, and � so that the error

Ei D y.xiC1/� OyiC1

D y.xiC1/� y.xi / � h Œ�y0.xi /C �y0.xi C �h/�
(3.2.8)

in this approximation is O.h3/, we begin by recalling from Taylor’s theorem that

y.xiC1/ D y.xi /C hy0.xi/C h2

2
y00.xi /C h3

6
y000. Oxi /;

where Oxi is in .xi ; xiC1/. Since y000 is bounded this implies that

y.xiC1/� y.xi / � hy0.xi /� h2

2
y00.xi / D O.h3/:

Comparing this with (3.2.8) shows that Ei D O.h3/ if

�y0.xi /C �y0.xi C �h/ D y0.xi /C h

2
y00.xi /CO.h2/: (3.2.9)

However, applying Taylor’s theorem to y0 shows that

y0.xi C �h/ D y0.xi /C �hy00.xi /C .�h/2

2
y000.xi /;

where xi is in .xi ; xi C �h/. Since y000 is bounded, this implies that

y0.xi C �h/ D y0.xi/C �hy00.xi /CO.h2/:

Substituting this into (3.2.9) and noting that the sum of two O.h2/ terms is again O.h2/ shows that

Ei D O.h3/ if

.� C �/y0.xi /C ��hy00.xi / D y0.xi /C h

2
y00.xi /;
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which is true if

� C � D 1 and �� D 1

2
: (3.2.10)

Since y0 D f .x; y/, we can now conclude from (3.2.8) that

y.xiC1/ D y.xi /C h Œ�f .xi ; yi /C �f .xi C �h; y.xi C �h//� CO.h3/ (3.2.11)

if � , �, and � satisfy (3.2.10). However, this formula would not be useful even if we knew y.xi / exactly

(as we would for i D 0), since we still wouldn’t know y.xi C �h/ exactly. To overcome this difficulty,

we again use Taylor’s theorem to write

y.xi C �h/ D y.xi /C �hy0.xi /C h2

2
y00. Qxi /;

where Qxi is in .xi ; xi C �h/. Since y0.xi / D f .xi ; y.xi // and y00 is bounded, this implies that

jy.xi C �h/ � y.xi / � �hf .xi ; y.xi //j � Kh2 (3.2.12)

for some constant K. Since fy is bounded, the mean value theorem implies that

jf .xi C �h; u/ � f .xi C �h; v/j � M ju � vj

for some constant M . Letting

u D y.xi C �h/ and v D y.xi /C �hf .xi ; y.xi //

and recalling (3.2.12) shows that

f .xi C �h; y.xi C �h// D f .xi C �h; y.xi /C �hf .xi ; y.xi /// CO.h2/:

Substituting this into (3.2.11) yields

y.xiC1/ D y.xi /C h Œ�f .xi ; y.xi //C
�f .xi C �h; y.xi /C �hf .xi ; y.xi ///� CO.h3/:

This implies that the formula

yiC1 D yi C h Œ�f .xi ; yi/C �f .xi C �h; yi C �hf .xi ; yi //�

has O.h3/ local truncation error if � , �, and � satisfy (3.2.10). Substituting � D 1 � � and � D 1=2�

here yields

yiC1 D yi C h

�

.1 � �/f .xi ; yi/C �f

�

xi C h

2�
; yi C h

2�
f .xi ; yi /

��

: (3.2.13)

The computation indicated here can be conveniently organized as follows: given yi , compute

k1i D f .xi ; yi/;

k2i D f

�

xi C h

2�
; yi C h

2�
k1i

�

;

yiC1 D yi C hŒ.1 � �/k1i C �k2i �:
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Consistent with our requirement that 0 < � < 1, we require that � � 1=2. Letting � D 1=2 in (3.2.13)

yields the improved Euler method (3.2.4). Letting � D 3=4 yields Heun’s method,

yiC1 D yi C h

�

1

4
f .xi ; yi /C 3

4
f

�

xi C 2

3
h; yi C 2

3
hf .xi ; yi/

��

;

which can be organized as

k1i D f .xi ; yi /;

k2i D f

�

xi C 2h

3
; yi C 2h

3
k1i

�

;

yiC1 D yi C h

4
.k1i C 3k2i /:

Letting � D 1 yields the midpoint method,

yiC1 D yi C hf

�

xi C h

2
; yi C h

2
f .xi ; yi/

�

;

which can be organized as

k1i D f .xi ; yi/;

k2i D f

�

xi C h

2
; yi C h

2
k1i

�

;

yiC1 D yi C hk2i :

Examples involving the midpoint method and Heun’s method are given in Exercises 23-30.

3.2 Exercises

Most of the following numerical exercises involve initial value problems considered in the exercises in

Section 3.1. You’ll find it instructive to compare the results that you obtain here with the corresponding

results that you obtained in Section 3.1.
In Exercises 1–5 use the improved Euler method to find approximate values of the solution of the given

initial value problem at the points xi D x0 C ih, where x0 is the point where the initial condition is

imposed and i D 1, 2, 3.

1. C y0 D 2x2 C 3y2 � 2; y.2/ D 1I h D 0:05

2. C y0 D y C
p

x2 C y2; y.0/ D 1I h D 0:1

3. C y0 C 3y D x2 � 3xy C y2; y.0/ D 2I h D 0:05

4. C y0 D 1C x

1 � y2
; y.2/ D 3I h D 0:1

5. C y0 C x2y D sinxy; y.1/ D � I h D 0:2

6. C Use the improved Euler method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find
approximate values of the solution of the initial value problem

y0 C 3y D 7e4x; y.0/ D 2

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. Compare these approximate values with the values of the exact

solution y D e4x C e�3x, which can be obtained by the method of Section 2.1. Present your
results in a table like Table 3.2.2.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Heun.html
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7. C Use the improved Euler method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of the initial value problem

y0 C 2

x
y D 3

x3
C 1; y.1/ D 1

at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0. Compare these approximate values with the values of the exact

solution

y D 1

3x2
.9 lnx C x3 C 2/

which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.2.2.

8. C Use the improved Euler method with step sizes h D 0:05, h D 0:025, and h D 0:0125 to find

approximate values of the solution of the initial value problem

y0 D y2 C xy � x2

x2
; y.1/ D 2;

at x D 1:0, 1:05, 1:10, 1:15, . . . , 1:5. Compare these approximate values with the values of the

exact solution

y D x.1C x2=3/

1 � x2=3

obtained in Example 2.4.3. Present your results in a table like Table 3.2.2.

9. C In Example 3.2.2 it was shown that

y5 C y D x2 C x � 4

is an implicit solution of the initial value problem

y0 D 2x C 1

5y4 C 1
; y.2/ D 1: .A/

Use the improved Euler method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of (A) at x D 2:0, 2:1, 2:2, 2:3, . . . , 3:0. Present your results

in tabular form. To check the error in these approximate values, construct another table of values
of the residual

R.x; y/ D y5 C y � x2 � x C 4

for each value of .x; y/ appearing in the first table.

10. C You can see from Example 2.5.1 that

x4y3 C x2y5 C 2xy D 4

is an implicit solution of the initial value problem

y0 D � 4x3y3 C 2xy5 C 2y

3x4y2 C 5x2y4 C 2x
; y.1/ D 1: .A/

Use the improved Euler method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of (A) at x D 1:0, 1:14, 1:2, 1:3, . . . , 2:0. Present your results
in tabular form. To check the error in these approximate values, construct another table of values

of the residual

R.x; y/ D x4y3 C x2y5 C 2xy � 4

for each value of .x; y/ appearing in the first table.
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11. C Use the improved Euler method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of the initial value problem

.3y2 C 4y/y0 C 2x C cos x D 0; y.0/ D 1 (Exercise 2.2.13)

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0.

12. C Use the improved Euler method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of the initial value problem

y0 C .y C 1/.y � 1/.y � 2/

x C 1
D 0; y.1/ D 0 (Exercise 2.2.14)

at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0.

13. C Use the improved Euler method and the improved Euler semilinear method with step sizes

h D 0:1, h D 0:05, and h D 0:025 to find approximate values of the solution of the initial value

problem

y0 C 3y D e�3x.1 � 2x/; y.0/ D 2;

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. Compare these approximate values with the values of the exact
solution y D e�3x.2 C x � x2/, which can be obtained by the method of Section 2.1. Do you

notice anything special about the results? Explain.

The linear initial value problems in Exercises 14–19 can’t be solved exactly in terms of known elementary

functions. In each exercise use the improved Euler and improved Euler semilinear methods with the

indicated step sizes to find approximate values of the solution of the given initial value problem at 11

equally spaced points (including the endpoints) in the interval.

14. C y0 � 2y D 1

1C x2
; y.2/ D 2; h D 0:1; 0:05; 0:025 on Œ2; 3�

15. C y0 C 2xy D x2; y.0/ D 3; h D 0:2; 0:1; 0:05 on Œ0; 2� (Exercise 2.1.38)

16. C y0 C 1

x
y D sin x

x2
; y.1/ D 2, h D 0:2; 0:1; 0:05 on Œ1; 3� (Exercise 2.1.39)

17. C y0 C y D e�x tanx

x
; y.1/ D 0; h D 0:05; 0:025; 0:0125 on Œ1; 1:5� (Exercise 2.1.40),

18. C y0 C 2x

1C x2
y D ex

.1 C x2/2
; y.0/ D 1; h D 0:2; 0:1; 0:05 on Œ0; 2� (Exercise 2.1.41)

19. C xy0 C .x C 1/y D ex2
; y.1/ D 2; h D 0:05; 0:025; 0:0125 on Œ1; 1:5� (Exercise 2.1.42)

In Exercises 20–22 use the improved Euler method and the improved Euler semilinear method with the

indicated step sizes to find approximate values of the solution of the given initial value problem at 11

equally spaced points (including the endpoints) in the interval.

20. C y0 C 3y D xy2.y C 1/; y.0/ D 1; h D 0:1; 0:05; 0:025 on Œ0; 1�

21. C y0 � 4y D x

y2.y C 1/
; y.0/ D 1; h D 0:1; 0:05; 0:025 on Œ0; 1�

22. C y0 C 2y D x2

1C y2
; y.2/ D 1; h D 0:1; 0:05; 0:025 on Œ2; 3�

23. C Do Exercise 7 with “improved Euler method” replaced by “midpoint method.”
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24. C Do Exercise 7 with “improved Euler method” replaced by “Heun’s method.”

25. C Do Exercise 8 with “improved Euler method” replaced by “midpoint method.”

26. C Do Exercise 8 with “improved Euler method” replaced by “Heun’s method.”

27. C Do Exercise 11 with “improved Euler method” replaced by “midpoint method.”

28. C Do Exercise 11 with “improved Euler method” replaced by “Heun’s method.”

29. C Do Exercise 12 with “improved Euler method” replaced by “midpoint method.”

30. C Do Exercise 12 with “improved Euler method” replaced by “Heun’s method.”

31. Show that if f , fx, fy , fxx , fyy , and fxy are continuous and bounded for all .x; y/ and y is the

solution of the initial value problem

y0 D f .x; y/; y.x0/ D y0;

then y00 and y000 are bounded.

32. NUMERICAL QUADRATURE (see Exercise 3.1.23).

(a) Derive the quadrature formula

Z b

a

f .x/ dx � :5h.f .a/C f .b//C h

n�1
X

iD1

f .aC ih/ (where h D .b � a/=n/ .A/

by applying the improved Euler method to the initial value problem

y0 D f .x/; y.a/ D 0:

(b) The quadrature formula (A) is called the trapezoid rule. Draw a figure that justifies this
terminology.

(c) L For several choices of a, b, A, and B , apply (A) to f .x/ D A C Bx, with n D
10; 20; 40; 80; 160; 320. Compare your results with the exact answers and explain what you

find.

(d) L For several choices of a, b, A, B , and C , apply (A) to f .x/ D A C Bx C Cx2, with

n D 10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain what
you find.

3.3 THE RUNGE-KUTTA METHOD

In general, if k is any positive integer and f satisfies appropriate assumptions, there are numerical meth-

ods with local truncation error O.hkC1/ for solving an initial value problem

y0 D f .x; y/; y.x0/ D y0: (3.3.1)

Moreover, it can be shown that a method with local truncation error O.hkC1/ has global truncation error

O.hk/. In Sections 3.1 and 3.2 we studied numerical methods where k D 1 and k D 2. We’ll skip

methods for which k D 3 and proceed to the Runge-Kutta method, the most widely used method, for

which k D 4. The magnitude of the local truncation error is determined by the fifth derivative y.5/ of
the solution of the initial value problem. Therefore the local truncation error will be larger where jy.5/j

http://www-history.mcs.st-and.ac.uk/Mathematicians/Runge.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Kutta.html
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is large, or smaller where jy.5/j is small. The Runge-Kutta method computes approximate values y1, y2,

. . . , yn of the solution of (3.3.1) at x0, x0 C h, . . . , x0 C nh as follows: Given yi , compute

k1i D f .xi ; yi /;

k2i D f

�

xi C h

2
; yi C h

2
k1i

�

;

k3i D f

�

xi C h

2
; yi C h

2
k2i

�

;

k4i D f .xi C h; yi C hk3i /;

and

yiC1 D yi C h

6
.k1i C 2k2i C 2k3i C k4i /:

The next example, which deals with the initial value problem considered in Examples 3.1.1 and 3.2.1,

illustrates the computational procedure indicated in the Runge-Kutta method.

Example 3.3.1 Use the Runge-Kutta method with h D 0:1 to find approximate values for the solution of

the initial value problem
y0 C 2y D x3e�2x ; y.0/ D 1; (3.3.2)

at x D 0:1; 0:2.

Solution Again we rewrite (3.3.2) as

y0 D �2y C x3e�2x ; y.0/ D 1;

which is of the form (3.3.1), with

f .x; y/ D �2y C x3e�2x; x0 D 0; and y0 D 1:

The Runge-Kutta method yields

k10 D f .x0; y0/ D f .0; 1/ D �2;
k20 D f .x0 C h=2; y0 C hk10=2/ D f .:05; 1C .:05/.�2//

D f .:05; :9/ D �2.:9/C .:05/3e�:1 D �1:799886895;
k30 D f .x0 C h=2; y0 C hk20=2/ D f .:05; 1C .:05/.�1:799886895//

D f .:05; :910005655/D �2.:910005655/C .:05/3e�:1 D �1:819898206;
k40 D f .x0 C h; y0 C hk30/ D f .:1; 1C .:1/.�1:819898206//

D f .:1; :818010179/D �2.:818010179/C .:1/3e�:2 D �1:635201628;

y1 D y0 C h

6
.k10 C 2k20 C 2k30 C k40/;

D 1C :1

6
.�2C 2.�1:799886895/C 2.�1:819898206/� 1:635201628/D :818753803;

k11 D f .x1; y1/ D f .:1; :818753803/D �2.:818753803//C .:1/3e�:2 D �1:636688875;
k21 D f .x1 C h=2; y1 C hk11=2/ D f .:15; :818753803C .:05/.�1:636688875//

D f .:15; :736919359/D �2.:736919359/C .:15/3e�:3 D �1:471338457;
k31 D f .x1 C h=2; y1 C hk21=2/ D f .:15; :818753803C .:05/.�1:471338457//

D f .:15; :745186880/D �2.:745186880/C .:15/3e�:3 D �1:487873498;
k41 D f .x1 C h; y1 C hk31/ D f .:2; :818753803C .:1/.�1:487873498//

D f .:2; :669966453/D �2.:669966453/C .:2/3e�:4 D �1:334570346;

y2 D y1 C h

6
.k11 C 2k21 C 2k31 C k41/;

D :818753803C :1

6
.�1:636688875C 2.�1:471338457/C 2.�1:487873498/� 1:334570346/

D :670592417:
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The Runge-Kutta method is sufficiently accurate for most applications.

Example 3.3.2 Table 3.3.1 shows results of using the Runge-Kutta method with step sizes h D 0:1 and
h D 0:05 to find approximate values of the solution of the initial value problem

y0 C 2y D x3e�2x; y.0/ D 1

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. For comparison, it also shows the corresponding approximate values

obtained with the improved Euler method in Example 3.2.2, and the values of the exact solution

y D e�2x

4
.x4 C 4/:

The results obtained by the Runge-Kutta method are clearly better than those obtained by the improved

Euler method in fact; the results obtained by the Runge-Kutta method with h D 0:1 are better than those

obtained by the improved Euler method with h D 0:05.

Table 3.3.1. Numerical solution of y0 C 2y D x3e�2x; y.0/ D 1, by the Runge-Kuttta

method and the improved Euler method.

x h D 0:1 h D 0:05 h D 0:1 h D 0:05 Exact

0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

0.1 0.820040937 0.819050572 0.818753803 0.818751370 0.818751221

0.2 0.672734445 0.671086455 0.670592417 0.670588418 0.670588174

0.3 0.552597643 0.550543878 0.549928221 0.549923281 0.549922980

0.4 0.455160637 0.452890616 0.452210430 0.452205001 0.452204669
0.5 0.376681251 0.374335747 0.373633492 0.373627899 0.373627557

0.6 0.313970920 0.311652239 0.310958768 0.310953242 0.310952904

0.7 0.264287611 0.262067624 0.261404568 0.261399270 0.261398947

0.8 0.225267702 0.223194281 0.222575989 0.222571024 0.222570721

0.9 0.194879501 0.192981757 0.192416882 0.192412317 0.192412038
1.0 0.171388070 0.169680673 0.169173489 0.169169356 0.169169104

Improved Euler Runge-Kutta Exact

Example 3.3.3 Table 3.3.2 shows analogous results for the nonlinear initial value problem

y0 D �2y2 C xy C x2; y.0/ D 1:

We applied the improved Euler method to this problem in Example 3.

Table 3.3.2. Numerical solution of y0 D �2y2 C xy C x2; y.0/ D 1, by the Runge-Kuttta

method and the improved Euler method.

x h D 0:1 h D 0:05 h D 0:1 h D 0:05 “Exact”

0.0 1.000000000 1.000000000 1.000000000 1.000000000 1.000000000

0.1 0.840500000 0.838288371 0.837587192 0.837584759 0.837584494

0.2 0.733430846 0.730556677 0.729644487 0.729642155 0.729641890
0.3 0.661600806 0.658552190 0.657582449 0.657580598 0.657580377

0.4 0.615961841 0.612884493 0.611903380 0.611901969 0.611901791

0.5 0.591634742 0.588558952 0.587576716 0.587575635 0.587575491

0.6 0.586006935 0.582927224 0.581943210 0.581942342 0.581942225

0.7 0.597712120 0.594618012 0.593630403 0.593629627 0.593629526

0.8 0.626008824 0.622898279 0.621908378 0.621907553 0.621907458
0.9 0.670351225 0.667237617 0.666251988 0.666250942 0.666250842

1.0 0.730069610 0.726985837 0.726017378 0.726015908 0.726015790

Improved Euler Runge-Kutta “Exact”
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Example 3.3.4 Tables 3.3.3 and 3.3.4 show results obtained by applying the Runge-Kutta and Runge-

Kutta semilinear methods to to the initial value problem

y0 � 2xy D 1; y.0/ D 3;

which we considered in Examples 3.1.4 and 3.2.4.

Table 3.3.3. Numerical solution of y0 � 2xy D 1; y.0/ D 3, by the Runge-Kutta method.

x h D 0:2 h D 0:1 h D 0:05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000

0.2 3.327846400 3.327851633 3.327851952 3.327851973

0.4 3.966044973 3.966058535 3.966059300 3.966059348

0.6 5.066996754 5.067037123 5.067039396 5.067039535
0.8 6.936534178 6.936690679 6.936700320 6.936700945

1.0 10.184232252 10.184877733 10.184920997 10.184923955

1.2 16.064344805 16.066915583 16.067098699 16.067111677

1.4 27.278771833 27.288605217 27.289338955 27.289392347

1.6 49.960553660 49.997313966 50.000165744 50.000377775
1.8 98.834337815 98.971146146 98.982136702 98.982969504

2.0 211.393800152 211.908445283 211.951167637 211.954462214

Table 3.3.4. Numerical solution of y0 � 2xy D 1; y.0/ D 3, by the Runge-Kutta semilinear
method.

x h D 0:2 h D 0:1 h D 0:05 “Exact”

0.0 3.000000000 3.000000000 3.000000000 3.000000000
0.2 3.327853286 3.327852055 3.327851978 3.327851973

0.4 3.966061755 3.966059497 3.966059357 3.966059348

0.6 5.067042602 5.067039725 5.067039547 5.067039535

0.8 6.936704019 6.936701137 6.936700957 6.936700945

1.0 10.184926171 10.184924093 10.184923963 10.184923955
1.2 16.067111961 16.067111696 16.067111678 16.067111677

1.4 27.289389418 27.289392167 27.289392335 27.289392347

1.6 50.000370152 50.000377302 50.000377745 50.000377775

1.8 98.982955511 98.982968633 98.982969450 98.982969504

2.0 211.954439983 211.954460825 211.954462127 211.954462214

The Case Where x0 Isn’t The Left Endpoint

So far in this chapter we’ve considered numerical methods for solving an initial value problem

y0 D f .x; y/; y.x0/ D y0 (3.3.3)

on an interval Œx0; b�, for which x0 is the left endpoint. We haven’t discussed numerical methods for
solving (3.3.3) on an interval Œa; x0�, for which x0 is the right endpoint. To be specific, how can we

obtain approximate values y�1, y�2, . . . , y�n of the solution of (3.3.3) at x0 � h; : : : ; x0 � nh, where

h D .x0 � a/=n? Here’s the answer to this question:

Consider the initial value problem

´0 D �f .�x; ´/; ´.�x0/ D y0; (3.3.4)

on the interval Œ�x0;�a�, for which �x0 is the left endpoint. Use a numerical method to obtain approxi-
mate values ´1, ´2, . . . , ´n of the solution of (3.3.4) at �x0 C h, �x0 C 2h, . . . , �x0 C nh D �a. Then
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y�1 D ´1, y�2 D ´2, : : : , y�n D ´n are approximate values of the solution of (3.3.3) at x0 � h, x0 � 2h,

. . . , x0 � nh D a.

The justification for this answer is sketched in Exercise 23. Note how easy it is to make the change the

given problem (3.3.3) to the modified problem (3.3.4): first replace f by �f and then replace x, x0, and

y by �x, �x0, and ´, respectively.

Example 3.3.5 Use the Runge-Kutta method with step size h D 0:1 to find approximate values of the

solution of

.y � 1/2y0 D 2x C 3; y.1/ D 4 (3.3.5)

at x D 0, 0:1, 0:2, . . . , 1.

Solution We first rewrite (3.3.5) in the form (3.3.3) as

y0 D 2x C 3

.y � 1/2 ; y.1/ D 4: (3.3.6)

Since the initial condition y.1/ D 4 is imposed at the right endpoint of the interval Œ0; 1�, we apply the

Runge-Kutta method to the initial value problem

´0 D 2x � 3
.´ � 1/2 ; ´.�1/ D 4 (3.3.7)

on the interval Œ�1; 0�. (You should verify that (3.3.7) is related to (3.3.6) as (3.3.4) is related to (3.3.3).)

Table 3.3.5 shows the results. Reversing the order of the rows in Table 3.3.5 and changing the signs of the

values of x yields the first two columns of Table 3.3.6. The last column of Table 3.3.6 shows the exact

values of y, which are given by

y D 1C .3x2 C 9x C 15/1=3:

(Since the differential equation in (3.3.6) is separable, this formula can be obtained by the method of

Section 2.2.)

Table 3.3.5. Numerical solution of ´0 D 2x � 3
.´ � 1/2 ; ´.�1/ D 4, on Œ�1; 0�.

x ´

-1.0 4.000000000

-0.9 3.944536474
-0.8 3.889298649

-0.7 3.834355648

-0.6 3.779786399

-0.5 3.725680888

-0.4 3.672141529
-0.3 3.619284615

-0.2 3.567241862

-0.1 3.516161955

0.0 3.466212070

Table 3.3.6. Numerical solution of .y � 1/2y0 D 2x C 3; y.1/ D 4, on Œ0; 1�.
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x y Exact

0.00 3.466212070 3.466212074

0.10 3.516161955 3.516161958

0.20 3.567241862 3.567241864
0.30 3.619284615 3.619284617

0.40 3.672141529 3.672141530

0.50 3.725680888 3.725680889

0.60 3.779786399 3.779786399

0.70 3.834355648 3.834355648
0.80 3.889298649 3.889298649

0.90 3.944536474 3.944536474

1.00 4.000000000 4.000000000

We leave it to you to develop a procedure for handling the numerical solution of (3.3.3) on an interval

Œa; b� such that a < x0 < b (Exercises 26 and 27).

3.3 Exercises

Most of the following numerical exercises involve initial value problems considered in the exercises in

Sections 3.2. You’ll find it instructive to compare the results that you obtain here with the corresponding

results that you obtained in those sections.
In Exercises 1–5 use the Runge-Kutta method to find approximate values of the solution of the given initial

value problem at the points xi D x0 C ih; where x0 is the point where the initial condition is imposed

and i D 1, 2.

1. C y0 D 2x2 C 3y2 � 2; y.2/ D 1I h D 0:05

2. C y0 D y C
p

x2 C y2; y.0/ D 1I h D 0:1

3. C y0 C 3y D x2 � 3xy C y2; y.0/ D 2I h D 0:05

4. C y0 D 1C x

1 � y2
; y.2/ D 3I h D 0:1

5. C y0 C x2y D sinxy; y.1/ D � I h D 0:2

6. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of the initial value problem

y0 C 3y D 7e4x; y.0/ D 2;

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. Compare these approximate values with the values of the exact

solution y D e4x C e�3x, which can be obtained by the method of Section 2.1. Present your

results in a table like Table 3.3.1.

7. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of the initial value problem

y0 C 2

x
y D 3

x3
C 1; y.1/ D 1

at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0. Compare these approximate values with the values of the exact

solution

y D 1

3x2
.9 lnx C x3 C 2/;
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which can be obtained by the method of Section 2.1. Present your results in a table like Table 3.3.1.

8. C Use the Runge-Kutta method with step sizes h D 0:05, h D 0:025, and h D 0:0125 to find

approximate values of the solution of the initial value problem

y0 D y2 C xy � x2

x2
; y.1/ D 2

at x D 1:0, 1:05, 1:10, 1:15 . . . , 1:5. Compare these approximate values with the values of the

exact solution

y D x.1 C x2=3/

1 � x2=3
;

which was obtained in Example 2.2.3. Present your results in a table like Table 3.3.1.

9. C In Example 2.2.3 it was shown that

y5 C y D x2 C x � 4

is an implicit solution of the initial value problem

y0 D 2x C 1

5y4 C 1
; y.2/ D 1: .A/

Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approx-
imate values of the solution of (A) at x D 2:0, 2:1, 2:2, 2:3, . . . , 3:0. Present your results in

tabular form. To check the error in these approximate values, construct another table of values of

the residual

R.x; y/ D y5 C y � x2 � x C 4

for each value of .x; y/ appearing in the first table.

10. C You can see from Example 2.5.1 that

x4y3 C x2y5 C 2xy D 4

is an implicit solution of the initial value problem

y0 D � 4x3y3 C 2xy5 C 2y

3x4y2 C 5x2y4 C 2x
; y.1/ D 1: .A/

Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find approx-

imate values of the solution of (A) at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0. Present your results in

tabular form. To check the error in these approximate values, construct another table of values of
the residual

R.x; y/ D x4y3 C x2y5 C 2xy � 4

for each value of .x; y/ appearing in the first table.

11. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of the initial value problem

.3y2 C 4y/y0 C 2x C cos x D 0; y.0/ D 1 (Exercise 2.2.13);

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0.
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12. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of the initial value problem

y0 C .y C 1/.y � 1/.y � 2/
x C 1

D 0; y.1/ D 0 (Exercise 2.2.14);

at x D 1:0, 1:1, 1:2, 1:3, . . . , 2:0.

13. C Use the Runge-Kutta method and the Runge-Kutta semilinear method with step sizes h D 0:1,

h D 0:05, and h D 0:025 to find approximate values of the solution of the initial value problem

y0 C 3y D e�3x.1 � 4x C 3x2 � 4x3/; y.0/ D �3

at x D 0, 0:1, 0:2, 0:3, . . . , 1:0. Compare these approximate values with the values of the exact

solution y D �e�3x.3�xC2x2 �x3 Cx4/, which can be obtained by the method of Section 2.1.

Do you notice anything special about the results? Explain.

The linear initial value problems in Exercises 14–19 can’t be solved exactly in terms of known elementary

functions. In each exercise use the Runge-Kutta and the Runge-Kutta semilinear methods with the indi-

cated step sizes to find approximate values of the solution of the given initial value problem at 11 equally

spaced points (including the endpoints) in the interval.

14. C y0 � 2y D 1

1C x2
; y.2/ D 2; h D 0:1; 0:05; 0:025 on Œ2; 3�

15. C y0 C 2xy D x2; y.0/ D 3; h D 0:2; 0:1; 0:05 on Œ0; 2� (Exercise 2.1.38)

16. C y0 C 1

x
y D sin x

x2
; y.1/ D 2I h D 0:2; 0:1; 0:05 on Œ1; 3� (Exercise 2.1.39)

17. C y0 C y D e�x tanx

x
; y.1/ D 0I h D 0:05; 0:025; 0:0125 on Œ1; 1:5� (Exercise 2.1.40)

18. C y0 C 2x

1C x2
y D ex

.1 C x2/2
; y.0/ D 1I h D 0:2; 0:1; 0:05 on Œ0; 2� (Exercise 2.1,41)

19. C xy0 C .x C 1/y D ex2
; y.1/ D 2; h D 0:05; 0:025; 0:0125 on Œ1; 1:5� (Exercise 2.1.42)

In Exercises 20–22 use the Runge-Kutta method and the Runge-Kutta semilinear method with the indi-

cated step sizes to find approximate values of the solution of the given initial value problem at 11 equally

spaced points (including the endpoints) in the interval.

20. C y0 C 3y D xy2.y C 1/; y.0/ D 1; h D 0:1; 0:05; 0:025 on Œ0; 1�

21. C y0 � 4y D x

y2.y C 1/
; y.0/ D 1; h D 0:1; 0:05; 0:025 on Œ0; 1�

22. C y0 C 2y D x2

1C y2
; y.2/ D 1; h D 0:1; 0:05; 0:025 on Œ2; 3�

23. C Suppose a < x0, so that �x0 < �a. Use the chain rule to show that if ´ is a solution of

´0 D �f .�x; ´/; ´.�x0/ D y0;

on Œ�x0;�a�, then y D ´.�x/ is a solution of

y0 D f .x; y/; y.x0/ D y0;

on Œa; x0�.
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24. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of

y0 D y2 C xy � x2

x2
; y.2/ D �1

at x D 1:1, 1:2, 1:3, . . .2:0. Compare these approximate values with the values of the exact

solution

y D x.4 � 3x2/

4C 3x2
;

which can be obtained by referring to Example 2.4.3.

25. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of

y0 D �x2y � xy2; y.1/ D 1

at x D 0, 0:1, 0:2, . . . , 1.

26. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of

y0 C 1

x
y D 7

x2
C 3; y.1/ D 3

2

at x D 0:5, 0:6,. . . , 1:5. Compare these approximate values with the values of the exact solution

y D 7 lnx

x
C 3x

2
;

which can be obtained by the method discussed in Section 2.1.

27. C Use the Runge-Kutta method with step sizes h D 0:1, h D 0:05, and h D 0:025 to find

approximate values of the solution of

xy0 C 2y D 8x2; y.2/ D 5

at x D 1:0, 1:1, 1:2, . . . , 3:0. Compare these approximate values with the values of the exact

solution

y D 2x2 � 12

x2
;

which can be obtained by the method discussed in Section 2.1.

28. NUMERICAL QUADRATURE (see Exercise 3.1.23).

(a) Derive the quadrature formula

Z b

a

f .x/ dx � h

6
.f .a/ C f .b//C h

3

n�1
X

iD1

f .a C ih/C 2h

3

n
X

iD1

f .a C .2i � 1/h=2/ .A/

(where h D .b � a/=n/ by applying the Runge-Kutta method to the initial value problem

y0 D f .x/; y.a/ D 0:

This quadrature formula is called Simpson’s Rule.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Simpson.html
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(b) L For several choices of a, b, A, B , C , andD apply (A) to f .x/ D ACBxCCxCDx3,

with n D 10, 20, 40, 80, 160, 320. Compare your results with the exact answers and explain

what you find.

(c) L For several choices of a, b, A, B , C , D, and E apply (A) to f .x/ D ACBx C Cx2 C
Dx3 CEx4, with n D 10; 20; 40; 80; 160; 320. Compare your results with the exact answers

and explain what you find.



CHAPTER 4

Applications of First Order Equations

IN THIS CHAPTER we consider applications of first order differential equations.

SECTION 4.1 begins with a discussion of exponential growth and decay, which you have probably al-

ready seen in calculus. We consider applications to radioactive decay, carbon dating, and compound

interest. We also consider more complicated problems where the rate of change of a quantity is in part

proportional to the magnitude of the quantity, but is also influenced by other other factors for example, a

radioactive susbstance is manufactured at a certain rate, but decays at a rate proportional to its mass, or a
saver makes regular deposits in a savings account that draws compound interest.

SECTION 4.2 deals with applications of Newton’s law of cooling and with mixing problems.

SECTION 4.3 discusses applications to elementary mechanics involving Newton’s second law of mo-

tion. The problems considered include motion under the influence of gravity in a resistive medium, and

determining the initial velocity required to launch a satellite.

SECTION 4.4 deals with methods for dealing with a type of second order equation that often arises in

applications of Newton’s second law of motion, by reformulating it as first order equation with a different

independent variable. Although the method doesn’t usually lead to an explicit solution of the given

equation, it does provide valuable insights into the behavior of the solutions.

SECTION 4.5 deals with applications of differential equations to curves.

129
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4.1 GROWTH AND DECAY

Since the applications in this section deal with functions of time, we’ll denote the independent variable
by t . If Q is a function of t , Q0 will denote the derivative of Q with respect to t ; thus,

Q0 D dQ

dt
:

Exponential Growth and Decay

One of the most common mathematical models for a physical process is the exponential model, where

it’s assumed that the rate of change of a quantityQ is proportional to Q; thus

Q0 D aQ; (4.1.1)

where a is the constant of proportionality.

From Example 3, the general solution of (4.1.1) is

Q D ceat

and the solution of the initial value problem

Q0 D aQ; Q.t0/ D Q0

is

Q D Q0e
a.t�t0/: (4.1.2)

Since the solutions of Q0 D aQ are exponential functions, we say that a quantity Q that satisfies this
equation grows exponentially if a > 0, or decays exponentially if a < 0 (Figure 4.1.1).

Radioactive Decay

Experimental evidence shows that radioactive material decays at a rate proportional to the mass of the

material present. According to this model the mass Q.t/ of a radioactive material present at time t

satisfies (4.1.1), where a is a negative constant whose value for any given material must be determined

by experimental observation. For simplicity, we’ll replace the negative constant a by �k, where k is a

positive number that we’ll call the decay constant of the material. Thus, (4.1.1) becomes

Q0 D �kQ:

If the mass of the material present at t D t0 is Q0, the mass present at time t is the solution of

Q0 D �kQ; Q.t0/ D Q0:

From (4.1.2) with a D �k, the solution of this initial value problem is

Q D Q0e
�k.t�t0/: (4.1.3)

The half–life � of a radioactive material is defined to be the time required for half of its mass to decay;
that is, if Q.t0/ D Q0, then

Q.� C t0/ D Q0

2
: (4.1.4)

From (4.1.3) with t D � C t0, (4.1.4) is equivalent to

Q0e
�k� D Q0

2
;
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 Q

 t

 a > 0

 a < 0

 Q
0

Figure 4.1.1 Exponential growth and decay

so

e�k� D 1

2
:

Taking logarithms yields

�k� D ln
1

2
D � ln 2;

so the half-life is

� D 1

k
ln 2: (4.1.5)

(Figure 4.1.2). The half-life is independent of t0 and Q0, since it’s determined by the properties of

material, not by the amount of the material present at any particular time.

Example 4.1.1 A radioactive substance has a half-life of 1620 years.

(a) If its mass is now 4 g (grams), how much will be left 810 years from now?

(b) Find the time t1 when 1.5 g of the substance remain.

SOLUTION(a) From (4.1.3) with t0 D 0 and Q0 D 4,

Q D 4e�kt; (4.1.6)

where we determine k from (4.1.5), with �= 1620 years:

k D ln 2

�
D ln 2

1620
:



132 Chapter 4 Applications of First Order Equations

 Q

 t
 τ

 Q
0

 .5Q
0

Figure 4.1.2 Half-life of a radioactive substance

Substituting this in (4.1.6) yields

Q D 4e�.t ln 2/=1620: (4.1.7)

Therefore the mass left after 810 years will be

Q.810/ D 4e�.810 ln 2/=1620 D 4e�.ln 2/=2

D 2
p
2 g:

SOLUTION(b) Setting t D t1 in (4.1.7) and requiring that Q.t1/ D 1:5 yields

3

2
D 4e.�t1 ln 2/=1620:

Dividing by 4 and taking logarithms yields

ln
3

8
D � t1 ln 2

1620
:

Since ln 3=8 D � ln 8=3,

t1 D 1620
ln8=3

ln 2
� 2292:4 years:

Interest Compounded Continuously

Suppose we deposit an amount of money Q0 in an interest-bearing account and make no further deposits

or withdrawals for t years, during which the account bears interest at a constant annual rate r . To calculate

the value of the account at the end of t years, we need one more piece of information: how the interest
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is added to the account, or—as the bankers say—how it is compounded. If the interest is compounded

annually, the value of the account is multiplied by 1 C r at the end of each year. This means that after t

years the value of the account is

Q.t/ D Q0.1C r/t :

If interest is compounded semiannually, the value of the account is multiplied by .1 C r=2/ every 6

months. Since this occurs twice annually, the value of the account after t years is

Q.t/ D Q0

�

1C r

2

�2t

:

In general, if interest is compounded n times per year, the value of the account is multiplied n times per
year by .1 C r=n/; therefore, the value of the account after t years is

Q.t/ D Q0

�

1C r

n

�nt

: (4.1.8)

Thus, increasing the frequency of compounding increases the value of the account after a fixed period of

time. Table 4.1.7 shows the effect of increasing the number of compoundings over t D 5 years on an

initial deposit of Q0 D 100 (dollars), at an annual interest rate of 6%.

Table 4.1.7. Table The effect of compound interest

n $100

�

1C :06

n

�5n

(number of compoundings (value in dollars

per year) after 5 years)

1 $133:82

2 $134:39

4 $134:68

8 $134:83
364 $134:98

You can see from Table 4.1.7 that the value of the account after 5 years is an increasing function of

n. Now suppose the maximum allowable rate of interest on savings accounts is restricted by law, but

the time intervals between successive compoundings isn’t ; then competing banks can attract savers by
compounding often. The ultimate step in this direction is to compound continuously, by which we mean

that n ! 1 in (4.1.8). Since we know from calculus that

lim
n!1

�

1C r

n

�n

D er ;

this yields

Q.t/ D lim
n!1

Q0

�

1C r

n

�nt

D Q0

h

lim
n!1

�

1C r

n

�nit

D Q0e
rt :

Observe that Q D Q0e
rt is the solution of the initial value problem

Q0 D rQ; Q.0/ D Q0I

that is, with continuous compounding the value of the account grows exponentially.
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Example 4.1.2 If $150 is deposited in a bank that pays 5 1
2

% annual interest compounded continuously,

the value of the account after t years is

Q.t/ D 150e:055t

dollars. (Note that it’s necessary to write the interest rate as a decimal; thus, r D :055.) Therefore, after

t D 10 years the value of the account is

Q.10/ D 150e:55 � $259:99:

Example 4.1.3 We wish to accumulate $10,000 in 10 years by making a single deposit in a savings

account bearing 5 1
2

% annual interest compounded continuously. How much must we deposit in the

account?

Solution The value of the account at time t is

Q.t/ D Q0e
:055t : (4.1.9)

Since we wantQ.10/ to be $10,000, the initial depositQ0 must satisfy the equation

10000 D Q0e
:55; (4.1.10)

obtained by setting t D 10 and Q.10/ D 10000 in (4.1.9). Solving (4.1.10) for Q0 yields

Q0 D 10000e�:55 � $5769:50:

Mixed Growth and Decay

Example 4.1.4 A radioactive substance with decay constant k is produced at a constant rate of a units of

mass per unit time.

(a) Assuming that Q.0/ D Q0, find the mass Q.t/ of the substance present at time t .

(b) Find limt!1Q.t/.

SOLUTION(a) Here

Q0 D rate of increase of Q � rate of decrease of Q:

The rate of increase is the constant a. Since Q is radioactive with decay constant k, the rate of decrease

is kQ. Therefore

Q0 D a � kQ:
This is a linear first order differential equation. Rewriting it and imposing the initial condition shows that
Q is the solution of the initial value problem

Q0 C kQ D a; Q.0/ D Q0: (4.1.11)

Since e�kt is a solution of the complementary equation, the solutions of (4.1.11) are of the form Q D
ue�kt , where u0e�kt D a, so u0 D aekt . Hence,

u D a

k
ekt C c
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 Q

 t

 a/k

Figure 4.1.3 Q.t/ approaches the steady state value
a

k
as t ! 1

and

Q D ue�kt D a

k
C ce�kt :

Since Q.0/ D Q0, setting t D 0 here yields

Q0 D a

k
C c or c D Q0 � a

k
:

Therefore

Q D a

k
C
�

Q0 � a

k

�

e�kt: (4.1.12)

SOLUTION(b) Since k > 0, limt!1 e�kt D 0, so from (4.1.12)

lim
t!1

Q.t/ D a

k
:

This limit depends only on a and k, and not onQ0. We say that a=k is the steady state value ofQ. From
(4.1.12) we also see that Q approaches its steady state value from above if Q0 > a=k, or from below if

Q0 < a=k. If Q0 D a=k, then Q remains constant (Figure 4.1.3).

Carbon Dating

The fact that Q approaches a steady state value in the situation discussed in Example 4 underlies the
method of carbon dating, devised by the American chemist and Nobel Prize Winner W.S. Libby.

Carbon 12 is stable, but carbon-14, which is produced by cosmic bombardment of nitrogen in the upper

atmosphere, is radioactive with a half-life of about 5570 years. Libby assumed that the quantity of carbon-

12 in the atmosphere has been constant throughout time, and that the quantity of radioactive carbon-14

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1960/libby-lecture.pdf
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achieved its steady state value long ago as a result of its creation and decomposition over millions of

years. These assumptions led Libby to conclude that the ratio of carbon-14 to carbon-12 has been nearly

constant for a long time. This constant, which we denote by R, has been determined experimentally.

Living cells absorb both carbon-12 and carbon-14 in the proportion in which they are present in the

environment. Therefore the ratio of carbon-14 to carbon-12 in a living cell is always R. However, when

the cell dies it ceases to absorb carbon, and the ratio of carbon-14 to carbon-12 decreases exponentially
as the radioactive carbon-14 decays. This is the basis for the method of carbon dating, as illustrated in

the next example.

Example 4.1.5 An archaeologist investigating the site of an ancient village finds a burial ground where

the amount of carbon-14 present in individual remains is between 42 and 44% of the amount present in

live individuals. Estimate the age of the village and the length of time for which it survived.

Solution Let Q D Q.t/ be the quantity of carbon-14 in an individual set of remains t years after death,

and letQ0 be the quantity that would be present in live individuals. Since carbon-14 decays exponentially
with half-life 5570 years, its decay constant is

k D ln 2

5570
:

Therefore
Q D Q0e

�t.ln2/=5570

if we choose our time scale so that t0 D 0 is the time of death. If we know the present value ofQ we can

solve this equation for t , the number of years since death occurred. This yields

t D �5570 lnQ=Q0

ln 2
:

It is given that Q D :42Q0 in the remains of individuals who died first. Therefore these deaths occurred
about

t1 D �5570 ln :42

ln 2
� 6971

years ago. For the most recent deaths, Q D :44Q0; hence, these deaths occurred about

t2 D �5570 ln :44

ln 2
� 6597

years ago. Therefore it’s reasonable to conclude that the village was founded about 7000 years ago, and

lasted for about 400 years.

A Savings Program

Example 4.1.6 A person opens a savings account with an initial deposit of $1000 and subsequently

deposits $50 per week. Find the valueQ.t/ of the account at time t > 0, assuming that the bank pays 6%

interest compounded continuously.

Solution Observe that Q isn’t continuous, since there are 52 discrete deposits per year of $50 each.

To construct a mathematical model for this problem in the form of a differential equation, we make

the simplifying assumption that the deposits are made continuously at a rate of $2600 per year. This

is essential, since solutions of differential equations are continuous functions. With this assumption, Q

increases continuously at the rate
Q0 D 2600C :06Q
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and thereforeQ satisfies the differential equation

Q0 � :06Q D 2600: (4.1.13)

(Of course, we must recognize that the solution of this equation is an approximation to the true value of

Q at any given time. We’ll discuss this further below.) Since e:06t is a solution of the complementary

equation, the solutions of (4.1.13) are of the form Q D ue:06t , where u0e:06t D 2600. Hence, u0 D
2600e�:06t ,

u D �2600
:06

e�:06t C c

and

Q D ue:06t D �2600
:06

C ce:06t : (4.1.14)

Setting t D 0 and Q D 1000 here yields

c D 1000C 2600

:06
;

and substituting this into (4.1.14) yields

Q D 1000e:06t C 2600

:06
.e:06t � 1/; (4.1.15)

where the first term is the value due to the initial deposit and the second is due to the subsequent weekly

deposits.

Mathematical models must be tested for validity by comparing predictions based on them with the
actual outcome of experiments. Example 6 is unusual in that we can compute the exact value of the

account at any specified time and compare it with the approximate value predicted by (4.1.15) (See

Exercise 21.). The follwing table gives a comparison for a ten year period. Each exact answer corresponds

to the time of the year-end deposit, and each year is assumed to have exactly 52 weeks.

Year Approximate Value of Q Exact Value of P Error Percentage Error
(Example 4.1.6) (Exercise 21) Q � P .Q � P /=P

1 $ 3741.42 $ 3739.87 $ 1.55 :0413%

2 6652.36 6649.17 3.19 :0479

3 9743.30 9738.37 4.93 :0506

4 13,025.38 13,018.60 6.78 :0521

5 16,510.41 16,501.66 8.75 :0530

6 20,210.94 20,200.11 10.83 :0536

7 24,140.30 24,127.25 13.05 :0541

8 28,312.63 28,297.23 15.40 :0544

9 32,742.97 32,725.07 17.90 :0547

10 37,447.27 37,426.72 20.55 :0549
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4.1 Exercises

1. The half-life of a radioactive substance is 3200 years. Find the quantityQ.t/ of the substance left
at time t > 0 if Q.0/ D 20 g.

2. The half-life of a radioactive substance is 2 days. Find the time required for a given amount of the

material to decay to 1/10 of its original mass.

3. A radioactive material loses 25% of its mass in 10 minutes. What is its half-life?

4. A tree contains a known percentage p0 of a radioactive substance with half-life � . When the tree

dies the substance decays and isn’t replaced. If the percentage of the substance in the fossilized

remains of such a tree is found to be p1, how long has the tree been dead?

5. If tp and tq are the times required for a radioactive material to decay to 1=p and 1=q times its

original mass (respectively), how are tp and tq related?

6. Find the decay constant k for a radioactive substance, given that the mass of the substance is Q1

at time t1 and Q2 at time t2.

7. A process creates a radioactive substance at the rate of 2 g/hr and the substance decays at a rate

proportional to its mass, with constant of proportionality k D :1.hr/�1. If Q.t/ is the mass of the

substance at time t , find limt!1 Q.t/.

8. A bank pays interest continuously at the rate of 6%. How long does it take for a deposit of Q0 to

grow in value to 2Q0?

9. At what rate of interest, compounded continuously, will a bank deposit double in value in 8 years?

10. A savings account pays 5% per annum interest compounded continuously. The initial deposit is
Q0 dollars. Assume that there are no subsequent withdrawals or deposits.

(a) How long will it take for the value of the account to triple?

(b) What isQ0 if the value of the account after 10 years is $100,000 dollars?

11. A candymaker makes 500 pounds of candy per week, while his large family eats the candy at a

rate equal to Q.t/=10 pounds per week, whereQ.t/ is the amount of candy present at time t .

(a) FindQ.t/ for t > 0 if the candymaker has 250 pounds of candy at t D 0.

(b) Find limt!1Q.t/.

12. Suppose a substance decays at a yearly rate equal to half the square of the mass of the substance

present. If we start with 50 g of the substance, how long will it be until only 25 g remain?

13. A super bread dough increases in volume at a rate proportional to the volume V present. If V

increases by a factor of 10 in 2 hours and V.0/ D V0, find V at any time t . How long will it take

for V to increase to 100V0?

14. A radioactive substance decays at a rate proportional to the amount present, and half the original

quantityQ0 is left after 1500 years. In how many years would the original amount be reduced to

3Q0=4? How much will be left after 2000 years?

15. A wizard creates gold continuously at the rate of 1 ounce per hour, but an assistant steals it con-

tinuously at the rate of 5% of however much is there per hour. Let W.t/ be the number of ounces

that the wizard has at time t . Find W.t/ and limt!1W.t/ if W.0/ D 1.

16. A process creates a radioactive substance at the rate of 1 g/hr, and the substance decays at an hourly

rate equal to 1/10 of the mass present (expressed in grams). Assuming that there are initially 20 g,

find the mass S.t/ of the substance present at time t , and find limt!1 S.t/.
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17. A tank is empty at t D 0. Water is added to the tank at the rate of 10 gal/min, but it leaks out

at a rate (in gallons per minute) equal to the number of gallons in the tank. What is the smallest

capacity the tank can have if this process is to continue forever?

18. A person deposits $25,000 in a bank that pays 5% per year interest, compounded continuously.

The person continuously withdraws from the account at the rate of $750 per year. Find V.t/, the
value of the account at time t after the initial deposit.

19. A person has a fortune that grows at rate proportional to the square root of its worth. Find the

worthW of the fortune as a function of t if it was $1 million 6 months ago and is $4 million today.

20. Let p D p.t/ be the quantity of a product present at time t . The product is manufactured continu-

ously at a rate proportional to p, with proportionality constant 1/2, and it’s consumed continuously

at a rate proportional to p2, with proportionality constant 1/8. Find p.t/ if p.0/ D 100.

21. (a) In the situation of Example 4.1.6 find the exact value P.t/ of the person’s account after t
years, where t is an integer. Assume that each year has exactly 52 weeks, and include the

year-end deposit in the computation.

HINT: At time t the initial $1000 has been on deposit for t years. There have been 52t

deposits of $50 each. The first $50 has been on deposit for t � 1=52 years, the second for

t � 2=52 years � � � in general, the j th $50 has been on deposit for t � j=52 years .1 �
j � 52t/. Find the present value of each $50 deposit assuming 6% interest compounded

continuously, and use the formula

1C x C x2 C � � � C xn D 1 � xnC1

1 � x .x ¤ 1/

to find their total value.

(b) Let

p.t/ D Q.t/ � P.t/
P.t/

be the relative error after t years. Find

p.1/ D lim
t!1

p.t/:

22. A homebuyer borrows P0 dollars at an annual interest rate r , agreeing to repay the loan with equal

monthly payments of M dollars per month over N years.

(a) Derive a differential equation for the loan principal (amount that the homebuyer owes) P.t/

at time t > 0, making the simplifying assumption that the homebuyer repays the loan con-

tinuously rather than in discrete steps. (See Example 4.1.6 .)

(b) Solve the equation derived in (a).

(c) Use the result of (b) to determine an approximate value for M assuming that each year has
exactly 12 months of equal length.

(d) It can be shown that the exact value of M is given by

M D rP0

12

�

1 � .1C r=12/�12N
��1

:

Compare the value of M obtained from the answer in (c) to the exact value if (i) P0 D
$50; 000, r D 7 1

2
%, N D 20 (ii) P0 D $150; 000, r D 9:0%, N D 30.

23. Assume that the homebuyer of Exercise 22 elects to repay the loan continuously at the rate of ˛M
dollars per month, where ˛ is a constant greater than 1. (This is called accelerated payment.)
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(a) Determine the time T .˛/ when the loan will be paid off and the amount S.˛/ that the home-

buyer will save.

(b) SupposeP0 D $50; 000, r D 8%, andN D 15. Compute the savings realized by accelerated

payments with ˛ D 1:05; 1:10, and 1:15.

24. A benefactor wishes to establish a trust fund to pay a researcher’s salary for T years. The salary

is to start at S0 dollars per year and increase at a fractional rate of a per year. Find the amount

of money P0 that the benefactor must deposit in a trust fund paying interest at a rate r per year.
Assume that the researcher’s salary is paid continuously, the interest is compounded continuously,

and the salary increases are granted continuously.

25. L A radioactive substance with decay constant k is produced at the rate of

at

1C btQ.t/

units of mass per unit time, where a and b are positive constants and Q.t/ is the mass of the

substance present at time t ; thus, the rate of production is small at the start and tends to slow when

Q is large.

(a) Set up a differential equation for Q.

(b) Choose your own positive values for a, b, k, and Q0 D Q.0/. Use a numerical method to

discover what happens toQ.t/ as t ! 1. (Be precise, expressing your conclusions in terms

of a, b, k. However, no proof is required.)

26. L Follow the instructions of Exercise 25, assuming that the substance is produced at the rate of

at=.1C bt.Q.t//2/ units of mass per unit of time.

27. L Follow the instructions of Exercise 25, assuming that the substance is produced at the rate of

at=.1C bt/ units of mass per unit of time.

4.2 COOLING AND MIXING

Newton’s Law of Cooling

Newton’s law of cooling states that if an object with temperature T .t/ at time t is in a medium with

temperature Tm.t/, the rate of change of T at time t is proportional to T .t/ � Tm.t/; thus, T satisfies a
differential equation of the form

T 0 D �k.T � Tm/: (4.2.1)

Here k > 0, since the temperature of the object must decrease if T > Tm, or increase if T < Tm. We’ll

call k the temperature decay constant of the medium.
For simplicity, in this section we’ll assume that the medium is maintained at a constant temperature Tm.

This is another example of building a simple mathematical model for a physical phenomenon. Like most

mathematical models it has its limitations. For example, it’s reasonable to assume that the temperature of

a room remains approximately constant if the cooling object is a cup of coffee, but perhaps not if it’s a

huge cauldron of molten metal. (For more on this see Exercise 17.)

To solve (4.2.1), we rewrite it as
T 0 C kT D kTm:

Since e�kt is a solution of the complementary equation, the solutions of this equation are of the form

T D ue�kt , where u0e�kt D kTm, so u0 D kTme
kt . Hence,

u D Tme
kt C c;
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so

T D ue�kt D Tm C ce�kt :

If T .0/ D T0, setting t D 0 here yields c D T0 � Tm, so

T D Tm C .T0 � Tm/e
�kt : (4.2.2)

Note that T � Tm decays exponentially, with decay constant k.

Example 4.2.1 A ceramic insulator is baked at 400ıC and cooled in a room in which the temperature is

25ıC. After 4 minutes the temperature of the insulator is 200ıC. What is its temperature after 8 minutes?

Solution Here T0 D 400 and Tm D 25, so (4.2.2) becomes

T D 25C 375e�kt: (4.2.3)

We determine k from the stated condition that T .4/ D 200; that is,

200 D 25C 375e�4kI

hence,

e�4k D 175

375
D 7

15
:

Taking logarithms and solving for k yields

k D �1
4

ln
7

15
D 1

4
ln
15

7
:

Substituting this into (4.2.3) yields

T D 25C 375e� t
4 ln 15

7

(Figure 4.2.1). Therefore the temperature of the insulator after 8 minutes is

T .8/ D 25C 375e�2 ln 15
7

D 25C 375

�

7

15

�2

� 107ıC:

Example 4.2.2 An object with temperature 72ıF is placed outside, where the temperature is �20ıF. At

11:05 the temperature of the object is 60ıF and at 11:07 its temperature is 50ıF. At what time was the

object placed outside?

Solution Let T .t/ be the temperature of the object at time t . For convenience, we choose the origin
t0 D 0 of the time scale to be 11:05 so that T0 D 60. We must determine the time � when T .�/ D 72.

Substituting T0 D 60 and Tm D �20 into (4.2.2) yields

T D �20C
�

60� .�20/
�

e�kt

or

T D �20C 80e�kt: (4.2.4)
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Figure 4.2.1 T D 25C 375e�.t=4/ ln 15=7

We obtain k from the stated condition that the temperature of the object is 50ıF at 11:07. Since 11:07 is

t D 2 on our time scale, we can determine k by substituting T D 50 and t D 2 into (4.2.4) to obtain

50 D �20C 80e�2k

(Figure 4.2.2); hence,

e�2k D 70

80
D 7

8
:

Taking logarithms and solving for k yields

k D �1
2

ln
7

8
D 1

2
ln
8

7
:

Substituting this into (4.2.4) yields

T D �20C 80e� t
2

ln 8
7 ;

and the condition T .�/ D 72 implies that

72 D �20C 80e� �
2

ln 8
7 I

hence,

e� �
2

ln 8
7 D 92

80
D 23

20
:

Taking logarithms and solving for � yields

� D �
2 ln 23

20

ln 8
7

� �2:09 min:
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Figure 4.2.2 T D �20C 80e� t
2 ln 8

7

Therefore the object was placed outside about 2 minutes and 5 seconds before 11:05; that is, at 11:02:55.

Mixing Problems

In the next two examples a saltwater solution with a given concentration (weight of salt per unit volume

of solution) is added at a specified rate to a tank that initially contains saltwater with a different concentra-

tion. The problem is to determine the quantity of salt in the tank as a function of time. This is an example
of a mixing problem. To construct a tractable mathematical model for mixing problems we assume in

our examples (and most exercises) that the mixture is stirred instantly so that the salt is always uniformly

distributed throughout the mixture. Exercises 22 and 23 deal with situations where this isn’t so, but the

distribution of salt becomes approximately uniform as t ! 1.

Example 4.2.3 A tank initially contains 40 pounds of salt dissolved in 600 gallons of water. Starting at

t0 D 0, water that contains 1/2 pound of salt per gallon is poured into the tank at the rate of 4 gal/min and

the mixture is drained from the tank at the same rate (Figure 4.2.3).

(a) Find a differential equation for the quantity Q.t/ of salt in the tank at time t > 0, and solve the
equation to determineQ.t/.

(b) Find limt!1Q.t/.

SOLUTION(a) To find a differential equation for Q, we must use the given information to derive an
expression for Q0. ButQ0 is the rate of change of the quantity of salt in the tank changes with respect to

time; thus, if rate in denotes the rate at which salt enters the tank and rate out denotes the rate by which

it leaves, then

Q0 D rate in � rate out: (4.2.5)
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600 gal

4 gal/min; .5 lb/gal

4 gal/min

Figure 4.2.3 A mixing problem

The rate in is
�

1

2
lb/gal

�

� .4 gal/min/ D 2 lb/min:

Determining the rate out requires a little more thought. We’re removing 4 gallons of the mixture per

minute, and there are always 600 gallons in the tank; that is, we’re removing 1=150 of the mixture per

minute. Since the salt is evenly distributed in the mixture, we are also removing 1=150 of the salt per

minute. Therefore, if there are Q.t/ pounds of salt in the tank at time t , the rate out at any time t is

Q.t/=150. Alternatively, we can arrive at this conclusion by arguing that

rate out D .concentration/ � .rate of flow out/

D .lb/gal/� .gal/min/

D Q.t/

600
� 4 D Q.t/

150
:

We can now write (4.2.5) as

Q0 D 2 � Q

150
:

This first order equation can be rewritten as

Q0 C Q

150
D 2:

Since e�t=150 is a solution of the complementary equation, the solutions of this equation are of the form

Q D ue�t=150, where u0e�t=150 D 2, so u0 D 2et=150. Hence,

u D 300et=150 C c;
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Figure 4.2.4 Q D 300 � 260e�t=150

so

Q D ue�t=150 D 300C ce�t=150 (4.2.6)

(Figure 4.2.4). Since Q.0/ D 40, c D �260; therefore,

Q D 300 � 260e�t=150:

SOLUTION(b) From (4.2.6), we see that that limt!1Q.t/ D 300 for any value of Q.0/. This is

intuitively reasonable, since the incoming solution contains 1/2 pound of salt per gallon and there are

always 600 gallons of water in the tank.

Example 4.2.4 A 500-liter tank initially contains 10 g of salt dissolved in 200 liters of water. Starting

at t0 D 0, water that contains 1/4 g of salt per liter is poured into the tank at the rate of 4 liters/min and

the mixture is drained from the tank at the rate of 2 liters/min (Figure 4.2.5). Find a differential equation

for the quantity Q.t/ of salt in the tank at time t prior to the time when the tank overflows and find the
concentration K.t/ (g/liter ) of salt in the tank at any such time.

Solution We first determine the amount W.t/ of solution in the tank at any time t prior to overflow.

Since W.0/ D 200 and we’re adding 4 liters/min while removing only 2 liters/min, there’s a net gain of

2 liters/min in the tank; therefore,

W.t/ D 2t C 200:

Since W.150/ D 500 liters (capacity of the tank), this formula is valid for 0 � t � 150.

Now let Q.t/ be the number of grams of salt in the tank at time t , where 0 � t � 150. As in

Example 4.2.3,
Q0 D rate in � rate out: (4.2.7)
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2t+200 liters

4 liters/min; .25 g/liter

Figure 4.2.5 Another mixing problem

The rate in is
�

1

4
g/liter

�

� .4 liters/min / D 1 g/min: (4.2.8)

To determine the rate out, we observe that since the mixture is being removed from the tank at the constant
rate of 2 liters/min and there are 2t C 200 liters in the tank at time t , the fraction of the mixture being

removed per minute at time t is
2

2t C 200
D 1

t C 100
:

We’re removing this same fraction of the salt per minute. Therefore, since there are Q.t/ grams of salt in

the tank at time t ,

rate out D Q.t/

t C 100
: (4.2.9)

Alternatively, we can arrive at this conclusion by arguing that

rate out D .concentration/� .rate of flow out/ D .g/liter/ � .liters/min/

D Q.t/

2t C 200
� 2 D Q.t/

t C 100
:

Substituting (4.2.8) and (4.2.9) into (4.2.7) yields

Q0 D 1 � Q

t C 100
; so Q0 C 1

t C 100
Q D 1: (4.2.10)

By separation of variables, 1=.t C 100/ is a solution of the complementary equation, so the solutions of

(4.2.10) are of the form

Q D u

t C 100
; where

u0

t C 100
D 1; so u0 D t C 100:
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Hence,

u D .t C 100/2

2
C c: (4.2.11)

Since Q.0/ D 10 and u D .t C 100/Q, (4.2.11) implies that

.100/.10/ D .100/2

2
C c;

so

c D 100.10/� .100/2

2
D �4000

and therefore

u D .t C 100/2

2
� 4000:

Hence,

Q D u

t C 200
D t C 100

2
� 4000

t C 100
:

Now let K.t/ be the concentration of salt at time t . Then

K.t/ D 1

4
� 2000

.t C 100/2

(Figure 4.2.6).

200 400 600 800 1000
 t
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 K

Figure 4.2.6 K.t/ D 1

4
� 2000

.t C 100/2
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4.2 Exercises

1. A thermometer is moved from a room where the temperature is 70ıF to a freezer where the tem-
perature is 12ıF . After 30 seconds the thermometer reads 40ıF. What does it read after 2 minutes?

2. A fluid initially at 100ıC is placed outside on a day when the temperature is �10ıC, and the
temperature of the fluid drops 20ıC in one minute. Find the temperature T .t/ of the fluid for

t > 0.

3. At 12:00 PM a thermometer reading 10ıF is placed in a room where the temperature is 70ıF. It
reads 56ı when it’s placed outside, where the temperature is 5ıF, at 12:03. What does it read at

12:05 PM?

4. A thermometer initially reading 212ıF is placed in a room where the temperature is 70ıF. After 2

minutes the thermometer reads 125ıF.

(a) What does the thermometer read after 4 minutes?

(b) When will the thermometer read 72ıF?

(c) When will the thermometer read 69ıF?

5. An object with initial temperature 150ıC is placed outside, where the temperature is 35ıC. Its

temperatures at 12:15 and 12:20 are 120ıC and 90ıC, respectively.

(a) At what time was the object placed outside?

(b) When will its temperature be 40ıC?

6. An object is placed in a room where the temperature is 20ıC. The temperature of the object drops

by 5ıC in 4 minutes and by 7ıC in 8 minutes. What was the temperature of the object when it was

initially placed in the room?

7. A cup of boiling water is placed outside at 1:00 PM. One minute later the temperature of the water

is 152ıF. After another minute its temperature is 112ıF. What is the outside temperature?

8. A tank initially contains 40 gallons of pure water. A solution with 1 gram of salt per gallon of

water is added to the tank at 3 gal/min, and the resulting solution dranes out at the same rate. Find

the quantityQ.t/ of salt in the tank at time t > 0.

9. A tank initially contains a solution of 10 pounds of salt in 60 gallons of water. Water with 1/2

pound of salt per gallon is added to the tank at 6 gal/min, and the resulting solution leaves at the

same rate. Find the quantityQ.t/ of salt in the tank at time t > 0.

10. A tank initially contains 100 liters of a salt solution with a concentration of .1 g/liter. A solution

with a salt concentration of .3 g/liter is added to the tank at 5 liters/min, and the resulting mixture

is drained out at the same rate. Find the concentrationK.t/ of salt in the tank as a function of t .

11. A 200 gallon tank initially contains 100 gallons of water with 20 pounds of salt. A salt solution

with 1/4 pound of salt per gallon is added to the tank at 4 gal/min, and the resulting mixture is

drained out at 2 gal/min. Find the quantity of salt in the tank as it’s about to overflow.

12. Suppose water is added to a tank at 10 gal/min, but leaks out at the rate of 1/5 gal/min for each

gallon in the tank. What is the smallest capacity the tank can have if the process is to continue

indefinitely?

13. A chemical reaction in a laboratory with volume V (in ft3) produces q1 ft3/min of a noxious gas as

a byproduct. The gas is dangerous at concentrations greater than c, but harmless at concentrations

� c. Intake fans at one end of the laboratory pull in fresh air at the rate of q2 ft3/min and exhaust
fans at the other end exhaust the mixture of gas and air from the laboratory at the same rate.
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Assuming that the gas is always uniformly distributed in the room and its initial concentration c0

is at a safe level, find the smallest value of q2 required to maintain safe conditions in the laboratory

for all time.

14. A 1200-gallon tank initially contains 40 pounds of salt dissolved in 600 gallons of water. Starting
at t0 D 0, water that contains 1/2 pound of salt per gallon is added to the tank at the rate of 6

gal/min and the resulting mixture is drained from the tank at 4 gal/min. Find the quantityQ.t/ of

salt in the tank at any time t > 0 prior to overflow.

15. Tank T1 initially contain 50 gallons of pure water. Starting at t0 D 0, water that contains 1 pound

of salt per gallon is poured into T1 at the rate of 2 gal/min. The mixture is drained from T1 at the

same rate into a second tank T2, which initially contains 50 gallons of pure water. Also starting at

t0 D 0, a mixture from another source that contains 2 pounds of salt per gallon is poured into T2

at the rate of 2 gal/min. The mixture is drained from T2 at the rate of 4 gal/min.

(a) Find a differential equation for the quantityQ.t/ of salt in tank T2 at time t > 0.

(b) Solve the equation derived in (a) to determineQ.t/.

(c) Find limt!1Q.t/.

16. Suppose an object with initial temperature T0 is placed in a sealed container, which is in turn placed
in a medium with temperature Tm. Let the initial temperature of the container be S0. Assume that

the temperature of the object does not affect the temperature of the container, which in turn does

not affect the temperature of the medium. (These assumptions are reasonable, for example, if the

object is a cup of coffee, the container is a house, and the medium is the atmosphere.)

(a) Assuming that the container and the medium have distinct temperature decay constants k

and km respectively, use Newton’s law of cooling to find the temperatures S.t/ and T .t/ of

the container and object at time t .

(b) Assuming that the container and the medium have the same temperature decay constant k,

use Newton’s law of cooling to find the temperatures S.t/ and T .t/ of the container and

object at time t .

(c) Find lim :t!1S.t/ and limt!1 T .t/ .

17. In our previous examples and exercises concerning Newton’s law of cooling we assumed that the

temperature of the medium remains constant. This model is adequate if the heat lost or gained by

the object is insignificant compared to the heat required to cause an appreciable change in the tem-

perature of the medium. If this isn’t so, we must use a model that accounts for the heat exchanged

between the object and the medium. Let T D T .t/ and Tm D Tm.t/ be the temperatures of the
object and the medium, respectively, and let T0 and Tm0 be their initial values. Again, we assume

that T and Tm are related by Newton’s law of cooling,

T 0 D �k.T � Tm/: .A/

We also assume that the change in heat of the object as its temperature changes from T0 to T is

a.T � T0/ and that the change in heat of the medium as its temperature changes from Tm0 to Tm

is am.Tm � Tm0/, where a and am are positive constants depending upon the masses and thermal

properties of the object and medium, respectively. If we assume that the total heat of the system

consisting of the object and the medium remains constant (that is, energy is conserved), then

a.T � T0/C am.Tm � Tm0/ D 0: .B/

(a) Equation (A) involves two unknown functions T and Tm. Use (A) and (B) to derive a differ-
ential equation involving only T .
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(b) Find T .t/ and Tm.t/ for t > 0.

(c) Find limt!1 T .t/ and limt!1 Tm.t/.

18. Control mechanisms allow fluid to flow into a tank at a rate proportional to the volume V of fluid

in the tank, and to flow out at a rate proportional to V 2. Suppose V.0/ D V0 and the constants of
proportionality are a and b, respectively. Find V.t/ for t > 0 and find limt!1 V.t/.

19. Identical tanks T1 and T2 initially contain W gallons each of pure water. Starting at t0 D 0, a

salt solution with constant concentration c is pumped into T1 at r gal/min and drained from T1

into T2 at the same rate. The resulting mixture in T2 is also drained at the same rate. Find the

concentrations c1.t/ and c2.t/ in tanks T1 and T2 for t > 0.

20. An infinite sequence of identical tanks T1, T2, . . . , Tn, . . . , initially contain W gallons each of
pure water. They are hooked together so that fluid drains from Tn into TnC1 .n D 1; 2; � � � /. A salt

solution is circulated through the tanks so that it enters and leaves each tank at the constant rate of

r gal/min. The solution has a concentration of c pounds of salt per gallon when it enters T1.

(a) Find the concentration cn.t/ in tank Tn for t > 0.

(b) Find limt!1 cn.t/ for each n.

21. Tanks T1 and T2 have capacities W1 and W2 liters, respectively. Initially they are both full of dye

solutions with concentrations c1 and c2 grams per liter. Starting at t0 D 0, the solution from T1 is

pumped into T2 at a rate of r liters per minute, and the solution from T2 is pumped into T1 at the

same rate.

(a) Find the concentrations c1.t/ and c2.t/ of the dye in T1 and T2 for t > 0.

(b) Find limt!1 c1.t/ and limt!1 c2.t/.

22. L Consider the mixing problem of Example 4.2.3, but without the assumption that the mixture

is stirred instantly so that the salt is always uniformly distributed throughout the mixture. Assume

instead that the distribution approaches uniformity as t ! 1. In this case the differential equation

forQ is of the form

Q0 C a.t/

150
Q D 2

where limt!1 a.t/ D 1.

(a) Assuming thatQ.0/ D Q0, can you guess the value of limt!1 Q.t/?.

(b) Use numerical methods to confirm your guess in the these cases:

(i) a.t/ D t=.1 C t/ (ii) a.t/ D 1 � e�t2

(iii) a.t/ D 1 � sin.e�t /:

23. L Consider the mixing problem of Example 4.2.4 in a tank with infinite capacity, but without

the assumption that the mixture is stirred instantly so that the salt is always uniformly distributed

throughout the mixture. Assume instead that the distribution approaches uniformity as t ! 1. In
this case the differential equation for Q is of the form

Q0 C a.t/

t C 100
Q D 1

where limt!1 a.t/ D 1.

(a) Let K.t/ be the concentration of salt at time t . Assuming that Q.0/ D Q0, can you guess

the value of limt!1K.t/?

(b) Use numerical methods to confirm your guess in the these cases:

(i) a.t/ D t=.1C t/ (ii) a.t/ D 1 � e�t2

(iii) a.t/ D 1C sin.e�t /:
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4.3 ELEMENTARY MECHANICS

Newton’s Second Law of Motion

In this section we consider an object with constant mass m moving along a line under a force F . Let

y D y.t/ be the displacement of the object from a reference point on the line at time t , and let v D v.t/

and a D a.t/ be the velocity and acceleration of the object at time t . Thus, v D y0 and a D v0 D y00,

where the prime denotes differentiation with respect to t . Newton’s second law of motion asserts that the

force F and the acceleration a are related by the equation

F D ma: (4.3.1)

Units

In applications there are three main sets of units in use for length, mass, force, and time: the cgs, mks, and

British systems. All three use the second as the unit of time. Table 1 shows the other units. Consistent

with (4.3.1), the unit of force in each system is defined to be the force required to impart an acceleration

of (one unit of length)=s2 to one unit of mass.

Length Force Mass

cgs centimeter (cm) dyne (d) gram (g)

mks meter (m) newton (N) kilogram (kg)

British foot (ft) pound (lb) slug (sl)

Table 1.

If we assume that Earth is a perfect sphere with constant mass density, Newton’s law of gravitation
(discussed later in this section) asserts that the force exerted on an object by Earth’s gravitational field

is proportional to the mass of the object and inversely proportional to the square of its distance from the

center of Earth. However, if the object remains sufficiently close to Earth’s surface, we may assume that

the gravitational force is constant and equal to its value at the surface. The magnitude of this force is

mg, where g is called the acceleration due to gravity. (To be completely accurate, g should be called
the magnitude of the acceleration due to gravity at Earth’s surface.) This quantity has been determined

experimentally. Approximate values of g are

g D 980 cm/s2 (cgs)

g D 9:8 m/s2 (mks)

g D 32 ft/s2 (British):

In general, the force F in (4.3.1) may depend upon t , y, and y0 . Since a D y00, (4.3.1) can be written

in the form
my00 D F.t; y; y0/; (4.3.2)

which is a second order equation. We’ll consider this equation with restrictions on F later; however, since

Chapter 2 dealt only with first order equations, we consider here only problems in which (4.3.2) can be

recast as a first order equation. This is possible if F does not depend on y, so (4.3.2) is of the form

my00 D F.t; y0/:

Letting v D y0 and v0 D y00 yields a first order equation for v:

mv0 D F.t; v/: (4.3.3)



152 Chapter 4 Applications of First Order Equations

Solving this equation yields v as a function of t . If we know y.t0/ for some time t0, we can integrate v

to obtain y as a function of t .

Equations of the form (4.3.3) occur in problems involving motion through a resisting medium.

Motion Through a Resisting Medium Under Constant Gravitational Force

Now we consider an object moving vertically in some medium. We assume that the only forces acting on

the object are gravity and resistance from the medium. We also assume that the motion takes place close
to Earth’s surface and take the upward direction to be positive, so the gravitational force can be assumed

to have the constant value �mg. We’ll see that, under reasonable assumptions on the resisting force, the

velocity approaches a limit as t ! 1. We call this limit the terminal velocity.

Example 4.3.1 An object with mass m moves under constant gravitational force through a medium that
exerts a resistance with magnitude proportional to the speed of the object. (Recall that the speed of an

object is jvj, the absolute value of its velocity v.) Find the velocity of the object as a function of t , and

find the terminal velocity. Assume that the initial velocity is v0.

Solution The total force acting on the object is

F D �mg C F1; (4.3.4)

where �mg is the force due to gravity and F1 is the resisting force of the medium, which has magnitude

kjvj, where k is a positive constant. If the object is moving downward (v � 0), the resisting force is

upward (Figure 4.3.1(a)), so

F1 D kjvj D k.�v/ D �kv:
On the other hand, if the object is moving upward (v � 0), the resisting force is downward (Fig-

ure 4.3.1(b)), so

F1 D �kjvj D �kv:
Thus, (4.3.4) can be written as

F D �mg � kv; (4.3.5)

regardless of the sign of the velocity.

From Newton’s second law of motion,

F D ma D mv0;

so (4.3.5) yields

mv0 D �mg � kv;
or

v0 C k

m
v D �g: (4.3.6)

Since e�kt=m is a solution of the complementary equation, the solutions of (4.3.6) are of the form v D
ue�kt=m, where u0e�kt=m D �g, so u0 D �gekt=m. Hence,

u D �mg
k
ekt=m C c;

so
v D ue�kt=m D �mg

k
C ce�kt=m: (4.3.7)

Since v.0/ D v0,

v0 D �mg
k

C c;
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Figure 4.3.1 Resistive forces

so

c D v0 C mg

k

and (4.3.7) becomes

v D �mg
k

C
�

v0 C mg

k

�

e�kt=m:

Letting t ! 1 here shows that the terminal velocity is

lim
t!1

v.t/ D �mg
k
;

which is independent of the initial velocity v0 (Figure 4.3.2).

Example 4.3.2 A 960-lb object is given an initial upward velocity of 60 ft/s near the surface of Earth.
The atmosphere resists the motion with a force of 3 lb for each ft/s of speed. Assuming that the only other

force acting on the object is constant gravity, find its velocity v as a function of t , and find its terminal

velocity.

Solution Since mg D 960 and g D 32,m D 960=32 D 30. The atmospheric resistance is �3v lb if v is

expressed in feet per second. Therefore

30v0 D �960� 3v;

which we rewrite as

v0 C 1

10
v D �32:
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Figure 4.3.2 Solutions of mv0 D �mg � kv

Since e�t=10 is a solution of the complementary equation, the solutions of this equation are of the form

v D ue�t=10, where u0e�t=10 D �32, so u0 D �32et=10. Hence,

u D �320et=10 C c;

so

v D ue�t=10 D �320C ce�t=10: (4.3.8)

The initial velocity is 60 ft/s in the upward (positive) direction; hence, v0 D 60. Substituting t D 0 and

v D 60 in (4.3.8) yields

60 D �320C c;

so c D 380, and (4.3.8) becomes

v D �320C 380e�t=10 ft/s

The terminal velocity is

lim
t!1

v.t/ D �320 ft/s.

Example 4.3.3 A 10 kg mass is given an initial velocity v0 � 0 near Earth’s surface. The only forces

acting on it are gravity and atmospheric resistance proportional to the square of the speed. Assuming that

the resistance is 8 N if the speed is 2 m/s, find the velocity of the object as a function of t , and find the
terminal velocity.

Solution Since the object is falling, the resistance is in the upward (positive) direction. Hence,

mv0 D �mg C kv2; (4.3.9)
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where k is a constant. Since the magnitude of the resistance is 8 N when v D 2 m/s,

k.22/ D 8;

so k D 2 N-s2=m2. Since m D 10 and g D 9:8, (4.3.9) becomes

10v0 D �98C 2v2 D 2.v2 � 49/: (4.3.10)

If v0 D �7, then v � �7 for all t � 0. If v0 ¤ �7, we separate variables to obtain

1

v2 � 49v
0 D 1

5
; (4.3.11)

which is convenient for the required partial fraction expansion

1

v2 � 49 D 1

.v � 7/.v C 7/
D 1

14

�

1

v � 7 � 1

v C 7

�

: (4.3.12)

Substituting (4.3.12) into (4.3.11) yields

1

14

�

1

v � 7 � 1

v C 7

�

v0 D 1

5
;

so
�

1

v � 7
� 1

v C 7

�

v0 D 14

5
:

Integrating this yields

ln jv � 7j � ln jv C 7j D 14t=5C k:

Therefore
ˇ

ˇ

ˇ

ˇ

v � 7
v C 7

ˇ

ˇ

ˇ

ˇ

D eke14t=5:

Since Theorem 2.3.1 implies that .v � 7/=.v C 7/ can’t change sign (why?), we can rewrite the last
equation as

v � 7
vC 7

D ce14t=5; (4.3.13)

which is an implicit solution of (4.3.10). Solving this for v yields

v D �7c C e�14t=5

c � e�14t=5
: (4.3.14)

Since v.0/ D v0, it (4.3.13) implies that

c D v0 � 7
v0 C 7

:

Substituting this into (4.3.14) and simplifying yields

v D �7v0.1 C e�14t=5/� 7.1 � e�14t=5/

v0.1 � e�14t=5/ � 7.1C e�14t=5
:

Since v0 � 0, v is defined and negative for all t > 0. The terminal velocity is

lim
t!1

v.t/ D �7 m/s;

independent of v0. More generally, it can be shown (Exercise 11) that if v is any solution of (4.3.9) such
that v0 � 0 then

lim
t!1

v.t/ D �
r

mg

k

(Figure 4.3.3).
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v = − (mg/k)
1/2

Figure 4.3.3 Solutions of mv0 D �mg C kv2; v.0/ D v0 � 0

Example 4.3.4 A 10-kg mass is launched vertically upward from Earth’s surface with an initial velocity

of v0 m/s. The only forces acting on the mass are gravity and atmospheric resistance proportional to the

square of the speed. Assuming that the atmospheric resistance is 8 N if the speed is 2 m/s, find the time

T required for the mass to reach maximum altitude.

Solution The mass will climb while v > 0 and reach its maximum altitude when v D 0. Therefore

v > 0 for 0 � t < T and v.T / D 0. Although the mass of the object and our assumptions concerning the

forces acting on it are the same as those in Example 3, (4.3.10) does not apply here, since the resisting

force is negative if v > 0; therefore, we replace (4.3.10) by

10v0 D �98 � 2v2: (4.3.15)

Separating variables yields
5

v2 C 49
v0 D �1;

and integrating this yields
5

7
tan�1 v

7
D �t C c:

(Recall that tan�1 u is the number � such that ��=2 < � < �=2 and tan � D u.) Since v.0/ D v0,

c D 5

7
tan�1 v0

7
;

so v is defined implicitly by

5

7
tan�1 v

7
D �t C 5

7
tan�1 v0

7
; 0 � t � T: (4.3.16)
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Figure 4.3.4 Solutions of (4.3.15) for various v0 > 0

Solving this for v yields

v D 7 tan

�

�7t
5

C tan�1 v0

7

�

: (4.3.17)

Using the identity

tan.A � B/ D tanA� tanB

1C tanA tanB

with A D tan�1.v0=7/ and B D 7t=5, and noting that tan.tan�1 �/ D � , we can simplify (4.3.17) to

v D 7
v0 � 7 tan.7t=5/

7C v0 tan.7t=5/
:

Since v.T / D 0 and tan�1.0/ D 0, (4.3.16) implies that

�T C 5

7
tan�1 v0

7
D 0:

Therefore

T D 5

7
tan�1 v0

7
:

Since tan�1.v0=7/ < �=2 for all v0, the time required for the mass to reach its maximum altitude is less

than
5�

14
� 1:122 s

regardless of the initial velocity. Figure 4.3.4 shows graphs of v over Œ0; T � for various values of v0.
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Figure 4.3.5 Escape velocity

Escape Velocity

Suppose a space vehicle is launched vertically and its fuel is exhausted when the vehicle reaches an

altitude h above Earth, where h is sufficiently large so that resistance due to Earth’s atmosphere can be
neglected. Let t D 0 be the time when burnout occurs. Assuming that the gravitational forces of all other

celestial bodies can be neglected, the motion of the vehicle for t > 0 is that of an object with constant

mass m under the influence of Earth’s gravitational force, which we now assume to vary inversely with

the square of the distance from Earth’s center; thus, if we take the upward direction to be positive then

gravitational force on the vehicle at an altitude y above Earth is

F D � K

.y CR/2
; (4.3.18)

where R is Earth’s radius (Figure 4.3.5).

Since F D �mg when y D 0, setting y D 0 in (4.3.18) yields

�mg D � K

R2
I

therefore K D mgR2 and (4.3.18) can be written more specifically as

F D � mgR2

.y CR/2
: (4.3.19)

From Newton’s second law of motion,

F D m
d 2y

dt2
;
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so (4.3.19) implies that
d 2y

dt2
D � gR2

.y CR/2
: (4.3.20)

We’ll show that there’s a number ve, called the escape velocity, with these properties:

1. If v0 � ve then v.t/ > 0 for all t > 0, and the vehicle continues to climb for all t > 0; that is,

it “escapes” Earth. (Is it really so obvious that limt!1 y.t/ D 1 in this case? For a proof, see

Exercise 20.)

2. If v0 < ve then v.t/ decreases to zero and becomes negative. Therefore the vehicle attains a

maximum altitude ym and falls back to Earth.

Since (4.3.20) is second order, we can’t solve it by methods discussed so far. However, we’re concerned

with v rather than y, and v is easier to find. Since v D y0 the chain rule implies that

d 2y

dt2
D dv

dt
D dv

dy

dy

dt
D v

dv

dy
:

Substituting this into (4.3.20) yields the first order separable equation

v
dv

dy
D � gR2

.y CR/2
: (4.3.21)

When t D 0, the velocity is v0 and the altitude is h. Therefore we can obtain v as a function of y by
solving the initial value problem

v
dv

dy
D � gR2

.y CR/2
; v.h/ D v0:

Integrating (4.3.21) with respect to y yields

v2

2
D gR2

y CR
C c: (4.3.22)

Since v.h/ D v0,

c D v2
0

2
� gR2

hCR
;

so (4.3.22) becomes
v2

2
D gR2

y CR
C
�

v2
0

2
� gR2

hCR

�

: (4.3.23)

If

v0 �
�

2gR2

hCR

�1=2

;

the parenthetical expression in (4.3.23) is nonnegative, so v.y/ > 0 for y > h. This proves that there’s

an escape velocity ve . We’ll now prove that

ve D
�

2gR2

hCR

�1=2
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by showing that the vehicle falls back to Earth if

v0 <

�

2gR2

hCR

�1=2

: (4.3.24)

If (4.3.24) holds then the parenthetical expression in (4.3.23) is negative and the vehicle will attain a

maximum altitude ym > h that satisfies the equation

0 D gR2

ym CR
C
�

v2
0

2
� gR2

hCR

�

:

The velocity will be zero at the maximum altitude, and the object will then fall to Earth under the influence

of gravity.

4.3 Exercises

Except where directed otherwise, assume that the magnitude of the gravitational force on an object with

mass m is constant and equal to mg. In exercises involving vertical motion take the upward direction to

be positive.

1. A firefighter who weighs 192 lb slides down an infinitely long fire pole that exerts a frictional

resistive force with magnitude proportional to his speed, with k D 2:5 lb-s/ft. Assuming that he

starts from rest, find his velocity as a function of time and find his terminal velocity.

2. A firefighter who weighs 192 lb slides down an infinitely long fire pole that exerts a frictional

resistive force with magnitude proportional to her speed, with constant of proportionality k. Find

k, given that her terminal velocity is -16 ft/s, and then find her velocity v as a function of t . Assume
that she starts from rest.

3. A boat weighs 64,000 lb. Its propellor produces a constant thrust of 50,000 lb and the water exerts

a resistive force with magnitude proportional to the speed, with k D 2000 lb-s/ft. Assuming that

the boat starts from rest, find its velocity as a function of time, and find its terminal velocity.

4. A constant horizontal force of 10 N pushes a 20 kg-mass through a medium that resists its motion

with .5 N for every m/s of speed. The initial velocity of the mass is 7 m/s in the direction opposite

to the direction of the applied force. Find the velocity of the mass for t > 0.

5. A stone weighing 1/2 lb is thrown upward from an initial height of 5 ft with an initial speed of 32

ft/s. Air resistance is proportional to speed, with k D 1=128 lb-s/ft. Find the maximum height

attained by the stone.

6. A 3200-lb car is moving at 64 ft/s down a 30-degree grade when it runs out of fuel. Find its

velocity after that if friction exerts a resistive force with magnitude proportional to the square of

the speed, with k D 1 lb-s2=ft2. Also find its terminal velocity.

7. A 96 lb weight is dropped from rest in a medium that exerts a resistive force with magnitude

proportional to the speed. Find its velocity as a function of time if its terminal velocity is -128 ft/s.

8. An object with massmmoves vertically through a medium that exerts a resistive force with magni-

tude proportional to the speed. Let y D y.t/ be the altitude of the object at time t , with y.0/ D y0.

Use the results of Example 4.3.1 to show that

y.t/ D y0 C m

k
.v0 � v � gt/:
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9. An object with mass m is launched vertically upward with initial velocity v0 from Earth’s surface

(y0 D 0) in a medium that exerts a resistive force with magnitude proportional to the speed. Find

the time T when the object attains its maximum altitude ym. Then use the result of Exercise 8 to

find ym.

10. An object weighing 256 lb is dropped from rest in a medium that exerts a resistive force with

magnitude proportional to the square of the speed. The magnitude of the resisting force is 1 lb
when jvj D 4 ft/s. Find v for t > 0, and find its terminal velocity.

11. An object with mass m is given an initial velocity v0 � 0 in a medium that exerts a resistive force

with magnitude proportional to the square of the speed. Find the velocity of the object for t > 0,

and find its terminal velocity.

12. An object with mass m is launched vertically upward with initial velocity v0 in a medium that

exerts a resistive force with magnitude proportional to the square of the speed.

(a) Find the time T when the object reaches its maximum altitude.

(b) Use the result of Exercise 11 to find the velocity of the object for t > T .

13. L An object with mass m is given an initial velocity v0 � 0 in a medium that exerts a resistive

force of the form ajvj=.1C jvj/, where a is positive constant.

(a) Set up a differential equation for the speed of the object.

(b) Use your favorite numerical method to solve the equation you found in (a), to convince your-

self that there’s a unique number a0 such that limt!1 s.t/ D 1 if a � a0 and limt!1 s.t/

exists (finite) if a > a0. (We say that a0 is the bifurcation value of a.) Try to find a0 and

limt!1 s.t/ in the case where a > a0. HINT: See Exercise 14.

14. An object of mass m falls in a medium that exerts a resistive force f D f .s/, where s D jvj is
the speed of the object. Assume that f .0/ D 0 and f is strictly increasing and differentiable on

.0;1/.

(a) Write a differential equation for the speed s D s.t/ of the object. Take it as given that all

solutions of this equation with s.0/ � 0 are defined for all t > 0 (which makes good sense

on physical grounds).

(b) Show that if lims!1 f .s/ � mg then limt!1 s.t/ D 1.

(c) Show that if lims!1 f .s/ > mg then limt!1 s.t/ D sT (terminal speed), where f .sT / D
mg. HINT: Use Theorem 2.3.1.

15. A 100-g mass with initial velocity v0 � 0 falls in a medium that exerts a resistive force proportional

to the fourth power of the speed. The resistance is :1 N if the speed is 3 m/s.

(a) Set up the initial value problem for the velocity v of the mass for t > 0.

(b) Use Exercise 14(c) to determine the terminal velocity of the object.

(c) C To confirm your answer to (b), use one of the numerical methods studied in Chapter 3
to compute approximate solutions on Œ0; 1� (seconds) of the initial value problem of (a), with

initial values v0 D 0, �2, �4, . . . , �12. Present your results in graphical form similar to

Figure 4.3.3.

16. A 64-lb object with initial velocity v0 � 0 falls through a dense fluid that exerts a resistive force

proportional to the square root of the speed. The resistance is 64 lb if the speed is 16 ft/s.

(a) Set up the initial value problem for the velocity v of the mass for t > 0.

(b) Use Exercise 14(c) to determine the terminal velocity of the object.

(c) C To confirm your answer to (b), use one of the numerical methods studied in Chapter 3
to compute approximate solutions on Œ0; 4� (seconds) of the initial value problem of (a), with
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initial values v0 D 0, �5, �10, . . . , �30. Present your results in graphical form similar to

Figure 4.3.3.

In Exercises 17-20, assume that the force due to gravity is given by Newton’s law of gravitation. Take the

upward direction to be positive.

17. A space probe is to be launched from a space station 200 miles above Earth. Determine its escape

velocity in miles/s. Take Earth’s radius to be 3960 miles.

18. A space vehicle is to be launched from the moon, which has a radius of about 1080 miles. The

acceleration due to gravity at the surface of the moon is about 5:31 ft/s2. Find the escape velocity

in miles/s.

19. (a) Show that Eqn. (4.3.23) can be rewritten as

v2 D h � y
y CR

v2
e C v2

0 :

(b) Show that if v0 D �ve with 0 � � < 1, then the maximum altitude ym attained by the space

vehicle is

ym D hCR�2

1 � �2
:

(c) By requiring that v.ym/ D 0, use Eqn. (4.3.22) to deduce that if v0 < ve then

jvj D ve

�

.1 � �2/.ym � y/
y CR

�1=2

;

where ym and � are as defined in (b) and y � h.

(d) Deduce from (c) that if v < ve , the vehicle takes equal times to climb from y D h to y D ym

and to fall back from y D ym to y D h.

20. In the situation considered in the discussion of escape velocity, show that limt!1 y.t/ D 1 if

v.t/ > 0 for all t > 0.

HINT: Use a proof by contradiction. Assume that there’s a number ym such that y.t/ � ym for all

t > 0. Deduce from this that there’s positive number ˛ such that y00.t/ � �˛ for all t � 0. Show

that this contradicts the assumption that v.t/ > 0 for all t > 0.

4.4 AUTONOMOUS SECOND ORDER EQUATIONS

A second order differential equation that can be written as

y00 D F.y; y0/ (4.4.1)

where F is independent of t , is said to be autonomous. An autonomous second order equation can be

converted into a first order equation relating v D y0 and y. If we let v D y0, (4.4.1) becomes

v0 D F.y; v/: (4.4.2)

Since

v0 D dv

dt
D dv

dy

dy

dt
D v

dv

dy
; (4.4.3)
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(4.4.2) can be rewritten as

v
dv

dy
D F.y; v/: (4.4.4)

The integral curves of (4.4.4) can be plotted in the .y; v/ plane, which is called the Poincaré phase plane

of (4.4.1). If y is a solution of (4.4.1) then y D y.t/; v D y0.t/ is a parametric equation for an integral

curve of (4.4.4). We’ll call these integral curves trajectories of (4.4.1), and we’ll call (4.4.4) the phase

plane equivalent of (4.4.1).
In this section we’ll consider autonomous equations that can be written as

y00 C q.y; y0/y0 C p.y/ D 0: (4.4.5)

Equations of this form often arise in applications of Newton’s second law of motion. For example,

suppose y is the displacement of a moving object with mass m. It’s reasonable to think of two types

of time-independent forces acting on the object. One type - such as gravity - depends only on position.
We could write such a force as �mp.y/. The second type - such as atmospheric resistance or friction -

may depend on position and velocity. (Forces that depend on velocity are called damping forces.) We

write this force as �mq.y; y0/y0 , where q.y; y0/ is usually a positive function and we’ve put the factor

y0 outside to make it explicit that the force is in the direction opposing the motion. In this case Newton’s,

second law of motion leads to (4.4.5).
The phase plane equivalent of (4.4.5) is

v
dv

dy
C q.y; v/v C p.y/ D 0: (4.4.6)

Some statements that we’ll be making about the properties of (4.4.5) and (4.4.6) are intuitively reasonable,

but difficult to prove. Therefore our presentation in this section will be informal: we’ll just say things

without proof, all of which are true if we assume that p D p.y/ is continuously differentiable for all y

and q D q.y; v/ is continuously differentiable for all .y; v/. We begin with the following statements:

� Statement 1. If y0 and v0 are arbitrary real numbers then (4.4.5) has a unique solution on .�1;1/

such that y.0/ D y0 and y0.0/ D v0.

� Statement 2.) If y D y.t/ is a solution of (4.4.5) and � is any constant then y1 D y.t � �/ is also

a solution of (4.4.5), and y and y1 have the same trajectory.

� Statement 3. If two solutions y and y1 of (4.4.5) have the same trajectory then y1.t/ D y.t � �/

for some constant � .

� Statement 4. Distinct trajectories of (4.4.5) can’t intersect; that is, if two trajectories of (4.4.5)

intersect, they are identical.

� Statement 5. If the trajectory of a solution of (4.4.5) is a closed curve then .y.t/; v.t// traverses

the trajectory in a finite time T , and the solution is periodic with period T ; that is, y.t CT / D y.t/

for all t in .�1;1/.

If y is a constant such that p.y/ D 0 then y � y is a constant solution of (4.4.5). We say that y is an

equilibrium of (4.4.5) and .y; 0/ is a critical point of the phase plane equivalent equation (4.4.6). We say

that the equilibrium and the critical point are stable if, for any given � > 0 no matter how small, there’s a

ı > 0, sufficiently small, such that if

q

.y0 � y/2 C v2
0 < ı

http://www-history.mcs.st-and.ac.uk/Mathematicians/Poincare.html
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then the solution of the initial value problem

y00 C q.y; y0/y0 C p.y/ D 0; y.0/ D y0; y0.0/ D v0

satisfies the inequality
p

.y.t/ � y/2 C .v.t//2 < �

for all t > 0. Figure 4.4.1 illustrates the geometrical interpretation of this definition in the Poincaré phase

plane: if .y0; v0/ is in the smaller shaded circle (with radius ı), then .y.t/; v.t// must be in in the larger

circle (with radius �) for all t > 0.

 y
 y

 v

 ε

 δ

Figure 4.4.1 Stability: if .y0; v0/ is in the smaller circle then .y.t/; v.t// is in the larger circle for all

t > 0

If an equilibrium and the associated critical point are not stable, we say they are unstable. To see if

you really understand what stable means, try to give a direct definition of unstable (Exercise 22). We’ll

illustrate both definitions in the following examples.

The Undamped Case

We’ll begin with the case where q � 0, so (4.4.5) reduces to

y00 C p.y/ D 0: (4.4.7)

We say that this equation - as well as any physical situation that it may model - is undamped. The phase
plane equivalent of (4.4.7) is the separable equation

v
dv

dy
C p.y/ D 0:
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Integrating this yields
v2

2
C P.y/ D c; (4.4.8)

where c is a constant of integration and P.y/ D
R

p.y/ dy is an antiderivative of p.

If (4.4.7) is the equation of motion of an object of massm, thenmv2=2 is the kinetic energy andmP.y/

is the potential energy of the object; thus, (4.4.8) says that the total energy of the object remains constant,

or is conserved. In particular, if a trajectory passes through a given point .y0; v0/ then

c D v2
0

2
C P.y0/:

Example 4.4.1 ŒThe Undamped Spring - Mass System�Consider an object with mass m suspended from

a spring and moving vertically. Let y be the displacement of the object from the position it occupies when

suspended at rest from the spring (Figure 4.4.2).

 y

(a)

 0

(b) (c)

Figure 4.4.2 (a) y > 0 (b) y D 0 (c) y < 0

Assume that if the length of the spring is changed by an amount �L (positive or negative), then the

spring exerts an opposing force with magnitude kj�Lj, where k is a positive constant. In Section 6.1 it

will be shown that if the mass of the spring is negligible compared to m and no other forces act on the

object then Newton’s second law of motion implies that

my00 D �ky; (4.4.9)

which can be written in the form (4.4.7) with p.y/ D ky=m. This equation can be solved easily by a
method that we’ll study in Section 5.2, but that method isn’t available here. Instead, we’ll consider the

phase plane equivalent of (4.4.9).
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 y

 v

Figure 4.4.3 Trajectories of my00 C ky D 0

From (4.4.3), we can rewrite (4.4.9) as the separable equation

mv
dv

dy
D �ky:

Integrating this yields
mv2

2
D �ky

2

2
C c;

which implies that

mv2 C ky2 D � (4.4.10)

(� D 2c). This defines an ellipse in the Poincaré phase plane (Figure 4.4.3).

We can identify � by setting t D 0 in (4.4.10); thus, � D mv2
0 Cky2

0 , where y0 D y.0/ and v0 D v.0/.

To determine the maximum and minimum values of y we set v D 0 in (4.4.10); thus,

ymax D R and ymin D �R; withR D
r

�

k
: (4.4.11)

Equation (4.4.9) has exactly one equilibrium, y D 0, and it’s stable. You can see intuitively why this is
so: if the object is displaced in either direction from equilibrium, the spring tries to bring it back.

In this case we can find y explicitly as a function of t . (Don’t expect this to happen in more complicated

problems!) If v > 0 on an interval I , (4.4.10) implies that

dy

dt
D v D

r

� � ky2

m
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 y = R

 y = − R

 t

 y

Figure 4.4.4 y D R sin.!0t C �/

on I . This is equivalent to

p
k

p

� � ky2

dy

dt
D !0; where !0 D

r

k

m
: (4.4.12)

Since
Z

p
k dy

p

� � ky2
D sin�1

 
s

k

�
y

!

C c D sin�1
� y

R

�

C c

(see (4.4.11)), (4.4.12) implies that that there’s a constant � such that

sin�1
� y

R

�

D !0t C �

or
y D R sin.!0t C �/

for all t in I . Although we obtained this function by assuming that v > 0, you can easily verify that y

satisfies (4.4.9) for all values of t . Thus, the displacement varies periodically between �R and R, with

period T D 2�=!0 (Figure 4.4.4). (If you’ve taken a course in elementary mechanics you may recognize

this as simple harmonic motion.)

Example 4.4.2 ŒThe Undamped Pendulum� Now we consider the motion of a pendulum with mass m,

attached to the end of a weightless rod with length L that rotates on a frictionless axle (Figure 4.4.5). We

assume that there’s no air resistance.
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 m

 y  L

Figure 4.4.5 The undamped pendulum

(a) Stable equilibrium (b) Unstable equilibrium

Figure 4.4.6 (a) Stable equilibrium (b) Unstable equilibrium

Let y be the angle measured from the rest position (vertically downward) of the pendulum, as shown

in Figure 4.4.5. Newton’s second law of motion says that the product ofm and the tangential acceleration

equals the tangential component of the gravitational force; therefore, from Figure 4.4.5,

mLy00 D �mg siny;

or

y00 D �g
L

siny: (4.4.13)

Since sinn� D 0 if n is any integer, (4.4.13) has infinitely many equilibria yn D n� . If n is even, the

mass is directly below the axle (Figure 4.4.6 (a)) and gravity opposes any deviation from the equilibrium.
However, if n is odd, the mass is directly above the axle (Figure 4.4.6 (b)) and gravity increases any

deviation from the equilibrium. Therefore we conclude on physical grounds that y2m D 2m� is stable

and y2mC1 D .2mC 1/� is unstable.

The phase plane equivalent of (4.4.13) is

v
dv

dy
D � g

L
sin y;

where v D y0 is the angular velocity of the pendulum. Integrating this yields

v2

2
D g

L
cosy C c: (4.4.14)

If v D v0 when y D 0, then

c D v2
0

2
� g

L
;
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so (4.4.14) becomes
v2

2
D v2

0

2
� g

L
.1 � cosy/ D v2

0

2
� 2g

L
sin2 y

2
;

which is equivalent to

v2 D v2
0 � v2

c sin2 y

2
; (4.4.15)

where

vc D 2

r

g

L
:

The curves defined by (4.4.15) are the trajectories of (4.4.13). They are periodic with period 2� in y,

which isn’t surprising, since if y D y.t/ is a solution of (4.4.13) then so is yn D y.t/ C 2n� for any

integer n. Figure 4.4.7 shows trajectories over the interval Œ��; ��. From (4.4.15), you can see that if

jv0j > vc then v is nonzero for all t , which means that the object whirls in the same direction forever, as in
Figure 4.4.8. The trajectories associated with this whirling motion are above the upper dashed curve and

below the lower dashed curve in Figure 4.4.7. You can also see from (4.4.15) that if 0 < jv0j < vc ,then

v D 0 when y D ˙ymax, where

ymax D 2 sin�1.jv0j=vc/:

In this case the pendulum oscillates periodically between �ymax and ymax, as shown in Figure 4.4.9. The
trajectories associated with this kind of motion are the ovals between the dashed curves in Figure 4.4.7.

It can be shown (see Exercise 21 for a partial proof) that the period of the oscillation is

T D 8

Z �=2

0

d�
q

v2
c � v2

0 sin2 �

: (4.4.16)

Although this integral can’t be evaluated in terms of familiar elementary functions, you can see that it’s

finite if jv0j < vc .

The dashed curves in Figure 4.4.7 contain four trajectories. The critical points .�; 0/ and .��; 0/ are

the trajectories of the unstable equilibrium solutions y D ˙� . The upper dashed curve connecting (but
not including) them is obtained from initial conditions of the form y.t0/ D 0; v.t0/ D vc . If y is any

solution with this trajectory then

lim
t!1

y.t/ D � and lim
t!�1

y.t/ D ��:

The lower dashed curve connecting (but not including) them is obtained from initial conditions of the

form y.t0/ D 0; v.t0/ D �vc . If y is any solution with this trajectory then

lim
t!1

y.t/ D �� and lim
t!�1

y.t/ D �:

Consistent with this, the integral (4.4.16) diverges to 1 if v0 D ˙vc . (Exercise 21) .

Since the dashed curves separate trajectories of whirling solutions from trajectories of oscillating solu-

tions, each of these curves is called a separatrix.

In general, if (4.4.7) has both stable and unstable equilibria then the separatrices are the curves given

by (4.4.8) that pass through unstable critical points. Thus, if .y; 0/ is an unstable critical point, then

v2

2
C P.y/ D P.y/ (4.4.17)

defines a separatrix passing through .y; 0/.
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 π − π
 x

 y

Figure 4.4.7 Trajectories of the undamped pendulum

Figure 4.4.8 The whirling undamped pendulum

 ymax − ymax

Figure 4.4.9 The oscillating undamped pendulum

Stability and Instability Conditions for y00 C p.y/ D 0

It can be shown (Exercise 23) that an equilibrium y of an undamped equation

y00 C p.y/ D 0 (4.4.18)

is stable if there’s an open interval .a; b/ containing y such that

p.y/ < 0 if a < y < y and p.y/ > 0 if y < y < b: (4.4.19)

If we regard p.y/ as a force acting on a unit mass, (4.4.19) means that the force resists all sufficiently

small displacements from y.

We’ve already seen examples illustrating this principle. The equation (4.4.9) for the undamped spring-

mass system is of the form (4.4.18) with p.y/ D ky=m, which has only the stable equilibrium y D 0. In
this case (4.4.19) holds with a D �1 and b D 1. The equation (4.4.13) for the undamped pendulum is

of the form (4.4.18) with p.y/ D .g=L/ sin y. We’ve seen that y D 2m� is a stable equilibrium if m is

an integer. In this case

p.y/ D siny < 0 if .2m� 1/� < y < 2m�
and

p.y/ > 0 if 2m� < y < .2mC 1/�:
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It can also be shown (Exercise 24) that y is unstable if there’s a b > y such that

p.y/ < 0 if y < y < b (4.4.20)

or an a < y such that

p.y/ > 0 if a < y < y: (4.4.21)

If we regard p.y/ as a force acting on a unit mass, (4.4.20) means that the force tends to increase all
sufficiently small positive displacements from y, while (4.4.21) means that the force tends to increase the

magnitude of all sufficiently small negative displacements from y.

The undamped pendulum also illustrates this principle. We’ve seen that y D .2mC 1/� is an unstable

equilibrium if m is an integer. In this case

sin y < 0 if .2mC 1/� < y < .2mC 2/�;

so (4.4.20) holds with b D .2mC 2/� , and

siny > 0 if 2m� < y < .2mC 1/�;

so (4.4.21) holds with a D 2m� .

Example 4.4.3 The equation

y00 C y.y � 1/ D 0 (4.4.22)

is of the form (4.4.18) with p.y/ D y.y � 1/. Therefore y D 0 and y D 1 are the equilibria of (4.4.22).

Since

y.y � 1/ > 0 if y < 0 or y > 1;

< 0 if 0 < y < 1;

y D 0 is unstable and y D 1 is stable.

The phase plane equivalent of (4.4.22) is the separable equation

v
dv

dy
C y.y � 1/ D 0:

Integrating yields
v2

2
C y3

3
� y2

2
D C;

which we rewrite as

v2 C 1

3
y2.2y � 3/ D c (4.4.23)

after renaming the constant of integration. These are the trajectories of (4.4.22). If y is any solution of

(4.4.22), the point .y.t/; v.t// moves along the trajectory of y in the direction of increasing y in the upper
half plane (v D y0 > 0), or in the direction of decreasing y in the lower half plane (v D y0 < 0).

Figure 4.4.10 shows typical trajectories. The dashed curve through the critical point .0; 0/, obtained by

setting c D 0 in (4.4.23), separates the y-v plane into regions that contain different kinds of trajectories;

again, we call this curve a separatrix. Trajectories in the region bounded by the closed loop (b) are closed

curves, so solutions associated with them are periodic. Solutions associated with other trajectories are not
periodic. If y is any such solution with trajectory not on the separatrix, then

lim
t!1

y.t/ D �1; lim
t!�1

y.t/ D �1;

lim
t!1

v.t/ D �1; lim
t!�1

v.t/ D 1:
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1  y

 v

(a) (b)

(c) (b)

Figure 4.4.10 Trajectories of y00 C y.y � 1/ D 0

The separatrix contains four trajectories of (4.4.22). One is the point .0; 0/, the trajectory of the equi-

librium y D 0. Since distinct trajectories can’t intersect, the segments of the separatrix marked (a), (b),

and (c) – which don’t include .0; 0/ – are distinct trajectories, none of which can be traversed in finite

time. Solutions with these trajectories have the following asymptotic behavior:

lim
t!1

y.t/ D 0; lim
t!�1

y.t/ D �1;

lim
t!1

v.t/ D 0; lim
t!�1

v.t/ D 1 (on (a))

lim
t!1

y.t/ D 0; lim
t!�1

y.t/ D 0;

lim
t!1

v.t/ D 0; lim
t!�1

v.t/ D 0 (on (b))

lim
t!1

y.t/ D �1; lim
t!�1

y.t/ D 0;

lim
t!1

v.t/ D �1; lim
t!�1

v.t/ D 0 (on (c)):

:

The Damped Case

The phase plane equivalent of the damped autonomous equation

y00 C q.y; y0/y0 C p.y/ D 0 (4.4.24)

is

v
dv

dy
C q.y; v/v C p.y/ D 0:

This equation isn’t separable, so we can’t solve it for v in terms of y, as we did in the undamped case,
and conservation of energy doesn’t hold. (For example, energy expended in overcoming friction is lost.)

However, we can study the qualitative behavior of its solutions by rewriting it as

dv

dy
D �q.y; v/� p.y/

v
(4.4.25)
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and considering the direction fields for this equation. In the following examples we’ll also be showing

computer generated trajectories of this equation, obtained by numerical methods. The exercises call for

similar computations. The methods discussed in Chapter 3 are not suitable for this task, since p.y/=v in

(4.4.25) is undefined on the y axis of the Poincaré phase plane. Therefore we’re forced to apply numerical

methods briefly discussed in Section 10.1 to the system

y0 D v

v0 D �q.y; v/v � p.y/;

which is equivalent to (4.4.24) in the sense defined in Section 10.1. Fortunately, most differential equation
software packages enable you to do this painlessly.

In the text we’ll confine ourselves to the case where q is constant, so (4.4.24) and (4.4.25) reduce to

y00 C cy0 C p.y/ D 0 (4.4.26)

and
dv

dy
D �c � p.y/

v
:

(We’ll consider more general equations in the exercises.) The constant c is called the damping constant.

In situations where (4.4.26) is the equation of motion of an object, c is positive; however, there are

situations where c may be negative.

The Damped Spring-Mass System

Earlier we considered the spring - mass system under the assumption that the only forces acting on the

object were gravity and the spring’s resistance to changes in its length. Now we’ll assume that some

mechanism (for example, friction in the spring or atmospheric resistance) opposes the motion of the
object with a force proportional to its velocity. In Section 6.1 it will be shown that in this case Newton’s

second law of motion implies that

my00 C cy0 C ky D 0; (4.4.27)

where c > 0 is the damping constant. Again, this equation can be solved easily by a method that

we’ll study in Section 5.2, but that method isn’t available here. Instead, we’ll consider its phase plane
equivalent, which can be written in the form (4.4.25) as

dv

dy
D � c

m
� ky

mv
: (4.4.28)

(A minor note: the c in (4.4.26) actually corresponds to c=m in this equation.) Figure 4.4.11 shows a
typical direction field for an equation of this form. Recalling that motion along a trajectory must be in the

direction of increasing y in the upper half plane (v > 0) and in the direction of decreasing y in the lower

half plane (v < 0), you can infer that all trajectories approach the origin in clockwise fashion. To confirm

this, Figure 4.4.12 shows the same direction field with some trajectories filled in. All the trajectories

shown there correspond to solutions of the initial value problem

my00 C cy0 C ky D 0; y.0/ D y0; y0.0/ D v0;

where

mv2
0 C ky2

0 D � .a positive constant/I
thus, if there were no damping (c D 0), all the solutions would have the same dashed elliptic trajectory,

shown in Figure 4.4.14.
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Figure 4.4.11 A typical direction field for
my00 C cy0 C ky D 0 with 0 < c < c1
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Figure 4.4.12 Figure 4.4.11 with some trajectories
added

Solutions corresponding to the trajectories in Figure 4.4.12 cross the y-axis infinitely many times. The

corresponding solutions are said to be oscillatory (Figure 4.4.13) It is shown in Section 6.2 that there’s

a number c1 such that if 0 � c < c1 then all solutions of (4.4.27) are oscillatory, while if c � c1, no
solutions of (4.4.27) have this property. (In fact, no solution not identically zero can have more than two

zeros in this case.) Figure 4.4.14 shows a direction field and some integral curves for (4.4.28) in this case.

 t

 y

Figure 4.4.13 An oscillatory solution of my00 C cy0 C ky D 0

Example 4.4.4 (The Damped Pendulum) Now we return to the pendulum. If we assume that some

mechanism (for example, friction in the axle or atmospheric resistance) opposes the motion of the pen-

dulum with a force proportional to its angular velocity, Newton’s second law of motion implies that

mLy00 D �cy0 �mg siny; (4.4.29)

where c > 0 is the damping constant. (Again, a minor note: the c in (4.4.26) actually corresponds to
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c=mL in this equation.) To plot a direction field for (4.4.29) we write its phase plane equivalent as

dv

dy
D � c

mL
� g

Lv
siny:

Figure 4.4.15 shows trajectories of four solutions of (4.4.29), all satisfying y.0/ D 0. For each m D 0, 1,

2, 3, imparting the initial velocity v.0/ D vm causes the pendulum to make m complete revolutions and
then settle into decaying oscillation about the stable equilibrium y D 2m� .
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Figure 4.4.14 A typical direction field for my00 C cy0 C ky D 0 with c > c1
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 v
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 v
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 v
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 v
0

 y = 2π  y = 4π  y = 6π

Figure 4.4.15 Four trajectories of the damped pendulum
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4.4 Exercises

In Exercises 1–4 find the equations of the trajectories of the given undamped equation. Identify the

equilibrium solutions, determine whether they are stable or unstable, and plot some trajectories. HINT:

Use Eqn. (4.4.8) to obtain the equations of the trajectories.

1. C/G y00 C y3 D 0 2. C/G y00 C y2 D 0

3. C/G y00 C yjyj D 0 4. C/G y00 C ye�y D 0

In Exercises 5–8 find the equations of the trajectories of the given undamped equation. Identify the

equilibrium solutions, determine whether they are stable or unstable, and find the equations of the sepa-

ratrices (that is, the curves through the unstable equilibria). Plot the separatrices and some trajectories

in each of the regions of Poincaré plane determined by them. HINT: Use Eqn. (4.4.17) to determine the

separatrices.

5. C/G y00 � y3 C 4y D 0 6. C/G y00 C y3 � 4y D 0

7. C/G y00 C y.y2 � 1/.y2 � 4/ D 0 8. C/G y00 C y.y � 2/.y � 1/.y C 2/ D 0

In Exercises 9–12 plot some trajectories of the given equation for various values (positive, negative, zero)

of the parameter a. Find the equilibria of the equation and classify them as stable or unstable. Explain

why the phase plane plots corresponding to positive and negative values of a differ so markedly. Can you

think of a reason why zero deserves to be called the critical value of a?

9. L y00 C y2 � a D 0 10. L y00 C y3 � ay D 0

11. L y00 � y3 C ay D 0 12. L y00 C y � ay3 D 0

In Exercises 13-18 plot trajectories of the given equation for c D 0 and small nonzero (positive and

negative) values of c to observe the effects of damping.

13. L y00 C cy0 C y3 D 0 14. L y00 C cy0 � y D 0

15. L y00 C cy0 C y3 D 0 16. L y00 C cy0 C y2 D 0

17. L y00 C cy0 C yjyj D 0 18. L y00 C y.y � 1/C cy D 0

19. L The van der Pol equation

y00 � �.1 � y2/y0 C y D 0; .A/

where � is a positive constant and y is electrical current (Section 6.3), arises in the study of an

electrical circuit whose resistive properties depend upon the current. The damping term

��.1 � y2/y0 works to reduce jyj if jyj < 1 or to increase jyj if jyj > 1. It can be shown that

http://www-history.mcs.st-and.ac.uk/Mathematicians/Van_der_Pol.html
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van der Pol’s equation has exactly one closed trajectory, which is called a limit cycle. Trajectories

inside the limit cycle spiral outward to it, while trajectories outside the limit cycle spiral inward to it

(Figure 4.4.16). Use your favorite differential equations software to verify this for� D :5; 1:1:5; 2.

Use a grid with �4 < y < 4 and �4 < v < 4.

 y

 v

Figure 4.4.16 Trajectories of van der Pol’s equation

20. L Rayleigh’s equation,

y00 � �.1 � .y0/2=3/y0 C y D 0

also has a limit cycle. Follow the directions of Exercise 19 for this equation.

21. In connection with Eqn (4.4.15), suppose y.0/ D 0 and y0.0/ D v0, where 0 < v0 < vc .

(a) Let T1 be the time required for y to increase from zero to ymax D 2 sin�1.v0=vc/. Show that

dy

dt
D
q

v2
0 � v2

c sin2 y=2; 0 � t < T1: .A/

(b) Separate variables in (A) and show that

T1 D
Z ymax

0

du
q

v2
0 � v2

c sin2 u=2

.B/

(c) Substitute sinu=2 D .v0=vc/ sin � in (B) to obtain

T1 D 2

Z �=2

0

d�
q

v2
c � v2

0 sin2 �

: .C/

http://www-history.mcs.st-and.ac.uk/Mathematicians/Rayleigh.html
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(d) Conclude from symmetry that the time required for .y.t/; v.t// to traverse the trajectory

v2 D v2
0 � v2

c sin2 y=2

is T D 4T1, and that consequently y.t C T / D y.t/ and v.t C T / D v.t/; that is, the

oscillation is periodic with period T .

(e) Show that if v0 D vc , the integral in (C) is improper and diverges to 1. Conclude from this

that y.t/ < � for all t and limt!1 y.t/ D � .

22. Give a direct definition of an unstable equilibrium of y00 C p.y/ D 0.

23. Let p be continuous for all y and p.0/ D 0. Suppose there’s a positive number � such that
p.y/ > 0 if 0 < y � � and p.y/ < 0 if �� � y < 0. For 0 < r � � let

˛.r/ D min

�Z r

0

p.x/ dx;

Z 0

�r

jp.x/j dx
�

and ˇ.r/ D max

�Z r

0

p.x/ dx;

Z 0

�r

jp.x/j dx
�

:

Let y be the solution of the initial value problem

y00 C p.y/ D 0; y.0/ D v0; y0.0/ D v0;

and define c.y0; v0/ D v2
0 C 2

R y0

0
p.x/ dx.

(a) Show that

0 < c.y0; v0/ < v
2
0 C 2ˇ.jy0j/ if 0 < jy0j � �:

(b) Show that

v2 C 2

Z y

0

p.x/ dx D c.y0; v0/; t > 0:

(c) Conclude from (b) that if c.y0; v0/ < 2˛.r/ then jyj < r; t > 0.

(d) Given � > 0, let ı > 0 be chosen so that

ı2 C 2ˇ.ı/ < max
n

�2=2; 2˛.�=
p
2/
o

:

Show that if
q

y2
0 C v2

0 < ı then
p

y2 C v2 < � for t > 0, which implies that y D 0 is a

stable equilibrium of y00 C p.y/ D 0.

(e) Now let p be continuous for all y and p.y/ D 0, where y is not necessarily zero. Suppose

there’s a positive number � such that p.y/ > 0 if y < y � y C � and p.y/ < 0 if

y � � � y < y. Show that y is a stable equilibrium of y00 C p.y/ D 0.

24. Let p be continuous for all y.

(a) Supposep.0/ D 0 and there’s a positive number � such that p.y/ < 0 if 0 < y � �. Let � be

any number such that 0 < � < �. Show that if y is the solution of the initial value problem

y00 C p.y/ D 0; y.0/ D y0; y0.0/ D 0

with 0 < y0 < �, then y.t/ � � for some t > 0. Conclude that y D 0 is an unstable

equilibrium of y00 Cp.y/ D 0. HINT: Let k D miny0�x�� .�p.x//, which is positive. Show

that if y.t/ < � for 0 � t < T then kT 2 < 2.� � y0/.

(b) Now let p.y/ D 0, where y isn’t necessarily zero. Suppose there’s a positive number � such
that p.y/ < 0 if y < y � y C �. Show that y is an unstable equilibrium of y00 C p.y/ D 0.
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(c) Modify your proofs of (a) and (b) to show that if there’s a positive number � such that

p.y/ > 0 if y � � � y < y, then y is an unstable equilibrium of y00 C p.y/ D 0.

4.5 APPLICATIONS TO CURVES

One-Parameter Families of Curves

We begin with two examples of families of curves generated by varying a parameter over a set of real

numbers.

Example 4.5.1 For each value of the parameter c, the equation

y � cx2 D 0 (4.5.1)

defines a curve in the xy-plane. If c ¤ 0, the curve is a parabola through the origin, opening upward if

c > 0 or downward if c < 0. If c D 0, the curve is the x axis (Figure 4.5.1).

 x

 y

Figure 4.5.1 A family of curves defined by y � cx2 D 0

Example 4.5.2 For each value of the parameter c the equation

y D x C c (4.5.2)

defines a line with slope 1(Figure 4.5.2).
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 x

 y

Figure 4.5.2 A family of lines defined by y D xC c

 x

 y

Figure 4.5.3 A family of circles defined by
x2 C y2 � c2 D 0

Definition 4.5.1 An equation that can be written in the form

H.x; y; c/ D 0 (4.5.3)

is said to define a one-parameter family of curves if; for each value of c in in some nonempty set of real

numbers; the set of points .x; y/ that satisfy (4.5.3) forms a curve in the xy-plane.

Equations (4.5.1) and (4.5.2) define one–parameter families of curves. (Although (4.5.2) isn’t in the

form (4.5.3), it can be written in this form as y � x � c D 0.)

Example 4.5.3 If c > 0, the graph of the equation

x2 C y2 � c D 0 (4.5.4)

is a circle with center at .0; 0/ and radius
p
c. If c D 0, the graph is the single point .0; 0/. (We don’t

regard a single point as a curve.) If c < 0, the equation has no graph. Hence, (4.5.4) defines a one–
parameter family of curves for positive values of c. This family consists of all circles centered at .0; 0/

(Figure 4.5.3).

Example 4.5.4 The equation

x2 C y2 C c2 D 0

does not define a one-parameter family of curves, since no .x; y/ satisfies the equation if c ¤ 0, and only

the single point .0; 0/ satisfies it if c D 0.

Recall from Section 1.2 that the graph of a solution of a differential equation is called an integral curve

of the equation. Solving a first order differential equation usually produces a one–parameter family of
integral curves of the equation. Here we are interested in the converse problem: given a one–parameter

family of curves, is there a first order differential equation for which every member of the family is an

integral curve. This suggests the next definition.

Definition 4.5.2 If every curve in a one-parameter family defined by the equation

H.x; y; c/ D 0 (4.5.5)
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is an integral curve of the first order differential equation

F.x; y; y0/ D 0; (4.5.6)

then (4.5.6) is said to be a differential equation for the family.

To find a differential equation for a one–parameter family we differentiate its defining equation (4.5.5)

implicitly with respect to x, to obtain

Hx.x; y; c/CHy.x; y; c/y
0 D 0: (4.5.7)

If this equation doesn’t, then it’s a differential equation for the family. If it does contain c, it may be

possible to obtain a differential equation for the family by eliminating c between (4.5.5) and (4.5.7).

Example 4.5.5 Find a differential equation for the family of curves defined by

y D cx2: (4.5.8)

Solution Differentiating (4.5.8) with respect to x yields

y0 D 2cx:

Therefore c D y0=2x, and substituting this into (4.5.8) yields

y D xy0

2

as a differential equation for the family of curves defined by (4.5.8). The graph of any function of the
form y D cx2 is an integral curve of this equation.

The next example shows that members of a given family of curves may be obtained by joining integral

curves for more than one differential equation.

Example 4.5.6

(a) Try to find a differential equation for the family of lines tangent to the parabola y D x2.

(b) Find two tangent lines to the parabola y D x2 that pass through .2; 3/, and find the points of

tangency.

SOLUTION(a) The equation of the line through a given point .x0; y0/ with slopem is

y D y0 Cm.x � x0/: (4.5.9)

If .x0; y0/ is on the parabola, then y0 D x2
0 and the slope of the tangent line through (x0; x

2
0/ ism D 2x0;

hence, (4.5.9) becomes
y D x2

0 C 2x0.x � x0/;

or, equivalently,

y D �x2
0 C 2x0x: (4.5.10)

Here x0 plays the role of the constant c in Definition 4.5.1; that is, varying x0 over .�1;1/ produces

the family of tangent lines to the parabola y D x2.

Differentiating (4.5.10) with respect to x yields y0 D 2x0.. We can express x0 in terms of x and y by

rewriting (4.5.10) as
x2

0 � 2x0x C y D 0
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and using the quadratic formula to obtain

x0 D x ˙
p

x2 � y: (4.5.11)

We must choose the plus sign in (4.5.11) if x < x0 and the minus sign if x > x0; thus,

x0 D
�

x C
p

x2 � y
�

if x < x0

and

x0 D
�

x �
p

x2 � y
�

if x > x0:

Since y0 D 2x0, this implies that

y0 D 2
�

x C
p

x2 � y
�

; if x < x0 (4.5.12)

and

y0 D 2
�

x �
p

x2 � y
�

; if x > x0: (4.5.13)

Neither (4.5.12) nor (4.5.13) is a differential equation for the family of tangent lines to the parabola

y D x2. However, if each tangent line is regarded as consisting of two tangent half lines joined at the

point of tangency, (4.5.12) is a differential equation for the family of tangent half lines on which x is less

than the abscissa of the point of tangency (Figure 4.5.4(a)), while (4.5.13) is a differential equation for
the family of tangent half lines on which x is greater than this abscissa (Figure 4.5.4(b)). The parabola

y D x2 is also an integral curve of both (4.5.12) and (4.5.13).

 y  y

 x x

(a) (b)

Figure 4.5.4

SOLUTION(b) From (4.5.10) the point .x; y/ D .2; 3/ is on the tangent line through .x0; x
2
0/ if and only

if
3 D �x2

0 C 4x0;
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which is equivalent to

x2
0 � 4x0 C 3 D .x0 � 3/.x0 � 1/ D 0:

Letting x0 D 3 in (4.5.10) shows that .2; 3/ is on the line

y D �9C 6x;

which is tangent to the parabola at .x0; x
2
0/ D .3; 9/, as shown in Figure 4.5.5

Letting x0 D 1 in (4.5.10) shows that .2; 3/ is on the line

y D �1C 2x;

which is tangent to the parabola at .x0; x
2
0/ D .1; 1/, as shown in Figure 4.5.5.

 y

1

2

3

4

5

6

7

8

9

10

11

 x
1 2 3

 y = x
2

Figure 4.5.5

Geometric Problems

We now consider some geometric problems that can be solved by means of differential equations.

Example 4.5.7 Find curves y D y.x/ such that every point .x0; y.x0// on the curve is the midpoint
of the line segment with endpoints on the coordinate axes and tangent to the curve at .x0; y.x0// (Fig-

ure 4.5.6).

Solution The equation of the line tangent to the curve at P D .x0; y.x0/ is

y D y.x0/C y0.x0/.x � x0/:

If we denote the x and y intercepts of the tangent line by xI and yI (Figure 4.5.6), then

0 D y.x0/C y0.x0/.xI � x0/ (4.5.14)
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and

yI D y.x0/ � y0.x0/x0: (4.5.15)

From Figure 4.5.6, P is the midpoint of the line segment connecting .xI ; 0/ and .0; yI / if and only if

xI D 2x0 and yI D 2y.x0/. Substituting the first of these conditions into (4.5.14) or the second into
(4.5.15) yields

y.x0/C y0.x0/x0 D 0:

Since x0 is arbitrary we drop the subscript and conclude that y D y.x/ satisfies

y C xy0 D 0;

which can be rewritten as

.xy/0 D 0:

Integrating yields xy D c, or

y D c

x
:

If c D 0 this curve is the line y D 0, which does not satisfy the geometric requirements imposed by the

problem; thus, c ¤ 0, and the solutions define a family of hyperbolas (Figure 4.5.7).

 x

 y

 x
I

 .5 x
I

 y
I

.5 y
I

Figure 4.5.6

 x

 y

Figure 4.5.7

Example 4.5.8 Find curves y D y.x/ such that the tangent line to the curve at any point .x0; y.x0//

intersects the x-axis at .x2
0 ; 0/. Figure 4.5.8 illustrates the situation in the case where the curve is in the

first quadrant and 0 < x < 1.

Solution The equation of the line tangent to the curve at .x0; y.x0// is

y D y.x0/C y0.x0/.x � x0/:

Since .x2
0 ; 0/ is on the tangent line,

0 D y.x0/C y0.x0/.x
2
0 � x0/:

Since x0 is arbitrary we drop the subscript and conclude that y D y.x/ satisfies

y C y0.x2 � x/ D 0:
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 x
0

x
0

2  x

 y

Figure 4.5.8

 x = 1
 x

 y

Figure 4.5.9

Therefor
y0

y
D � 1

x2 � x D � 1

x.x � 1/
D 1

x
� 1

x � 1 ;

so

ln jyj D ln jxj � ln jx � 1j C k D ln
ˇ

ˇ

ˇ

x

x � 1

ˇ

ˇ

ˇ
C k;

and

y D cx

x � 1
:

If c D 0, the graph of this function is the x-axis. If c ¤ 0, it’s a hyperbola with vertical asymptote x D 1

and horizontal asymptote y D c. Figure 4.5.9 shows the graphs for c ¤ 0.

Orthogonal Trajectories

Two curves C1 and C2 are said to be orthogonal at a point of intersection .x0; y0/ if they have perpen-

dicular tangents at .x0; y0/. (Figure 4.5.10). A curve is said to be an orthogonal trajectory of a given
family of curves if it’s orthogonal to every curve in the family. For example, every line through the origin

is an orthogonal trajectory of the family of circles centered at the origin. Conversely, any such circle is

an orthogonal trajectory of the family of lines through the origin (Figure 4.5.11).

Orthogonal trajectories occur in many physical applications. For example, if u D u.x; y/ is the

temperature at a point .x; y/, the curves defined by

u.x; y/ D c (4.5.16)

are called isothermal curves. The orthogonal trajectories of this family are called heat-flow lines, because

at any given point the direction of maximum heat flow is perpendicular to the isothermal through the

point. If u represents the potential energy of an object moving under a force that depends upon .x; y/,

the curves (4.5.16) are called equipotentials, and the orthogonal trajectories are called lines of force.

From analytic geometry we know that two nonvertical lines L1 and L2 with slopes m1 and m2, re-
spectively, are perpendicular if and only if m2 D �1=m1; therefore, the integral curves of the differential

equation

y0 D � 1

f .x; y/
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 x

 y

Figure 4.5.10 Curves orthogonal at a point of

intersection

 x

 y

Figure 4.5.11 Orthogonal families of circles and

lines

are orthogonal trajectories of the integral curves of the differential equation

y0 D f .x; y/;

because at any point .x0; y0/ where curves from the two families intersect the slopes of the respective

tangent lines are

m1 D f .x0; y0/ and m2 D � 1

f .x0; y0/
:

This suggests a method for finding orthogonal trajectories of a family of integral curves of a first order

equation.

Finding Orthogonal Trajectories

Step 1. Find a differential equation
y0 D f .x; y/

for the given family.

Step 2. Solve the differential equation

y0 D � 1

f .x; y/

to find the orthogonal trajectories.

Example 4.5.9 Find the orthogonal trajectories of the family of circles

x2 C y2 D c2 .c > 0/: (4.5.17)

Solution To find a differential equation for the family of circles we differentiate (4.5.17) implicitly with

respect to x to obtain
2x C 2yy0 D 0;
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or

y0 D �x
y
:

Therefore the integral curves of

y0 D y

x

are orthogonal trajectories of the given family. We leave it to you to verify that the general solution of

this equation is
y D kx;

where k is an arbitrary constant. This is the equation of a nonvertical line through .0; 0/. The y axis is

also an orthogonal trajectory of the given family. Therefore every line through the origin is an orthogonal

trajectory of the given family (4.5.17) (Figure 4.5.11). This is consistent with the theorem of plane
geometry which states that a diameter of a circle and a tangent line to the circle at the end of the diameter

are perpendicular.

Example 4.5.10 Find the orthogonal trajectories of the family of hyperbolas

xy D c .c ¤ 0/ (4.5.18)

(Figure 4.5.7).

Solution Differentiating (4.5.18) implicitly with respect to x yields

y C xy0 D 0;

or

y0 D �y
x

I

thus, the integral curves of

y0 D x

y

are orthogonal trajectories of the given family. Separating variables yields

y0y D x

and integrating yields
y2 � x2 D k;

which is the equation of a hyperbola if k ¤ 0, or of the lines y D x and y D �x if k D 0 (Figure 4.5.12).

Example 4.5.11 Find the orthogonal trajectories of the family of circles defined by

.x � c/2 C y2 D c2 .c ¤ 0/: (4.5.19)

These circles are centered on the x-axis and tangent to the y-axis (Figure 4.5.13(a)).

Solution Multiplying out the left side of (4.5.19) yields

x2 � 2cx C y2 D 0; (4.5.20)
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 x

 y

Figure 4.5.12 Orthogonal trajectories of the hyperbolas xy D c

and differentiating this implicitly with respect to x yields

2.x � c/C 2yy0 D 0: (4.5.21)

From (4.5.20),

c D x2 C y2

2x
;

so

x � c D x � x2 C y2

2x
D x2 � y2

2x
:

Substituting this into (4.5.21) and solving for y0 yields

y0 D y2 � x2

2xy
: (4.5.22)

The curves defined by (4.5.19) are integral curves of (4.5.22), and the integral curves of

y0 D 2xy

x2 � y2

are orthogonal trajectories of the family (4.5.19). This is a homogeneous nonlinear equation, which we

studied in Section 2.4. Substituting y D ux yields

u0x C u D 2x.ux/

x2 � .ux/2
D 2u

1 � u2
;

so

u0x D 2u

1 � u2
� u D u.u2 C 1/

1 � u2
;
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Separating variables yields
1 � u2

u.u2 C 1/
u0 D 1

x
;

or, equivalently,
�

1

u
� 2u

u2 C 1

�

u0 D 1

x
:

Therefore

ln juj � ln.u2 C 1/ D ln jxj C k:

By substitutingu D y=x, we see that

ln jyj � ln jxj � ln.x2 C y2/C ln.x2/ D ln jxj C k;

which, since ln.x2/ D 2 ln jxj, is equivalent to

ln jyj � ln.x2 C y2/ D k;

or

jyj D ek.x2 C y2/:

To see what these curves are we rewrite this equation as

x2 C jyj2 � e�kjyj D 0

and complete the square to obtain

x2 C .jyj � e�k=2/2 D .e�k=2/2:

This can be rewritten as

x2 C .y � h/2 D h2;

where

h D

8

ˆ

<

ˆ

:

e�k

2
if y � 0;

�e
�k

2
if y � 0:

Thus, the orthogonal trajectories are circles centered on the y axis and tangent to the x axis (Fig-

ure 4.5.13(b)). The circles for which h > 0 are above the x-axis, while those for which h < 0 are

below.

 y  y

 x x

(a) (b)

Figure 4.5.13 (a) The circles .x � c/2 C y2 D c2 (b) The circles x2 C .y � h/2 D h2
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4.5 Exercises

In Exercises 1–8 find a first order differential equation for the given family of curves.

1. y.x2 C y2/ D c 2. exy D cy

3. ln jxyj D c.x2 C y2/ 4. y D x1=2 C cx

5. y D ex2 C ce�x2

6. y D x3 C c

x

7. y D sinx C cex
8. y D ex C c.1 C x2/

9. Show that the family of circles

.x � x0/
2 C y2 D 1; �1 < x0 < 1;

can be obtained by joining integral curves of two first order differential equations. More specifi-

cally, find differential equations for the families of semicircles

.x � x0/
2 C y2 D 1; x0 < x < x0 C 1; �1 < x0 < 1;

.x � x0/
2 C y2 D 1; x0 � 1 < x < x0; �1 < x0 < 1:

10. Suppose f and g are differentiable for all x. Find a differential equation for the family of functions
y D f C cg (c=constant).

In Exercises 11–13 find a first order differential equation for the given family of curves.

11. Lines through a given point .x0; y0/.

12. Circles through .�1; 0/ and .1; 0/.

13. Circles through .0; 0/ and .0; 2/.

14. Use the method Example 4.5.6(a) to find the equations of lines through the given points tangent to

the parabola y D x2. Also, find the points of tangency.

(a) .5; 9/ (b) .6; 11/ (c) .�6; 20/ (d) .�3; 5/
15. (a) Show that the equation of the line tangent to the circle

x2 C y2 D 1 .A/

at a point .x0; y0/ on the circle is

y D 1 � x0x

y0

if x0 ¤ ˙1: .B/

(b) Show that if y0 is the slope of a nonvertical tangent line to the circle (A) and .x; y/ is a point

on the tangent line then

.y0/2.x2 � 1/ � 2xyy0 C y2 � 1 D 0: .C/
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(c) Show that the segment of the tangent line (B) on which .x � x0/=y0 > 0 is an integral curve

of the differential equation

y0 D xy �
p

x2 C y2 � 1
x2 � 1 ; .D/

while the segment on which .x � x0/=y0 < 0 is an integral curve of the differential equation

y0 D xy C
p

x2 C y2 � 1

x2 � 1 : .E/

HINT: Use the quadratic formula to solve .C/ for y0 . Then substitute (B) for y and choose

the ˙ sign in the quadratic formula so that the resulting expression for y0 reduces to the

known slope y0 D �x0=y0.

(d) Show that the upper and lower semicircles of (A) are also integral curves of (D) and (E).

(e) Find the equations of two lines through (5,5) tangent to the circle (A), and find the points of

tangency.

16. (a) Show that the equation of the line tangent to the parabola

x D y2 .A/

at a point .x0; y0/ ¤ .0; 0/ on the parabola is

y D y0

2
C x

2y0

: .B/

(b) Show that if y0 is the slope of a nonvertical tangent line to the parabola (A) and .x; y/ is a

point on the tangent line then

4x2.y0/2 � 4xyy0 C x D 0: .C/

(c) Show that the segment of the tangent line defined in (a) on which x > x0 is an integral curve

of the differential equation

y0 D y C
p

y2 � x
2x

; .D/

while the segment on which x < x0 is an integral curve of the differential equation

y0 D y �
p

y2 � x
2x

; .E/

HINT: Use the quadratic formula to solve .C/ for y0 . Then substitute (B) for y and choose

the ˙ sign in the quadratic formula so that the resulting expression for y0 reduces to the

known slope y0 D 1

2y0

.

(d) Show that the upper and lower halves of the parabola (A), given by y D p
x and y D �p

x

for x > 0, are also integral curves of (D) and (E).

17. Use the results of Exercise 16 to find the equations of two lines tangent to the parabola x D y2

and passing through the given point. Also find the points of tangency.

(a) .�5; 2/ (b) .�4; 0/ (c) .7; 4/ (d) .5;�3/
18. Find a curve y D y.x/ through (1,2) such that the tangent to the curve at any point .x0; y.x0//

intersects the x axis at xI D x0=2.
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19. Find all curves y D y.x/ such that the tangent to the curve at any point .x0; y.x0// intersects the

x axis at xI D x3
0 .

20. Find all curves y D y.x/ such that the tangent to the curve at any point passes through a given

point .x1; y1/.

21. Find a curve y D y.x/ through .1;�1/ such that the tangent to the curve at any point .x0; y.x0//

intersects the y axis at yI D x3
0 .

22. Find all curves y D y.x/ such that the tangent to the curve at any point .x0; y.x0// intersects the

y axis at yI D x0.

23. Find a curve y D y.x/ through .0; 2/ such that the normal to the curve at any point .x0; y.x0//

intersects the x axis at xI D x0 C 1.

24. Find a curve y D y.x/ through .2; 1/ such that the normal to the curve at any point .x0; y.x0//

intersects the y axis at yI D 2y.x0/.

In Exercises 25–29 find the orthogonal trajectories of the given family of curves.

25. x2 C 2y2 D c2 26. x2 C 4xy C y2 D c

27. y D ce2x
28. xyex2 D c

29. y D cex

x
30. Find a curve through .�1; 3/ orthogonal to every parabola of the form

y D 1C cx2

that it intersects. Which of these parabolas does the desired curve intersect?

31. Show that the orthogonal trajectories of

x2 C 2axy C y2 D c

satisfy

jy � xjaC1jy C xja�1 D k:

32. If linesL and L1 intersect at .x0; y0/ and ˛ is the smallest angle through which L must be rotated

counterclockwise about .x0; y0/ to bring it into coincidence with L1, we say that ˛ is the angle

from L to L1; thus, 0 � ˛ < � . If L and L1 are tangents to curves C and C1, respectively, that

intersect at .x0; y0/, we say that C1 intersects C at the angle ˛. Use the identity

tan.AC B/ D tanAC tanB

1 � tanA tanB

to show that if C and C1 are intersecting integral curves of

y0 D f .x; y/ and y0 D f .x; y/C tan˛

1 � f .x; y/ tan ˛

�

˛ ¤ �

2

�

;

respectively, then C1 intersects C at the angle ˛.

33. Use the result of Exercise 32 to find a family of curves that intersect every nonvertical line through

the origin at the angle ˛ D �=4.

34. Use the result of Exercise 32 to find a family of curves that intersect every circle centered at the

origin at a given angle ˛ ¤ �=2.



CHAPTER 5

Linear Second Order Equations

IN THIS CHAPTER we study a particularly important class of second order equations. Because of

their many applications in science and engineering, second order differential equation have historically
been the most thoroughly studied class of differential equations. Research on the theory of second order

differential equations continues to the present day. This chapter is devoted to second order equations that

can be written in the form

P0.x/y
00 C P1.x/y

0 C P2.x/y D F.x/:

Such equations are said to be linear. As in the case of first order linear equations, (A) is said to be

homogeneous if F � 0, or nonhomogeneous if F 6� 0.

SECTION 5.1 is devoted to the theory of homogeneous linear equations.

SECTION 5.2 deals with homogeneous equations of the special form

ay00 C by0 C cy D 0;

where a, b, and c are constant (a ¤ 0). When you’ve completed this section you’ll know everything there

is to know about solving such equations.

SECTION 5.3 presents the theory of nonhomogeneous linear equations.

SECTIONS 5.4 AND 5.5 present the method of undetermined coefficients, which can be used to solve

nonhomogeneous equations of the form

ay00 C by0 C cy D F.x/;

where a, b, and c are constants and F has a special form that is still sufficiently general to occur in many

applications. In this section we make extensive use of the idea of variation of parameters introduced in

Chapter 2.

SECTION 5.6 deals with reduction of order, a technique based on the idea of variation of parameters,

which enables us to find the general solution of a nonhomogeneous linear second order equation provided

that we know one nontrivial (not identically zero) solution of the associated homogeneous equation.

SECTION 5.6 deals with the method traditionally called variation of parameters, which enables us to

find the general solution of a nonhomogeneous linear second order equation provided that we know two

nontrivial solutions (with nonconstant ratio) of the associated homogeneous equation.
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5.1 HOMOGENEOUS LINEAR EQUATIONS

A second order differential equation is said to be linear if it can be written as

y00 C p.x/y0 C q.x/y D f .x/: (5.1.1)

We call the function f on the right a forcing function, since in physical applications it’s often related to

a force acting on some system modeled by the differential equation. We say that (5.1.1) is homogeneous

if f � 0 or nonhomogeneous if f 6� 0. Since these definitions are like the corresponding definitions in

Section 2.1 for the linear first order equation

y0 C p.x/y D f .x/; (5.1.2)

it’s natural to expect similarities between methods of solving (5.1.1) and (5.1.2). However, solving (5.1.1)

is more difficult than solving (5.1.2). For example, while Theorem 2.1.1 gives a formula for the general

solution of (5.1.2) in the case where f � 0 and Theorem 2.1.2 gives a formula for the case where f 6� 0,

there are no formulas for the general solution of (5.1.1) in either case. Therefore we must be content to

solve linear second order equations of special forms.

In Section 2.1 we considered the homogeneous equation y0Cp.x/y D 0 first, and then used a nontrivial
solution of this equation to find the general solution of the nonhomogeneous equation y0Cp.x/y D f .x/.

Although the progression from the homogeneous to the nonhomogeneous case isn’t that simple for the

linear second order equation, it’s still necessary to solve the homogeneous equation

y00 C p.x/y0 C q.x/y D 0 (5.1.3)

in order to solve the nonhomogeneous equation (5.1.1). This section is devoted to (5.1.3).
The next theorem gives sufficient conditions for existence and uniqueness of solutions of initial value

problems for (5.1.3). We omit the proof.

Theorem 5.1.1 Suppose p and q are continuous on an open interval .a; b/; let x0 be any point in .a; b/;

and let k0 and k1 be arbitrary real numbers: Then the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D k0; y
0.x0/ D k1

has a unique solution on .a; b/:

Since y � 0 is obviously a solution of (5.1.3) we call it the trivial solution. Any other solution is
nontrivial. Under the assumptions of Theorem 5.1.1, the only solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D 0; y0.x0/ D 0

on .a; b/ is the trivial solution (Exercise 24).

The next three examples illustrate concepts that we’ll develop later in this section. You shouldn’t be

concerned with how to find the given solutions of the equations in these examples. This will be explained

in later sections.

Example 5.1.1 The coefficients of y0 and y in

y00 � y D 0 (5.1.4)

are the constant functions p � 0 and q � �1, which are continuous on .�1;1/. Therefore Theo-
rem 5.1.1 implies that every initial value problem for (5.1.4) has a unique solution on .�1;1/.
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(a) Verify that y1 D ex and y2 D e�x are solutions of (5.1.4) on .�1;1/.

(b) Verify that if c1 and c2 are arbitrary constants, y D c1e
x C c2e

�x is a solution of (5.1.4) on

.�1;1/.

(c) Solve the initial value problem

y00 � y D 0; y.0/ D 1; y0.0/ D 3: (5.1.5)

SOLUTION(a) If y1 D ex then y0
1 D ex and y00

1 D ex D y1, so y00
1 � y1 D 0. If y2 D e�x, then

y0
2 D �e�x and y00

2 D e�x D y2, so y00
2 � y2 D 0.

SOLUTION(b) If

y D c1e
x C c2e

�x (5.1.6)

then
y0 D c1e

x � c2e
�x (5.1.7)

and

y00 D c1e
x C c2e

�x;

so

y00 � y D .c1e
x C c2e

�x/ � .c1e
x C c2e

�x/

D c1.e
x � ex/C c2.e

�x � e�x/ D 0

for all x. Therefore y D c1e
x C c2e

�x is a solution of (5.1.4) on .�1;1/.

SOLUTION(c) We can solve (5.1.5) by choosing c1 and c2 in (5.1.6) so that y.0/ D 1 and y0.0/ D 3.

Setting x D 0 in (5.1.6) and (5.1.7) shows that this is equivalent to

c1 C c2 D 1

c1 � c2 D 3:

Solving these equations yields c1 D 2 and c2 D �1. Therefore y D 2ex � e�x is the unique solution of
(5.1.5) on .�1;1/.

Example 5.1.2 Let ! be a positive constant. The coefficients of y0 and y in

y00 C !2y D 0 (5.1.8)

are the constant functions p � 0 and q � !2, which are continuous on .�1;1/. Therefore Theo-

rem 5.1.1 implies that every initial value problem for (5.1.8) has a unique solution on .�1;1/.

(a) Verify that y1 D cos!x and y2 D sin!x are solutions of (5.1.8) on .�1;1/.

(b) Verify that if c1 and c2 are arbitrary constants then y D c1 cos!xCc2 sin!x is a solution of (5.1.8)

on .�1;1/.

(c) Solve the initial value problem

y00 C !2y D 0; y.0/ D 1; y0.0/ D 3: (5.1.9)
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SOLUTION(a) If y1 D cos!x then y0
1 D �! sin!x and y00

1 D �!2 cos!x D �!2y1, so y00
1 C!2y1 D

0. If y2 D sin!x then, y0
2 D ! cos!x and y00

2 D �!2 sin!x D �!2y2, so y00
2 C !2y2 D 0.

SOLUTION(b) If
y D c1 cos!x C c2 sin!x (5.1.10)

then

y0 D !.�c1 sin!x C c2 cos!x/ (5.1.11)

and
y00 D �!2.c1 cos!x C c2 sin!x/;

so

y00 C !2y D �!2.c1 cos!x C c2 sin!x/ C !2.c1 cos!x C c2 sin!x/

D c1!
2.� cos!x C cos!x/C c2!

2.� sin!x C sin!x/ D 0

for all x. Therefore y D c1 cos!x C c2 sin!x is a solution of (5.1.8) on .�1;1/.

SOLUTION(c) To solve (5.1.9), we must choosing c1 and c2 in (5.1.10) so that y.0/ D 1 and y0.0/ D 3.

Setting x D 0 in (5.1.10) and (5.1.11) shows that c1 D 1 and c2 D 3=!. Therefore

y D cos!x C 3

!
sin!x

is the unique solution of (5.1.9) on .�1;1/.

Theorem 5.1.1 implies that if k0 and k1 are arbitrary real numbers then the initial value problem

P0.x/y
00 CP1.x/y

0 C P2.x/y D 0; y.x0/ D k0; y0.x0/ D k1 (5.1.12)

has a unique solution on an interval .a; b/ that contains x0, provided that P0, P1, and P2 are continuous

and P0 has no zeros on .a; b/. To see this, we rewrite the differential equation in (5.1.12) as

y00 C P1.x/

P0.x/
y0 C P2.x/

P0.x/
y D 0

and apply Theorem 5.1.1 with p D P1=P0 and q D P2=P0.

Example 5.1.3 The equation

x2y00 C xy0 � 4y D 0 (5.1.13)

has the form of the differential equation in (5.1.12), with P0.x/ D x2, P1.x/ D x, and P2.x/ D �4,

which are are all continuous on .�1;1/. However, since P.0/ D 0 we must consider solutions of

(5.1.13) on .�1; 0/ and .0;1/. Since P0 has no zeros on these intervals, Theorem 5.1.1 implies that the

initial value problem

x2y00 C xy0 � 4y D 0; y.x0/ D k0; y0.x0/ D k1

has a unique solution on .0;1/ if x0 > 0, or on .�1; 0/ if x0 < 0.

(a) Verify that y1 D x2 is a solution of (5.1.13) on .�1;1/ and y2 D 1=x2 is a solution of (5.1.13)

on .�1; 0/ and .0;1/.

(b) Verify that if c1 and c2 are any constants then y D c1x
2Cc2=x

2 is a solution of (5.1.13) on .�1; 0/

and .0;1/.
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(c) Solve the initial value problem

x2y00 C xy0 � 4y D 0; y.1/ D 2; y0.1/ D 0: (5.1.14)

(d) Solve the initial value problem

x2y00 C xy0 � 4y D 0; y.�1/ D 2; y0.�1/ D 0: (5.1.15)

SOLUTION(a) If y1 D x2 then y0
1 D 2x and y00

1 D 2, so

x2y00
1 C xy0

1 � 4y1 D x2.2/C x.2x/� 4x2 D 0

for x in .�1;1/. If y2 D 1=x2, then y0
2 D �2=x3 and y00

2 D 6=x4, so

x2y00
2 C xy0

2 � 4y2 D x2

�

6

x4

�

� x
�

2

x3

�

� 4

x2
D 0

for x in .�1; 0/ or .0;1/.

SOLUTION(b) If

y D c1x
2 C c2

x2
(5.1.16)

then

y0 D 2c1x � 2c2

x3
(5.1.17)

and

y00 D 2c1 C 6c2

x4
;

so

x2y00 C xy0 � 4y D x2

�

2c1 C 6c2

x4

�

C x

�

2c1x � 2c2

x3

�

� 4
�

c1x
2 C c2

x2

�

D c1.2x
2 C 2x2 � 4x2/C c2

�

6

x2
� 2

x2
� 4

x2

�

D c1 � 0C c2 � 0 D 0

for x in .�1; 0/ or .0;1/.

SOLUTION(c) To solve (5.1.14), we choose c1 and c2 in (5.1.16) so that y.1/ D 2 and y0.1/ D 0. Setting

x D 1 in (5.1.16) and (5.1.17) shows that this is equivalent to

c1 C c2 D 2

2c1 � 2c2 D 0:

Solving these equations yields c1 D 1 and c2 D 1. Therefore y D x2 C 1=x2 is the unique solution of

(5.1.14) on .0;1/.

SOLUTION(d) We can solve (5.1.15) by choosing c1 and c2 in (5.1.16) so that y.�1/ D 2 and y0.�1/ D
0. Setting x D �1 in (5.1.16) and (5.1.17) shows that this is equivalent to

c1 C c2 D 2

�2c1 C 2c2 D 0:
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Solving these equations yields c1 D 1 and c2 D 1. Therefore y D x2 C 1=x2 is the unique solution of

(5.1.15) on .�1; 0/.

Although the formulas for the solutions of (5.1.14) and (5.1.15) are both y D x2 C 1=x2, you should

not conclude that these two initial value problems have the same solution. Remember that a solution of

an initial value problem is defined on an interval that contains the initial point; therefore, the solution

of (5.1.14) is y D x2 C 1=x2 on the interval .0;1/, which contains the initial point x0 D 1, while the
solution of (5.1.15) is y D x2 C 1=x2 on the interval .�1; 0/, which contains the initial point x0 D �1.

The General Solution of a Homogeneous Linear Second Order Equation

If y1 and y2 are defined on an interval .a; b/ and c1 and c2 are constants, then

y D c1y1 C c2y2

is a linear combination of y1 and y2. For example, y D 2 cos x C 7 sinx is a linear combination of

y1 D cos x and y2 D sinx, with c1 D 2 and c2 D 7.
The next theorem states a fact that we’ve already verified in Examples 5.1.1, 5.1.2, and 5.1.3.

Theorem 5.1.2 If y1 and y2 are solutions of the homogeneous equation

y00 C p.x/y0 C q.x/y D 0 (5.1.18)

on .a; b/; then any linear combination

y D c1y1 C c2y2 (5.1.19)

of y1 and y2 is also a solution of (5.1.18) on .a; b/:

Proof If

y D c1y1 C c2y2

then
y0 D c1y

0
1 C c2y

0
2 and y00 D c1y

00
1 C c2y

00
2 :

Therefore

y00 C p.x/y0 C q.x/y D .c1y
00
1 C c2y

00
2 /C p.x/.c1y

0
1 C c2y

0
2/C q.x/.c1y1 C c2y2/

D c1

�

y00
1 C p.x/y0

1 C q.x/y1

�

C c2

�

y00
2 C p.x/y0

2 C q.x/y2

�

D c1 � 0C c2 � 0 D 0;

since y1 and y2 are solutions of (5.1.18).

We say that fy1; y2g is a fundamental set of solutions of (5.1.18) on .a; b/ if every solution of (5.1.18)

on .a; b/ can be written as a linear combination of y1 and y2 as in (5.1.19). In this case we say that

(5.1.19) is general solution of (5.1.18) on .a; b/.

Linear Independence

We need a way to determine whether a given set fy1; y2g of solutions of (5.1.18) is a fundamental set.

The next definition will enable us to state necessary and sufficient conditions for this.

We say that two functions y1 and y2 defined on an interval .a; b/ are linearly independent on .a; b/

if neither is a constant multiple of the other on .a; b/. (In particular, this means that neither can be the

trivial solution of (5.1.18), since, for example, if y1 � 0 we could write y1 D 0y2.) We’ll also say that
the set fy1; y2g is linearly independent on .a; b/.
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Theorem 5.1.3 Suppose p and q are continuous on .a; b/: Then a set fy1; y2g of solutions of

y00 C p.x/y0 C q.x/y D 0 (5.1.20)

on .a; b/ is a fundamental set if and only if fy1; y2g is linearly independent on .a; b/:

We’ll present the proof of Theorem 5.1.3 in steps worth regarding as theorems in their own right.

However, let’s first interpret Theorem 5.1.3 in terms of Examples 5.1.1, 5.1.2, and 5.1.3.

Example 5.1.4

(a) Since ex=e�x D e2x is nonconstant, Theorem 5.1.3 implies that y D c1e
x C c2e

�x is the general
solution of y00 � y D 0 on .�1;1/.

(b) Since cos!x= sin!x D cot!x is nonconstant, Theorem 5.1.3 implies that y D c1 cos!x C
c2 sin!x is the general solution of y00 C !2y D 0 on .�1;1/.

(c) Since x2=x�2 D x4 is nonconstant, Theorem 5.1.3 implies that y D c1x
2 C c2=x

2 is the general

solution of x2y00 C xy0 � 4y D 0 on .�1; 0/ and .0;1/.

The Wronskian and Abel’s Formula

To motivate a result that we need in order to prove Theorem 5.1.3, let’s see what is required to prove that

fy1; y2g is a fundamental set of solutions of (5.1.20) on .a; b/. Let x0 be an arbitrary point in .a; b/, and

suppose y is an arbitrary solution of (5.1.20) on .a; b/. Then y is the unique solution of the initial value

problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D k0; y0.x0/ D k1I (5.1.21)

that is, k0 and k1 are the numbers obtained by evaluating y and y0 at x0. Moreover, k0 and k1 can

be any real numbers, since Theorem 5.1.1 implies that (5.1.21) has a solution no matter how k0 and k1

are chosen. Therefore fy1; y2g is a fundamental set of solutions of (5.1.20) on .a; b/ if and only if it’s

possible to write the solution of an arbitrary initial value problem (5.1.21) as y D c1y1 C c2y2. This is

equivalent to requiring that the system

c1y1.x0/C c2y2.x0/ D k0

c1y
0
1.x0/C c2y

0
2.x0/ D k1

(5.1.22)

has a solution .c1; c2/ for every choice of .k0; k1/. Let’s try to solve (5.1.22).

Multiplying the first equation in (5.1.22) by y0
2.x0/ and the second by y2.x0/ yields

c1y1.x0/y
0
2.x0/C c2y2.x0/y

0
2.x0/ D y0

2.x0/k0

c1y
0
1.x0/y2.x0/C c2y

0
2.x0/y2.x0/ D y2.x0/k1;

and subtracting the second equation here from the first yields

�

y1.x0/y
0
2.x0/ � y0

1.x0/y2.x0/
�

c1 D y0
2.x0/k0 � y2.x0/k1: (5.1.23)

Multiplying the first equation in (5.1.22) by y0
1.x0/ and the second by y1.x0/ yields

c1y1.x0/y
0
1.x0/C c2y2.x0/y

0
1.x0/ D y0

1.x0/k0

c1y
0
1.x0/y1.x0/C c2y

0
2.x0/y1.x0/ D y1.x0/k1;

and subtracting the first equation here from the second yields

�

y1.x0/y
0
2.x0/ � y0

1.x0/y2.x0/
�

c2 D y1.x0/k1 � y0
1.x0/k0: (5.1.24)
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If

y1.x0/y
0
2.x0/� y0

1.x0/y2.x0/ D 0;

it’s impossible to satisfy (5.1.23) and (5.1.24) (and therefore (5.1.22)) unless k0 and k1 happen to satisfy

y1.x0/k1 � y0
1.x0/k0 D 0

y0
2.x0/k0 � y2.x0/k1 D 0:

On the other hand, if

y1.x0/y
0
2.x0/ � y0

1.x0/y2.x0/ ¤ 0 (5.1.25)

we can divide (5.1.23) and (5.1.24) through by the quantity on the left to obtain

c1 D y0
2.x0/k0 � y2.x0/k1

y1.x0/y
0
2.x0/� y0

1.x0/y2.x0/

c2 D y1.x0/k1 � y0
1.x0/k0

y1.x0/y
0
2.x0/� y0

1.x0/y2.x0/
;

(5.1.26)

no matter how k0 and k1 are chosen. This motivates us to consider conditions on y1 and y2 that imply
(5.1.25).

Theorem 5.1.4 Suppose p and q are continuous on .a; b/; let y1 and y2 be solutions of

y00 C p.x/y0 C q.x/y D 0 (5.1.27)

on .a; b/, and define

W D y1y
0
2 � y0

1y2: (5.1.28)

Let x0 be any point in .a; b/: Then

W.x/ D W.x0/e
�
R x

x0
p.t/ dt

; a < x < b: (5.1.29)

Therefore either W has no zeros in .a; b/ orW � 0 on .a; b/:

Proof Differentiating (5.1.28) yields

W 0 D y0
1y

0
2 C y1y

00
2 � y0

1y
0
2 � y00

1y2 D y1y
00
2 � y00

1y2: (5.1.30)

Since y1 and y2 both satisfy (5.1.27),

y00
1 D �py0

1 � qy1 and y00
2 D �py0

2 � qy2:

Substituting these into (5.1.30) yields

W 0 D �y1

�

py0
2 C qy2

�

C y2

�

py0
1 C qy1

�

D �p.y1y
0
2 � y2y

0
1/ � q.y1y2 � y2y1/

D �p.y1y
0
2 � y2y

0
1/ D �pW:

Therefore W 0 C p.x/W D 0; that is,W is the solution of the initial value problem

y0 C p.x/y D 0; y.x0/ D W.x0/:



Section 5.1 Homogeneous Linear Equations 201

We leave it to you to verify by separation of variables that this implies (5.1.29). If W.x0/ ¤ 0, (5.1.29)

implies thatW has no zeros in .a; b/, since an exponential is never zero. On the other hand, ifW.x0/ D 0,

(5.1.29) implies thatW.x/ D 0 for all x in .a; b/.

The functionW defined in (5.1.28) is the Wronskian of fy1; y2g. Formula (5.1.29) is Abel’s formula.

The Wronskian of fy1; y2g is usually written as the determinant

W D
ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2

y0
1 y0

2

ˇ

ˇ

ˇ

ˇ

ˇ

:

The expressions in (5.1.26) for c1 and c2 can be written in terms of determinants as

c1 D 1

W.x0/

ˇ

ˇ

ˇ

ˇ

ˇ

k0 y2.x0/

k1 y0
2.x0/

ˇ

ˇ

ˇ

ˇ

ˇ

and c2 D 1

W.x0/

ˇ

ˇ

ˇ

ˇ

ˇ

y1.x0/ k0

y0
1.x0/ k1

ˇ

ˇ

ˇ

ˇ

ˇ

:

If you’ve taken linear algebra you may recognize this as Cramer’s rule.

Example 5.1.5 Verify Abel’s formula for the following differential equations and the corresponding so-

lutions, from Examples 5.1.1, 5.1.2, and 5.1.3:

(a) y00 � y D 0I y1 D ex; y2 D e�x

(b) y00 C !2y D 0I y1 D cos!x; y2 D sin!x

(c) x2y00 C xy0 � 4y D 0I y1 D x2; y2 D 1=x2

SOLUTION(a) Since p � 0, we can verify Abel’s formula by showing that W is constant, which is true,

since

W.x/ D
ˇ

ˇ

ˇ

ˇ

ˇ

ex e�x

ex �e�x

ˇ

ˇ

ˇ

ˇ

ˇ

D ex.�e�x/ � exe�x D �2

for all x.

SOLUTION(b) Again, since p � 0, we can verify Abel’s formula by showing that W is constant, which

is true, since

W.x/ D
ˇ

ˇ

ˇ

ˇ

ˇ

cos!x sin!x

�! sin!x ! cos!x

ˇ

ˇ

ˇ

ˇ

ˇ

D cos!x.! cos!x/ � .�! sin!x/ sin !x

D !.cos2 !x C sin2 !x/ D !

for all x.

SOLUTION(c) Computing the Wronskian of y1 D x2 and y2 D 1=x2 directly yields

W D
ˇ

ˇ

ˇ

ˇ

ˇ

x2 1=x2

2x �2=x3

ˇ

ˇ

ˇ

ˇ

ˇ

D x2

�

� 2

x3

�

� 2x
�

1

x2

�

D � 4
x
: (5.1.31)

To verify Abel’s formula we rewrite the differential equation as

y00 C 1

x
y0 � 4

x2
y D 0

http://www-history.mcs.st-and.ac.uk/Mathematicians/Wronski.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Abel.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Cramer.html
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to see that p.x/ D 1=x. If x0 and x are either both in .�1; 0/ or both in .0;1/ then
Z x

x0

p.t/ dt D
Z x

x0

dt

t
D ln

�

x

x0

�

;

so Abel’s formula becomes

W.x/ D W.x0/e
� ln.x=x0/ D W.x0/

x0

x

D �
�

4

x0

�

�x0

x

�

from (5.1.31)

D � 4
x
;

which is consistent with (5.1.31).
The next theorem will enable us to complete the proof of Theorem 5.1.3.

Theorem 5.1.5 Suppose p and q are continuous on an open interval .a; b/; let y1 and y2 be solutions of

y00 C p.x/y0 C q.x/y D 0 (5.1.32)

on .a; b/; and let W D y1y
0
2 � y0

1y2: Then y1 and y2 are linearly independent on .a; b/ if and only ifW

has no zeros on .a; b/:

Proof We first show that if W.x0/ D 0 for some x0 in .a; b/, then y1 and y2 are linearly dependent on
.a; b/. Let I be a subinterval of .a; b/ on which y1 has no zeros. (If there’s no such subinterval, y1 � 0

on .a; b/, so y1 and y2 are linearly independent, and we’re finished with this part of the proof.) Then

y2=y1 is defined on I , and
�

y2

y1

�0

D y1y
0
2 � y0

1y2

y2
1

D W

y2
1

: (5.1.33)

However, if W.x0/ D 0, Theorem 5.1.4 implies that W � 0 on .a; b/. Therefore (5.1.33) implies that
.y2=y1/

0 � 0, so y2=y1 D c (constant) on I . This shows that y2.x/ D cy1.x/ for all x in I . However,

we want to show that y2 D cy1.x/ for all x in .a; b/. Let Y D y2 � cy1. Then Y is a solution of (5.1.32)

on .a; b/ such that Y � 0 on I , and therefore Y 0 � 0 on I . Consequently, if x0 is chosen arbitrarily in I

then Y is a solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D 0; y0.x0/ D 0;

which implies that Y � 0 on .a; b/, by the paragraph following Theorem 5.1.1. (See also Exercise 24).

Hence, y2 � cy1 � 0 on .a; b/, which implies that y1 and y2 are not linearly independent on .a; b/.

Now suppose W has no zeros on .a; b/. Then y1 can’t be identically zero on .a; b/ (why not?), and

therefore there is a subinterval I of .a; b/ on which y1 has no zeros. Since (5.1.33) implies that y2=y1 is
nonconstant on I , y2 isn’t a constant multiple of y1 on .a; b/. A similar argument shows that y1 isn’t a

constant multiple of y2 on .a; b/, since
�

y1

y2

�0

D y0
1y2 � y1y

0
2

y2
2

D �W
y2

2

on any subinterval of .a; b/ where y2 has no zeros.
We can now complete the proof of Theorem 5.1.3. From Theorem 5.1.5, two solutions y1 and y2 of

(5.1.32) are linearly independent on .a; b/ if and only if W has no zeros on .a; b/. From Theorem 5.1.4

and the motivating comments preceding it, fy1; y2g is a fundamental set of solutions of (5.1.32) if and

only if W has no zeros on .a; b/. Therefore fy1; y2g is a fundamental set for (5.1.32) on .a; b/ if and

only if fy1; y2g is linearly independent on .a; b/.
The next theorem summarizes the relationships among the concepts discussed in this section.
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Theorem 5.1.6 Supposep and q are continuous on an open interval .a; b/ and let y1 and y2 be solutions

of

y00 C p.x/y0 C q.x/y D 0 (5.1.34)

on .a; b/: Then the following statements are equivalentI that is; they are either all true or all false:

(a) The general solution of (5.1.34) on .a; b/ is y D c1y1 C c2y2.

(b) fy1; y2g is a fundamental set of solutions of (5.1.34) on .a; b/:

(c) fy1; y2g is linearly independent on .a; b/:

(d) The Wronskian of fy1; y2g is nonzero at some point in .a; b/:

(e) The Wronskian of fy1; y2g is nonzero at all points in .a; b/:

We can apply this theorem to an equation written as

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0

on an interval .a; b/ where P0, P1, and P2 are continuous and P0 has no zeros.

Theorem 5.1.7 Suppose c is in .a; b/ and ˛ and ˇ are real numbers, not both zero. Under the assump-

tions of Theorem 5.1.7, suppose y1 and y2 are solutions of (5.1.34) such that

˛y1.c/C ˇy0
1.c/ D 0 and ˛y2.c/C ˇy0

2.c/ D 0: (5.1.35)

Then fy1; y2g isn’t linearly independent on .a; b/:

Proof Since ˛ and ˇ are not both zero, (5.1.35) implies that
ˇ

ˇ

ˇ

ˇ

y1.c/ y0
1.c/

y2.c/ y0
2.c/

ˇ

ˇ

ˇ

ˇ

D 0; so

ˇ

ˇ

ˇ

ˇ

y1.c/ y2.c/

y0
1.c/ y0

2.c/

ˇ

ˇ

ˇ

ˇ

D 0

and Theorem 5.1.6 implies the stated conclusion.

5.1 Exercises

1. (a) Verify that y1 D e2x and y2 D e5x are solutions of

y00 � 7y0 C 10y D 0 .A/

on .�1;1/.

(b) Verify that if c1 and c2 are arbitrary constants then y D c1e
2x C c2e

5x is a solution of (A)

on .�1;1/.

(c) Solve the initial value problem

y00 � 7y0 C 10y D 0; y.0/ D �1; y0.0/ D 1:

(d) Solve the initial value problem

y00 � 7y0 C 10y D 0; y.0/ D k0; y0.0/ D k1:

2. (a) Verify that y1 D ex cos x and y2 D ex sin x are solutions of

y00 � 2y0 C 2y D 0 .A/

on .�1;1/.
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(b) Verify that if c1 and c2 are arbitrary constants then y D c1e
x cos xC c2e

x sinx is a solution

of (A) on .�1;1/.

(c) Solve the initial value problem

y00 � 2y0 C 2y D 0; y.0/ D 3; y0.0/ D �2:

(d) Solve the initial value problem

y00 � 2y0 C 2y D 0; y.0/ D k0; y0.0/ D k1:

3. (a) Verify that y1 D ex and y2 D xex are solutions of

y00 � 2y0 C y D 0 .A/

on .�1;1/.

(b) Verify that if c1 and c2 are arbitrary constants then y D ex.c1 C c2x/ is a solution of (A) on
.�1;1/.

(c) Solve the initial value problem

y00 � 2y0 C y D 0; y.0/ D 7; y0.0/ D 4:

(d) Solve the initial value problem

y00 � 2y0 C y D 0; y.0/ D k0; y0.0/ D k1:

4. (a) Verify that y1 D 1=.x � 1/ and y2 D 1=.x C 1/ are solutions of

.x2 � 1/y00 C 4xy0 C 2y D 0 .A/

on .�1;�1/, .�1; 1/, and .1;1/. What is the general solution of (A) on each of these

intervals?

(b) Solve the initial value problem

.x2 � 1/y00 C 4xy0 C 2y D 0; y.0/ D �5; y0.0/ D 1:

What is the interval of validity of the solution?

(c) C/G Graph the solution of the initial value problem.

(d) Verify Abel’s formula for y1 and y2, with x0 D 0.

5. Compute the Wronskians of the given sets of functions.

(a) f1; exg (b) fex; ex sin xg
(c) fx C 1; x2 C 2g (d) fx1=2; x�1=3g

(e) f sinx

x
;

cos x

x
g (f) fx ln jxj; x2 ln jxjg

(g) fex cos
p
x; ex sin

p
xg

6. Find the Wronskian of a given set fy1; y2g of solutions of

y00 C 3.x2 C 1/y0 � 2y D 0;

given thatW.�/ D 0.



Section 5.1 Homogeneous Linear Equations 205

7. Find the Wronskian of a given set fy1; y2g of solutions of

.1 � x2/y00 � 2xy0 C ˛.˛ C 1/y D 0;

given thatW.0/ D 1. (This is Legendre’s equation.)

8. Find the Wronskian of a given set fy1; y2g of solutions of

x2y00 C xy0 C .x2 � �2/y D 0;

given thatW.1/ D 1. (This is Bessel’s equation.)

9. (This exercise shows that if you know one nontrivial solution of y00 C p.x/y0 C q.x/y D 0, you

can use Abel’s formula to find another.)

Suppose p and q are continuous and y1 is a solution of

y00 C p.x/y0 C q.x/y D 0 .A/

that has no zeros on .a; b/. Let P.x/ D
R

p.x/ dx be any antiderivative of p on .a; b/.

(a) Show that if K is an arbitrary nonzero constant and y2 satisfies

y1y
0
2 � y0

1y2 D Ke�P.x/ .B/

on .a; b/, then y2 also satisfies (A) on .a; b/, and fy1; y2g is a fundamental set of solutions
on (A) on .a; b/.

(b) Conclude from (a) that if y2 D uy1 where u0 D K
e�P.x/

y2
1 .x/

, then fy1; y2g is a fundamental

set of solutions of (A) on .a; b/.

In Exercises 10–23 use the method suggested by Exercise 9 to find a second solution y2 that isn’t a

constant multiple of the solution y1. ChooseK conveniently to simplify y2.

10. y00 � 2y0 � 3y D 0; y1 D e3x

11. y00 � 6y0 C 9y D 0; y1 D e3x

12. y00 � 2ay0 C a2y D 0 (a D constant); y1 D eax

13. x2y00 C xy0 � y D 0; y1 D x

14. x2y00 � xy0 C y D 0; y1 D x

15. x2y00 � .2a � 1/xy0 C a2y D 0 (a D nonzero constant); x > 0; y1 D xa

16. 4x2y00 � 4xy0 C .3 � 16x2/y D 0; y1 D x1=2e2x

17. .x � 1/y00 � xy0 C y D 0; y1 D ex

18. x2y00 � 2xy0 C .x2 C 2/y D 0; y1 D x cos x

19. 4x2.sin x/y00 � 4x.x cos x C sin x/y0 C .2x cos x C 3 sinx/y D 0; y1 D x1=2

20. .3x � 1/y00 � .3x C 2/y0 � .6x � 8/y D 0; y1 D e2x

21. .x2 � 4/y00 C 4xy0 C 2y D 0; y1 D 1

x � 2

22. .2x C 1/xy00 � 2.2x2 � 1/y0 � 4.x C 1/y D 0; y1 D 1

x

23. .x2 � 2x/y00 C .2 � x2/y0 C .2x � 2/y D 0; y1 D ex

http://www-history.mcs.st-and.ac.uk/PictDisplay/Legendre.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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24. Suppose p and q are continuous on an open interval .a; b/ and let x0 be in .a; b/. Use Theo-

rem 5.1.1 to show that the only solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D 0; y0.x0/ D 0

on .a; b/ is the trivial solution y � 0.

25. Suppose P0, P1, and P2 are continuous on .a; b/ and let x0 be in .a; b/. Show that if either of the

following statements is true then P0.x/ D 0 for some x in .a; b/.

(a) The initial value problem

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0; y.x0/ D k0; y0.x0/ D k1

has more than one solution on .a; b/.

(b) The initial value problem

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0; y.x0/ D 0; y0.x0/ D 0

has a nontrivial solution on .a; b/.

26. Suppose p and q are continuous on .a; b/ and y1 and y2 are solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/. Let

´1 D ˛y1 C ˇy2 and ´2 D 
y1 C ıy2;

where ˛, ˇ, 
 , and ı are constants. Show that if f´1; ´2g is a fundamental set of solutions of (A)
on .a; b/ then so is fy1; y2g.

27. Suppose p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/. Let

´1 D ˛y1 C ˇy2 and ´2 D 
y1 C ıy2;

where ˛; ˇ; 
 , and ı are constants. Show that f´1; ´2g is a fundamental set of solutions of (A) on

.a; b/ if and only if ˛
 � ˇı ¤ 0.

28. Suppose y1 is differentiable on an interval .a; b/ and y2 D ky1, where k is a constant. Show that

the Wronskian of fy1; y2g is identically zero on .a; b/.

29. Let

y1 D x3 and y2 D
�

x3; x � 0;

�x3; x < 0:

(a) Show that the Wronskian of fy1; y2g is defined and identically zero on .�1;1/.

(b) Suppose a < 0 < b. Show that fy1; y2g is linearly independent on .a; b/.

(c) Use Exercise 25(b) to show that these results don’t contradict Theorem 5.1.5, because neither

y1 nor y2 can be a solution of an equation

y00 C p.x/y0 C q.x/y D 0

on .a; b/ if p and q are continuous on .a; b/.
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30. Suppose p and q are continuous on .a; b/ and fy1; y2g is a set of solutions of

y00 C p.x/y0 C q.x/y D 0

on .a; b/ such that either y1.x0/ D y2.x0/ D 0 or y0
1.x0/ D y0

2.x0/ D 0 for some x0 in .a; b/.

Show that fy1; y2g is linearly dependent on .a; b/.

31. Suppose p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of

y00 C p.x/y0 C q.x/y D 0

on .a; b/. Show that if y1.x1/ D y1.x2/ D 0, where a < x1 < x2 < b, then y2.x/ D 0 for

some x in .x1; x2/. HINT: Show that if y2 has no zeros in .x1; x2/, then y1=y2 is either strictly

increasing or strictly decreasing on .x1; x2/, and deduce a contradiction.

32. Suppose p and q are continuous on .a; b/ and every solution of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/ can be written as a linear combination of the twice differentiable functions fy1; y2g. Use
Theorem 5.1.1 to show that y1 and y2 are themselves solutions of (A) on .a; b/.

33. Suppose p1, p2, q1, and q2 are continuous on .a; b/ and the equations

y00 C p1.x/y
0 C q1.x/y D 0 and y00 C p2.x/y

0 C q2.x/y D 0

have the same solutions on .a; b/. Show that p1 D p2 and q1 D q2 on .a; b/. HINT: Use Abel’s

formula.

34. (For this exercise you have to know about 3 � 3 determinants.) Show that if y1 and y2 are twice

continuously differentiable on .a; b/ and the Wronskian W of fy1; y2g has no zeros in .a; b/ then
the equation

1

W

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y y1 y2

y0 y0
1 y0

2

y00 y00
1 y00

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

can be written as

y00 C p.x/y0 C q.x/y D 0; .A/

where p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of (A) on
.a; b/. HINT: Expand the determinant by cofactors of its first column.

35. Use the method suggested by Exercise 34 to find a linear homogeneous equation for which the

given functions form a fundamental set of solutions on some interval.

(a) ex cos 2x; ex sin 2x (b) x; e2x

(c) x; x lnx (d) cos.ln x/; sin.ln x/

(e) cosh x; sinhx (f) x2 � 1; x2 C 1

36. Suppose p and q are continuous on .a; b/ and fy1; y2g is a fundamental set of solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

on .a; b/. Show that if y is a solution of (A) on .a; b/, there’s exactly one way to choose c1 and

c2 so that y D c1y1 C c2y2 on .a; b/.
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37. Suppose p and q are continuous on .a; b/ and x0 is in .a; b/. Let y1 and y2 be the solutions of

y00 C p.x/y0 C q.x/y D 0 .A/

such that

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

(Theorem 5.1.1 implies that each of these initial value problems has a unique solution on .a; b/.)

(a) Show that fy1; y2g is linearly independent on .a; b/.

(b) Show that an arbitrary solutiony of (A) on .a; b/ can be written as y D y.x0/y1 Cy0.x0/y2.

(c) Express the solution of the initial value problem

y00 C p.x/y0 C q.x/y D 0; y.x0/ D k0; y0.x0/ D k1

as a linear combination of y1 and y2.

38. Find solutions y1 and y2 of the equation y00 D 0 that satisfy the initial conditions

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

Then use Exercise 37 (c) to write the solution of the initial value problem

y00 D 0; y.0/ D k0; y0.0/ D k1

as a linear combination of y1 and y2.

39. Let x0 be an arbitrary real number. Given (Example 5.1.1) that ex and e�x are solutions of y00 �
y D 0, find solutions y1 and y2 of y00 � y D 0 such that

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

Then use Exercise 37 (c) to write the solution of the initial value problem

y00 � y D 0; y.x0/ D k0; y0.x0/ D k1

as a linear combination of y1 and y2.

40. Let x0 be an arbitrary real number. Given (Example 5.1.2) that cos!x and sin!x are solutions of
y00 C !2y D 0, find solutions of y00 C !2y D 0 such that

y1.x0/ D 1; y0
1.x0/ D 0 and y2.x0/ D 0; y0

2.x0/ D 1:

Then use Exercise 37 (c) to write the solution of the initial value problem

y00 C !2y D 0; y.x0/ D k0; y0.x0/ D k1

as a linear combination of y1 and y2. Use the identities

cos.AC B/ D cosA cosB � sinA sinB

sin.AC B/ D sinA cosB C cosA sinB

to simplify your expressions for y1, y2, and y.
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41. Recall from Exercise 4 that 1=.x � 1/ and 1=.x C 1/ are solutions of

.x2 � 1/y00 C 4xy0 C 2y D 0 .A/

on .�1; 1/. Find solutions of (A) such that

y1.0/ D 1; y0
1.0/ D 0 and y2.0/ D 0; y0

2.0/ D 1:

Then use Exercise 37 (c) to write the solution of initial value problem

.x2 � 1/y00 C 4xy0 C 2y D 0; y.0/ D k0; y0.0/ D k1

as a linear combination of y1 and y2.

42. (a) Verify that y1 D x2 and y2 D x3 satisfy

x2y00 � 4xy0 C 6y D 0 .A/

on .�1;1/ and that fy1; y2g is a fundamental set of solutions of (A) on .�1; 0/ and

.0;1/.

(b) Let a1, a2, b1, and b2 be constants. Show that

y D
�

a1x
2 C a2x

3; x � 0;

b1x
2 C b2x

3; x < 0

is a solution of (A) on .�1;1/ if and only if a1 D b1. From this, justify the statement that

y is a solution of (A) on .�1;1/ if and only if

y D
�

c1x
2 C c2x

3; x � 0;

c1x
2 C c3x

3; x < 0;

where c1, c2, and c3 are arbitrary constants.

(c) For what values of k0 and k1 does the initial value problem

x2y00 � 4xy0 C 6y D 0; y.0/ D k0; y0.0/ D k1

have a solution? What are the solutions?

(d) Show that if x0 ¤ 0 and k0; k1 are arbitrary constants, the initial value problem

x2y00 � 4xy0 C 6y D 0; y.x0/ D k0; y0.x0/ D k1 .B/

has infinitely many solutions on .�1;1/. On what interval does (B) have a unique solution?

43. (a) Verify that y1 D x and y2 D x2 satisfy

x2y00 � 2xy0 C 2y D 0 .A/

on .�1;1/ and that fy1; y2g is a fundamental set of solutions of (A) on .�1; 0/ and

.0;1/.

(b) Let a1, a2, b1, and b2 be constants. Show that

y D
�

a1x C a2x
2; x � 0;

b1x C b2x
2; x < 0

is a solution of (A) on .�1;1/ if and only if a1 D b1 and a2 D b2. From this, justify the

statement that the general solution of (A) on .�1;1/ is y D c1x C c2x
2, where c1 and c2

are arbitrary constants.
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(c) For what values of k0 and k1 does the initial value problem

x2y00 � 2xy0 C 2y D 0; y.0/ D k0; y0.0/ D k1

have a solution? What are the solutions?

(d) Show that if x0 ¤ 0 and k0; k1 are arbitrary constants then the initial value problem

x2y00 � 2xy0 C 2y D 0; y.x0/ D k0; y0.x0/ D k1

has a unique solution on .�1;1/.

44. (a) Verify that y1 D x3 and y2 D x4 satisfy

x2y00 � 6xy0 C 12y D 0 .A/

on .�1;1/, and that fy1; y2g is a fundamental set of solutions of (A) on .�1; 0/ and

.0;1/.

(b) Show that y is a solution of (A) on .�1;1/ if and only if

y D
�

a1x
3 C a2x

4; x � 0;

b1x
3 C b2x

4; x < 0;

where a1, a2, b1, and b2 are arbitrary constants.

(c) For what values of k0 and k1 does the initial value problem

x2y00 � 6xy0 C 12y D 0; y.0/ D k0; y0.0/ D k1

have a solution? What are the solutions?

(d) Show that if x0 ¤ 0 and k0; k1 are arbitrary constants then the initial value problem

x2y00 � 6xy0 C 12y D 0; y.x0/ D k0; y0.x0/ D k1 .B/

has infinitely many solutions on .�1;1/. On what interval does (B) have a unique solution?

5.2 CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

If a; b, and c are real constants and a ¤ 0, then

ay00 C by0 C cy D F.x/

is said to be a constant coefficient equation. In this section we consider the homogeneous constant coef-

ficient equation

ay00 C by0 C cy D 0: (5.2.1)

As we’ll see, all solutions of (5.2.1) are defined on .�1;1/. This being the case, we’ll omit references

to the interval on which solutions are defined, or on which a given set of solutions is a fundamental set,
etc., since the interval will always be .�1;1/.

The key to solving (5.2.1) is that if y D erx where r is a constant then the left side of (5.2.1) is a

multiple of erx; thus, if y D erx then y0 D rerx and y00 D r2erx, so

ay00 C by0 C cy D ar2erx C brerx C cerx D .ar2 C br C c/erx: (5.2.2)
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The quadratic polynomial

p.r/ D ar2 C br C c

is the characteristic polynomial of (5.2.1), and p.r/ D 0 is the characteristic equation. From (5.2.2) we

can see that y D erx is a solution of (5.2.1) if and only if p.r/ D 0.

The roots of the characteristic equation are given by the quadratic formula

r D �b ˙
p
b2 � 4ac

2a
: (5.2.3)

We consider three cases:

CASE 1. b2 � 4ac > 0, so the characteristic equation has two distinct real roots.

CASE 2. b2 � 4ac D 0, so the characteristic equation has a repeated real root.

CASE 3. b2 � 4ac < 0, so the characteristic equation has complex roots.

In each case we’ll start with an example.

Case 1: Distinct Real Roots

Example 5.2.1

(a) Find the general solution of

y00 C 6y0 C 5y D 0: (5.2.4)

(b) Solve the initial value problem

y00 C 6y0 C 5y D 0; y.0/ D 3; y0.0/ D �1: (5.2.5)

SOLUTION(a) The characteristic polynomial of (5.2.4) is

p.r/ D r2 C 6r C 5 D .r C 1/.r C 5/:

Since p.�1/ D p.�5/ D 0, y1 D e�x and y2 D e�5x are solutions of (5.2.4). Since y2=y1 D e�4x is

nonconstant, 5.1.6 implies that the general solution of (5.2.4) is

y D c1e
�x C c2e

�5x: (5.2.6)

SOLUTION(b) We must determine c1 and c2 in (5.2.6) so that y satisfies the initial conditions in (5.2.5).

Differentiating (5.2.6) yields

y0 D �c1e
�x � 5c2e

�5x: (5.2.7)

Imposing the initial conditions y.0/ D 3; y0.0/ D �1 in (5.2.6) and (5.2.7) yields

c1 C c2 D 3

�c1 � 5c2 D �1:
The solution of this system is c1 D 7=2; c2 D �1=2. Therefore the solution of (5.2.5) is

y D 7

2
e�x � 1

2
e�5x:

Figure 5.2.1 is a graph of this solution.

If the characteristic equation has arbitrary distinct real roots r1 and r2, then y1 D er1x and y2 D er2x

are solutions of ay00 C by0 C cy D 0. Since y2=y1 D e.r2�r1/x is nonconstant, Theorem 5.1.6 implies

that fy1; y2g is a fundamental set of solutions of ay00 C by0 C cy D 0.
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2
e�x � 1

2
e�5x

Case 2: A Repeated Real Root

Example 5.2.2

(a) Find the general solution of

y00 C 6y0 C 9y D 0: (5.2.8)

(b) Solve the initial value problem

y00 C 6y0 C 9y D 0; y.0/ D 3; y0.0/ D �1: (5.2.9)

SOLUTION(a) The characteristic polynomial of (5.2.8) is

p.r/ D r2 C 6r C 9 D .r C 3/2;

so the characteristic equation has the repeated real root r1 D �3. Therefore y1 D e�3x is a solution

of (5.2.8). Since the characteristic equation has no other roots, (5.2.8) has no other solutions of the

form erx. We look for solutions of the form y D uy1 D ue�3x, where u is a function that we’ll now

determine. (This should remind you of the method of variation of parameters used in Section 2.1 to

solve the nonhomogeneous equation y0 C p.x/y D f .x/, given a solution y1 of the complementary
equation y0 C p.x/y D 0. It’s also a special case of a method called reduction of order that we’ll study

in Section 5.6. For other ways to obtain a second solution of (5.2.8) that’s not a multiple of e�3x, see

Exercises 5.1.9, 5.1.12, and 33.
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If y D ue�3x, then

y0 D u0e�3x � 3ue�3x and y00 D u00e�3x � 6u0e�3x C 9ue�3x;

so

y00 C 6y0 C 9y D e�3x
�

.u00 � 6u0 C 9u/C 6.u0 � 3u/C 9u
�

D e�3x
�

u00 � .6 � 6/u0 C .9 � 18C 9/u
�

D u00e�3x:

Therefore y D ue�3x is a solution of (5.2.8) if and only if u00 D 0, which is equivalent to u D c1 C c2x,
where c1 and c2 are constants. Therefore any function of the form

y D e�3x.c1 C c2x/ (5.2.10)

is a solution of (5.2.8). Letting c1 D 1 and c2 D 0 yields the solution y1 D e�3x that we already knew.

Letting c1 D 0 and c2 D 1 yields the second solution y2 D xe�3x. Since y2=y1 D x is nonconstant,

5.1.6 implies that fy1; y2g is fundamental set of solutions of (5.2.8), and (5.2.10) is the general solution.

SOLUTION(b) Differentiating (5.2.10) yields

y0 D �3e�3x.c1 C c2x/C c2e
�3x: (5.2.11)

Imposing the initial conditions y.0/ D 3; y0.0/ D �1 in (5.2.10) and (5.2.11) yields c1 D 3 and
�3c1 C c2 D �1, so c2 D 8. Therefore the solution of (5.2.9) is

y D e�3x.3 C 8x/:

Figure 5.2.2 is a graph of this solution.

1

2

3

1 2 3
 x

 y

Figure 5.2.2 y D e�3x.3 C 8x/
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If the characteristic equation of ay00 Cby0 Ccy D 0 has an arbitrary repeated root r1, the characteristic

polynomial must be

p.r/ D a.r � r1/2 D a.r2 � 2r1r C r2
1 /:

Therefore

ar2 C br C c D ar2 � .2ar1/r C ar2
1 ;

which implies that b D �2ar1 and c D ar2
1 . Therefore ay00 C by0 C cy D 0 can be written as

a.y00 � 2r1y0 C r2
1y/ D 0. Since a ¤ 0 this equation has the same solutions as

y00 � 2r1y0 C r2
1y D 0: (5.2.12)

Sincep.r1/ D 0, t y1 D er1x is a solution of ay00Cby0Ccy D 0, and therefore of (5.2.12). Proceeding

as in Example 5.2.2, we look for other solutions of (5.2.12) of the form y D uer1x; then

y0 D u0er1x C ruer1x and y00 D u00er1x C 2r1u
0er1x C r2

1ue
r1x ;

so

y00 � 2r1y0 C r2
1y D erx

�

.u00 C 2r1u
0 C r2

1u/ � 2r1.u0 C r1u/C r2
1u
�

D er1x
�

u00 C .2r1 � 2r1/u0 C .r2
1 � 2r2

1 C r2
1 /u

�

D u00er1x :

Therefore y D uer1x is a solution of (5.2.12) if and only if u00 D 0, which is equivalent to u D c1 C c2x,

where c1 and c2 are constants. Hence, any function of the form

y D er1x.c1 C c2x/ (5.2.13)

is a solution of (5.2.12). Letting c1 D 1 and c2 D 0 here yields the solution y1 D er1x that we already
knew. Letting c1 D 0 and c2 D 1 yields the second solution y2 D xer1x. Since y2=y1 D x is

nonconstant, 5.1.6 implies that fy1; y2g is a fundamental set of solutions of (5.2.12), and (5.2.13) is the

general solution.

Case 3: Complex Conjugate Roots

Example 5.2.3

(a) Find the general solution of

y00 C 4y0 C 13y D 0: (5.2.14)

(b) Solve the initial value problem

y00 C 4y0 C 13y D 0; y.0/ D 2; y0.0/ D �3: (5.2.15)

SOLUTION(a) The characteristic polynomial of (5.2.14) is

p.r/ D r2 C 4r C 13 D r2 C 4r C 4C 9 D .r C 2/2 C 9:

The roots of the characteristic equation are r1 D �2C 3i and r2 D �2�3i . By analogy with Case 1, it’s
reasonable to expect that e.�2C3i/x and e.�2�3i/x are solutions of (5.2.14). This is true (see Exercise 34);

however, there are difficulties here, since you are probably not familiar with exponential functions with

complex arguments, and even if you are, it’s inconvenient to work with them, since they are complex–

valued. We’ll take a simpler approach, which we motivate as follows: the exponential notation suggests

that
e.�2C3i/x D e�2xe3ix and e.�2�3i/x D e�2xe�3ix;
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so even though we haven’t defined e3ix and e�3ix, it’s reasonable to expect that every linear combination

of e.�2C3i/x and e.�2�3i/x can be written as y D ue�2x , where u depends upon x. To determine u, we

note that if y D ue�2x then

y0 D u0e�2x � 2ue�2x and y00 D u00e�2x � 4u0e�2x C 4ue�2x;

so

y00 C 4y0 C 13y D e�2x
�

.u00 � 4u0 C 4u/C 4.u0 � 2u/C 13u
�

D e�2x
�

u00 � .4 � 4/u0 C .4 � 8C 13/u
�

D e�2x.u00 C 9u/:

Therefore y D ue�2x is a solution of (5.2.14) if and only if

u00 C 9u D 0:

From Example 5.1.2, the general solution of this equation is

u D c1 cos 3x C c2 sin 3x:

Therefore any function of the form

y D e�2x.c1 cos 3x C c2 sin 3x/ (5.2.16)

is a solution of (5.2.14). Letting c1 D 1 and c2 D 0 yields the solution y1 D e�2x cos 3x. Letting c1 D 0

and c2 D 1 yields the second solution y2 D e�2x sin 3x. Since y2=y1 D tan 3x is nonconstant, 5.1.6

implies that fy1; y2g is a fundamental set of solutions of (5.2.14), and (5.2.16) is the general solution.

SOLUTION(b) Imposing the condition y.0/ D 2 in (5.2.16) shows that c1 D 2. Differentiating (5.2.16)

yields

y0 D �2e�2x.c1 cos 3x C c2 sin 3x/C 3e�2x.�c1 sin 3x C c2 cos 3x/;

and imposing the initial condition y0.0/ D �3 here yields �3 D �2c1 C 3c2 D �4C 3c2, so c2 D 1=3.

Therefore the solution of (5.2.15) is

y D e�2x.2 cos 3x C 1

3
sin 3x/:

Figure 5.2.3 is a graph of this function.
Now suppose the characteristic equation of ay00 C by0 C cy D 0 has arbitrary complex roots; thus,

b2 � 4ac < 0 and, from (5.2.3), the roots are

r1 D �b C i
p
4ac � b2

2a
; r2 D �b � i

p
4ac � b2

2a
;

which we rewrite as

r1 D �C i!; r2 D �� i!; (5.2.17)

with

� D � b

2a
; ! D

p
4ac � b2

2a
:

Don’t memorize these formulas. Just remember that r1 and r2 are of the form (5.2.17), where � is an

arbitrary real number and ! is positive; � and ! are the real and imaginary parts, respectively, of r1.
Similarly, � and �! are the real and imaginary parts of r2. We say that r1 and r2 are complex conjugates,
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which means that they have the same real part and their imaginary parts have the same absolute values,

but opposite signs.
As in Example 5.2.3, it’s reasonable to to expect that the solutions of ay00 C by0 C cy D 0 are linear

combinations of e.�Ci!/x and e.��i!/x. Again, the exponential notation suggests that

e.�Ci!/x D e�xei!x and e.��i!/x D e�xe�i!x;

so even though we haven’t defined ei!x and e�i!x, it’s reasonable to expect that every linear combination

of e.�Ci!/x and e.��i!/x can be written as y D ue�x , where u depends upon x. To determine u we first

observe that since r1 D �C i! and r2 D � � i! are the roots of the characteristic equation, p must be

of the form
p.r/ D a.r � r1/.r � r2/

D a.r � � � i!/.r � �C i!/

D a
�

.r � �/2 C !2
�

D a.r2 � 2�r C �2 C !2/:

Therefore ay00 C by0 C cy D 0 can be written as

a
�

y00 � 2�y0 C .�2 C !2/y
�

D 0:

Since a ¤ 0 this equation has the same solutions as

y00 � 2�y0 C .�2 C !2/y D 0: (5.2.18)

To determine u we note that if y D ue�x then

y0 D u0e�x C �ue�x and y00 D u00e�x C 2�u0e�x C �2ue�x :
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Substituting these expressions into (5.2.18) and dropping the common factor e�x yields

.u00 C 2�u0 C �2u/ � 2�.u0 C �u/ C .�2 C !2/u D 0;

which simplifies to

u00 C !2u D 0:

From Example 5.1.2, the general solution of this equation is

u D c1 cos!x C c2 sin!x:

Therefore any function of the form

y D e�x.c1 cos!x C c2 sin!x/ (5.2.19)

is a solution of (5.2.18). Letting c1 D 1 and c2 D 0 here yields the solution y1 D e�x cos!x. Letting

c1 D 0 and c2 D 1 yields a second solution y2 D e�x sin!x. Since y2=y1 D tan!x is nonconstant,

so Theorem 5.1.6 implies that fy1; y2g is a fundamental set of solutions of (5.2.18), and (5.2.19) is the

general solution.

Summary

The next theorem summarizes the results of this section.

Theorem 5.2.1 Let p.r/ D ar2 C br C c be the characteristic polynomial of

ay00 C by0 C cy D 0: (5.2.20)

ThenW
(a) If p.r/ D 0 has distinct real roots r1 and r2; then the general solution of (5.2.20) is

y D c1e
r1x C c2e

r2x:

(b) If p.r/ D 0 has a repeated root r1; then the general solution of (5.2.20) is

y D er1x.c1 C c2x/:

(c) If p.r/ D 0 has complex conjugate roots r1 D � C i! and r2 D � � i! .where ! > 0/; then the

general solution of (5.2.20) is

y D e�x.c1 cos!x C c2 sin!x/:

5.2 Exercises

In Exercises 1–12 find the general solution.

1. y00 C 5y0 � 6y D 0 2. y00 � 4y0 C 5y D 0

3. y00 C 8y0 C 7y D 0 4. y00 � 4y0 C 4y D 0

5. y00 C 2y0 C 10y D 0 6. y00 C 6y0 C 10y D 0
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7. y00 � 8y0 C 16y D 0 8. y00 C y0 D 0

9. y00 � 2y0 C 3y D 0 10. y00 C 6y0 C 13y D 0

11. 4y00 C 4y0 C 10y D 0 12. 10y00 � 3y0 � y D 0

In Exercises 13–17 solve the initial value problem.

13. y00 C 14y0 C 50y D 0; y.0/ D 2; y0.0/ D �17
14. 6y00 � y0 � y D 0; y.0/ D 10; y0.0/ D 0

15. 6y00 C y0 � y D 0; y.0/ D �1; y0.0/ D 3

16. 4y00 � 4y0 � 3y D 0; y.0/ D 13

12
; y0.0/ D 23

24

17. 4y00 � 12y0 C 9y D 0; y.0/ D 3; y0.0/ D 5

2

In Exercises 18–21 solve the initial value problem and graph the solution.

18. C/G y00 C 7y0 C 12y D 0; y.0/ D �1; y0.0/ D 0

19. C/G y00 � 6y0 C 9y D 0; y.0/ D 0; y0.0/ D 2

20. C/G 36y00 � 12y0 C y D 0; y.0/ D 3; y0.0/ D 5

2

21. C/G y00 C 4y0 C 10y D 0; y.0/ D 3; y0.0/ D �2
22. (a) Suppose y is a solution of the constant coefficient homogeneous equation

ay00 C by0 C cy D 0: .A/

Let ´.x/ D y.x � x0/, where x0 is an arbitrary real number. Show that

a´00 C b´0 C c´ D 0:

(b) Let ´1.x/ D y1.x � x0/ and ´2.x/ D y2.x � x0/, where fy1; y2g is a fundamental set of

solutions of (A). Show that f´1; ´2g is also a fundamental set of solutions of (A).

(c) The statement of Theorem 5.2.1 is convenient for solving an initial value problem

ay00 C by0 C cy D 0; y.0/ D k0; y0.0/ D k1;

where the initial conditions are imposed at x0 D 0. However, if the initial value problem is

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1; .B/

where x0 ¤ 0, then determining the constants in

y D c1e
r1x C c2e

r2x; y D er1x.c1 C c2x/; or y D e�x.c1 cos!x C c2 sin!x/

(whichever is applicable) is more complicated. Use (b) to restate Theorem 5.2.1 in a form

more convenient for solving (B).

In Exercises 23–28 use a method suggested by Exercise 22 to solve the initial value problem.

23. y00 C 3y0 C 2y D 0; y.1/ D �1; y0.1/ D 4
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24. y00 � 6y0 � 7y D 0; y.2/ D �1
3
; y0.2/ D �5

25. y00 � 14y0 C 49y D 0; y.1/ D 2; y0.1/ D 11

26. 9y00 C 6y0 C y D 0; y.2/ D 2; y0.2/ D �14
3

27. 9y00 C 4y D 0; y.�=4/ D 2; y0.�=4/ D �2
28. y00 C 3y D 0; y.�=3/ D 2; y0.�=3/ D �1
29. Prove: If the characteristic equation of

ay00 C by0 C cy D 0 .A/

has a repeated negative root or two roots with negative real parts, then every solution of (A) ap-

proaches zero as x ! 1.

30. Suppose the characteristic polynomial of ay00 C by0 C cy D 0 has distinct real roots r1 and r2.

Use a method suggested by Exercise 22 to find a formula for the solution of

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1:

31. Suppose the characteristic polynomial of ay00 C by0 C cy D 0 has a repeated real root r1. Use a

method suggested by Exercise 22 to find a formula for the solution of

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1:

32. Suppose the characteristic polynomial of ay00 Cby0 Ccy D 0 has complex conjugate roots �˙ i!.

Use a method suggested by Exercise 22 to find a formula for the solution of

ay00 C by0 C cy D 0; y.x0/ D k0; y0.x0/ D k1:

33. Suppose the characteristic equation of

ay00 C by0 C cy D 0 .A/

has a repeated real root r1. Temporarily, think of erx as a function of two real variables x and r .

(a) Show that

a
@2

@2x
.erx/C b

@

@x
.erx/C cerx D a.r � r1/

2erx: .B/

(b) Differentiate (B) with respect to r to obtain

a
@

@r

�

@2

@2x
.erx/

�

C b
@

@r

�

@

@x
.erx/

�

C c.xerx/ D Œ2C .r � r1/x�a.r � r1/erx: .C/

(c) Reverse the orders of the partial differentiations in the first two terms on the left side of (C)

to obtain

a
@2

@x2
.xerx/C b

@

@x
.xerx/C c.xerx/ D Œ2C .r � r1/x�a.r � r1/erx: .D/

(d) Set r D r1 in (B) and (D) to see that y1 D er1x and y2 D xer1x are solutions of (A)
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34. In calculus you learned that eu, cosu, and sinu can be represented by the infinite series

eu D
1
X

nD0

un

nŠ
D 1C u

1Š
C u2

2Š
C u3

3Š
C � � � C un

nŠ
C � � � .A/

cosu D
1
X

nD0

.�1/n u2n

.2n/Š
D 1 � u2

2Š
C u4

4Š
C � � � C .�1/n u2n

.2n/Š
C � � � ; .B/

and

sinu D
1
X

nD0

.�1/n u2nC1

.2nC 1/Š
D u� u3

3Š
C u5

5Š
C � � � C .�1/n u2nC1

.2nC 1/Š
C � � � .C/

for all real values of u. Even though you have previously considered (A) only for real values of u,
we can set u D i� , where � is real, to obtain

ei� D
1
X

nD0

.i�/n

nŠ
: .D/

Given the proper background in the theory of infinite series with complex terms, it can be shown

that the series in (D) converges for all real � .

(a) Recalling that i2 D �1; write enough terms of the sequence fing to convince yourself that

the sequence is repetitive:

1; i;�1;�i; 1; i;�1;�i; 1; i;�1;�i; 1; i;�1;�i; � � � :

Use this to group the terms in (D) as

ei� D
�

1 � �2

2
C �4

4
C � � �

�

C i

�

� � �3

3Š
C �5

5Š
C � � �

�

D
1
X

nD0

.�1/n �2n

.2n/Š
C i

1
X

nD0

.�1/n �2nC1

.2nC 1/Š
:

By comparing this result with (B) and (C), conclude that

ei� D cos � C i sin �: .E/

This is Euler’s identity.

(b) Starting from

ei�1ei�2 D .cos �1 C i sin �1/.cos �2 C i sin �2/;

collect the real part (the terms not multiplied by i ) and the imaginary part (the terms multi-

plied by i ) on the right, and use the trigonometric identities

cos.�1 C �2/ D cos �1 cos �2 � sin �1 sin �2

sin.�1 C �2/ D sin �1 cos �2 C cos �1 sin �2

to verify that

ei.�1C�2/ D ei�1ei�2 ;

as you would expect from the use of the exponential notation ei� .

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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(c) If ˛ and ˇ are real numbers, define

e˛Ciˇ D e˛eiˇ D e˛.cos ˇ C i sinˇ/: .F/

Show that if ´1 D ˛1 C iˇ1 and ´2 D ˛2 C iˇ2 then

e´1C´2 D e´1e´2:

(d) Let a, b, and c be real numbers, with a ¤ 0. Let ´ D uC iv where u and v are real-valued

functions of x. Then we say that ´ is a solution of

ay00 C by0 C cy D 0 .G/

if u and v are both solutions of (G). Use Theorem 5.2.1(c) to verify that if the characteristic
equation of (G) has complex conjugate roots �˙ i! then ´1 D e.�Ci!/x and ´2 D e.��i!/x

are both solutions of (G).

5.3 NONHOMOGENEOUS LINEAR EQUATIONS

We’ll now consider the nonhomogeneous linear second order equation

y00 C p.x/y0 C q.x/y D f .x/; (5.3.1)

where the forcing function f isn’t identically zero. The next theorem, an extension of Theorem 5.1.1,

gives sufficient conditions for existence and uniqueness of solutions of initial value problems for (5.3.1).

We omit the proof, which is beyond the scope of this book.

Theorem 5.3.1 Suppose p; ; q and f are continuous on an open interval .a; b/; let x0 be any point in

.a; b/; and let k0 and k1 be arbitrary real numbers: Then the initial value problem

y00 C p.x/y0 C q.x/y D f .x/; y.x0/ D k0; y0.x0/ D k1

has a unique solution on .a; b/:

To find the general solution of (5.3.1) on an interval .a; b/ where p, q, and f are continuous, it’s

necessary to find the general solution of the associated homogeneous equation

y00 C p.x/y0 C q.x/y D 0 (5.3.2)

on .a; b/. We call (5.3.2) the complementary equation for (5.3.1).

The next theorem shows how to find the general solution of (5.3.1) if we know one solution yp of

(5.3.1) and a fundamental set of solutions of (5.3.2). We call yp a particular solution of (5.3.1); it can be

any solution that we can find, one way or another.

Theorem 5.3.2 Suppose p; q; and f are continuous on .a; b/: Let yp be a particular solution of

y00 C p.x/y0 C q.x/y D f .x/ (5.3.3)

on .a; b/, and let fy1; y2g be a fundamental set of solutions of the complementary equation

y00 C p.x/y0 C q.x/y D 0 (5.3.4)

on .a; b/. Then y is a solution of (5.3.3) on .a; b/ if and only if

y D yp C c1y1 C c2y2; (5.3.5)

where c1 and c2 are constants.
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Proof We first show that y in (5.3.5) is a solution of (5.3.3) for any choice of the constants c1 and c2.

Differentiating (5.3.5) twice yields

y0 D y0
p C c1y

0
1 C c2y

0
2 and y00 D y00

p C c1y
00
1 C c2y

00
2 ;

so

y00 C p.x/y0 C q.x/y D .y00
p C c1y

00
1 C c2y

00
2 /C p.x/.y0

p C c1y
0
1 C c2y

0
2/

Cq.x/.yp C c1y1 C c2y2/

D .y00
p C p.x/y0

p C q.x/yp/C c1.y
00
1 C p.x/y0

1 C q.x/y1/

Cc2.y
00
2 C p.x/y0

2 C q.x/y2/

D f C c1 � 0C c2 � 0 D f;

since yp satisfies (5.3.3) and y1 and y2 satisfy (5.3.4).

Now we’ll show that every solution of (5.3.3) has the form (5.3.5) for some choice of the constants c1

and c2. Suppose y is a solution of (5.3.3). We’ll show that y � yp is a solution of (5.3.4), and therefore

of the form y � yp D c1y1 C c2y2, which implies (5.3.5). To see this, we compute

.y � yp/
00 C p.x/.y � yp/

0 C q.x/.y � yp/ D .y00 � y00
p/C p.x/.y0 � y0

p/

Cq.x/.y � yp/

D .y00 C p.x/y0 C q.x/y/

�.y00
p C p.x/y0

p C q.x/yp/

D f .x/ � f .x/ D 0;

since y and yp both satisfy (5.3.3).
We say that (5.3.5) is the general solution of (5.3.3) on .a; b/.

If P0, P1, and F are continuous and P0 has no zeros on .a; b/, then Theorem 5.3.2 implies that the

general solution of

P0.x/y
00 CP1.x/y

0 C P2.x/y D F.x/ (5.3.6)

on .a; b/ is y D yp C c1y1 C c2y2, where yp is a particular solution of (5.3.6) on .a; b/ and fy1; y2g is

a fundamental set of solutions of

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0

on .a; b/. To see this, we rewrite (5.3.6) as

y00 C P1.x/

P0.x/
y0 C P2.x/

P0.x/
y D F.x/

P0.x/

and apply Theorem 5.3.2 with p D P1=P0, q D P2=P0, and f D F=P0.

To avoid awkward wording in examples and exercises, we won’t specify the interval .a; b/when we ask
for the general solution of a specific linear second order equation, or for a fundamental set of solutions of

a homogeneous linear second order equation. Let’s agree that this always means that we want the general

solution (or a fundamental set of solutions, as the case may be) on every open interval on which p, q, and

f are continuous if the equation is of the form (5.3.3), or on which P0, P1, P2, and F are continuous

and P0 has no zeros, if the equation is of the form (5.3.6). We leave it to you to identify these intervals in
specific examples and exercises.

For completeness, we point out that if P0, P1, P2, and F are all continuous on an open interval .a; b/,

but P0 does have a zero in .a; b/, then (5.3.6) may fail to have a general solution on .a; b/ in the sense

just defined. Exercises 42–44 illustrate this point for a homogeneous equation.

In this section we to limit ourselves to applications of Theorem 5.3.2 where we can guess at the form
of the particular solution.
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Example 5.3.1

(a) Find the general solution of

y00 C y D 1: (5.3.7)

(b) Solve the initial value problem

y00 C y D 1; y.0/ D 2; y0.0/ D 7: (5.3.8)

SOLUTION(a) We can apply Theorem 5.3.2 with .a; b/ D .�1;1/, since the functions p � 0, q � 1,

and f � 1 in (5.3.7) are continuous on .�1;1/. By inspection we see that yp � 1 is a particu-

lar solution of (5.3.7). Since y1 D cos x and y2 D sinx form a fundamental set of solutions of the

complementary equation y00 C y D 0, the general solution of (5.3.7) is

y D 1C c1 cos x C c2 sinx: (5.3.9)

SOLUTION(b) Imposing the initial condition y.0/ D 2 in (5.3.9) yields 2 D 1 C c1, so c1 D 1.

Differentiating (5.3.9) yields

y0 D �c1 sinx C c2 cos x:

Imposing the initial condition y0.0/ D 7 here yields c2 D 7, so the solution of (5.3.8) is

y D 1C cos x C 7 sinx:

Figure 5.3.1 is a graph of this function.

Example 5.3.2

(a) Find the general solution of

y00 � 2y0 C y D �3 � x C x2: (5.3.10)

(b) Solve the initial value problem

y00 � 2y0 C y D �3 � x C x2; y.0/ D �2; y0.0/ D 1: (5.3.11)

SOLUTION(a) The characteristic polynomial of the complementary equation

y00 � 2y0 C y D 0

is r2 � 2r C 1 D .r � 1/2, so y1 D ex and y2 D xex form a fundamental set of solutions of the

complementary equation. To guess a form for a particular solution of (5.3.10), we note that substituting a
second degree polynomial yp D ACBxCCx2 into the left side of (5.3.10) will produce another second

degree polynomial with coefficients that depend upon A, B , and C . The trick is to choose A, B , and C

so the polynomials on the two sides of (5.3.10) have the same coefficients; thus, if

yp D AC Bx C Cx2 then y0
p D B C 2Cx and y00

p D 2C;

so

y00
p � 2y0

p C yp D 2C � 2.B C 2Cx/C .AC Bx C Cx2/

D .2C � 2B C A/C .�4C C B/x C Cx2 D �3 � x C x2:
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 y

Figure 5.3.1 y D 1C cos x C 7 sinx

Equating coefficients of like powers of x on the two sides of the last equality yields

C D 1

B � 4C D �1
A� 2B C 2C D �3;

so C D 1,B D �1C4C D 3, and A D �3�2C C2B D 1. Therefore yp D 1C3xCx2 is a particular

solution of (5.3.10) and Theorem 5.3.2 implies that

y D 1C 3x C x2 C ex.c1 C c2x/ (5.3.12)

is the general solution of (5.3.10).

SOLUTION(b) Imposing the initial condition y.0/ D �2 in (5.3.12) yields �2 D 1 C c1, so c1 D �3.

Differentiating (5.3.12) yields

y0 D 3C 2x C ex.c1 C c2x/C c2e
x;

and imposing the initial condition y0.0/ D 1 here yields 1 D 3 C c1 C c2, so c2 D 1. Therefore the

solution of (5.3.11) is

y D 1C 3x C x2 � ex.3 � x/:
Figure 5.3.2 is a graph of this solution.

Example 5.3.3 Find the general solution of

x2y00 C xy0 � 4y D 2x4 (5.3.13)

on .�1; 0/ and .0;1/.
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Figure 5.3.2 y D 1C 3x C x2 � ex.3 � x/

Solution In Example 5.1.3, we verified that y1 D x2 and y2 D 1=x2 form a fundamental set of solutions

of the complementary equation

x2y00 C xy0 � 4y D 0

on .�1; 0/ and .0;1/. To find a particular solution of (5.3.13), we note that if yp D Ax4, where A is a

constant then both sides of (5.3.13) will be constant multiples of x4 and we may be able to choose A so

the two sides are equal. This is true in this example, since if yp D Ax4 then

x2y00
p C xy0

p � 4yp D x2.12Ax2/C x.4Ax3/ � 4Ax4 D 12Ax4 D 2x4

if A D 1=6; therefore, yp D x4=6 is a particular solution of (5.3.13) on .�1;1/. Theorem 5.3.2

implies that the general solution of (5.3.13) on .�1; 0/ and .0;1/ is

y D x4

6
C c1x

2 C c2

x2
:

The Principle of Superposition

The next theorem enables us to break a nonhomogeous equation into simpler parts, find a particular
solution for each part, and then combine their solutions to obtain a particular solution of the original

problem.

Theorem 5.3.3 ŒThe Principle of Superposition� Suppose yp1
is a particular solution of

y00 C p.x/y0 C q.x/y D f1.x/

on .a; b/ and yp2
is a particular solution of

y00 C p.x/y0 C q.x/y D f2.x/
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on .a; b/. Then

yp D yp1
C yp2

is a particular solution of

y00 C p.x/y0 C q.x/y D f1.x/C f2.x/

on .a; b/.

Proof If yp D yp1
C yp2

then

y00
p C p.x/y0

p C q.x/yp D .yp1
C yp2

/00 C p.x/.yp1
C yp2

/0 C q.x/.yp1
C yp2

/

D
�

y00
p1

C p.x/y0
p1

C q.x/yp1

�

C
�

y00
p2

C p.x/y0
p2

C q.x/yp2

�

D f1.x/C f2.x/:

It’s easy to generalize Theorem 5.3.3 to the equation

y00 C p.x/y0 C q.x/y D f .x/ (5.3.14)

where

f D f1 C f2 C � � � C fk I
thus, if ypi

is a particular solution of

y00 C p.x/y0 C q.x/y D fi .x/

on .a; b/ for i D 1, 2, . . . , k, then yp1
C yp2

C � � � C ypk
is a particular solution of (5.3.14) on .a; b/.

Moreover, by a proof similar to the proof of Theorem 5.3.3 we can formulate the principle of superposition

in terms of a linear equation written in the form

P0.x/y
00 CP1.x/y

0 C P2.x/y D F.x/

(Exercise 39); that is, if yp1
is a particular solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D F1.x/

on .a; b/ and yp2
is a particular solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D F2.x/

on .a; b/, then yp1
C yp2

is a solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D F1.x/C F2.x/

on .a; b/.

Example 5.3.4 The function yp1
D x4=15 is a particular solution of

x2y00 C 4xy0 C 2y D 2x4 (5.3.15)

on .�1;1/ and yp2
D x2=3 is a particular solution of

x2y00 C 4xy0 C 2y D 4x2 (5.3.16)

on .�1;1/. Use the principle of superposition to find a particular solution of

x2y00 C 4xy0 C 2y D 2x4 C 4x2 (5.3.17)

on .�1;1/.
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Solution The right side F.x/ D 2x4 C 4x2 in (5.3.17) is the sum of the right sides

F1.x/ D 2x4 and F2.x/ D 4x2:

in (5.3.15) and (5.3.16). Therefore the principle of superposition implies that

yp D yp1
C yp2

D x4

15
C x2

3

is a particular solution of (5.3.17).

5.3 Exercises

In Exercises 1–6 find a particular solution by the method used in Example 5.3.2. Then find the general

solution and, where indicated, solve the initial value problem and graph the solution.

1. y00 C 5y0 � 6y D 22C 18x � 18x2

2. y00 � 4y0 C 5y D 1C 5x

3. y00 C 8y0 C 7y D �8 � x C 24x2 C 7x3

4. y00 � 4y0 C 4y D 2C 8x � 4x2

5. C/G y00 C 2y0 C 10y D 4C 26x C 6x2 C 10x3; y.0/ D 2; y0.0/ D 9

6. C/G y00 C 6y0 C 10y D 22C 20x; y.0/ D 2; y0.0/ D �2
7. Show that the method used in Example 5.3.2 won’t yield a particular solution of

y00 C y0 D 1C 2x C x2I .A/

that is, (A) does’nt have a particular solution of the form yp D ACBx C Cx2, where A, B , and

C are constants.

In Exercises 8–13 find a particular solution by the method used in Example 5.3.3.

8. x2y00 C 7xy0 C 8y D 6

x

9. x2y00 � 7xy0 C 7y D 13x1=2

10. x2y00 � xy0 C y D 2x3

11. x2y00 C 5xy0 C 4y D 1

x3

12. x2y00 C xy0 C y D 10x1=3 13. x2y00 � 3xy0 C 13y D 2x4

14. Show that the method suggested for finding a particular solution in Exercises 8-13 won’t yield a

particular solution of

x2y00 C 3xy0 � 3y D 1

x3
I .A/

that is, (A) doesn’t have a particular solution of the form yp D A=x3.

15. Prove: If a, b, c, ˛, and M are constants and M ¤ 0 then

ax2y00 C bxy0 C cy D Mx˛

has a particular solution yp D Ax˛ (A D constant) if and only if a˛.˛ � 1/C b˛ C c ¤ 0.
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If a, b, c, and ˛ are constants, then

a.e˛x/00 C b.e˛x/0 C ce˛x D .a˛2 C b˛ C c/e˛x :

Use this in Exercises 16–21 to find a particular solution . Then find the general solution and, where

indicated, solve the initial value problem and graph the solution.

16. y00 C 5y0 � 6y D 6e3x 17. y00 � 4y0 C 5y D e2x

18. C/G y00 C 8y0 C 7y D 10e�2x; y.0/ D �2; y0.0/ D 10

19. C/G y00 � 4y0 C 4y D ex; y.0/ D 2; y0.0/ D 0

20. y00 C 2y0 C 10y D ex=2 21. y00 C 6y0 C 10y D e�3x

22. Show that the method suggested for finding a particular solution in Exercises 16-21 won’t yield a

particular solution of

y00 � 7y0 C 12y D 5e4xI .A/

that is, (A) doesn’t have a particular solution of the form yp D Ae4x.

23. Prove: If ˛ and M are constants and M ¤ 0 then constant coefficient equation

ay00 C by0 C cy D Me˛x

has a particular solution yp D Ae˛x (A D constant) if and only if e˛x isn’t a solution of the

complementary equation.

If ! is a constant, differentiating a linear combination of cos!x and sin!x with respect to x yields

another linear combination of cos!x and sin!x. In Exercises 24–29 use this to find a particular solution

of the equation. Then find the general solution and, where indicated, solve the initial value problem and

graph the solution.

24. y00 � 8y0 C 16y D 23 cos x � 7 sinx

25. y00 C y0 D �8 cos 2x C 6 sin 2x

26. y00 � 2y0 C 3y D �6 cos 3x C 6 sin 3x

27. y00 C 6y0 C 13y D 18 cos x C 6 sinx

28. C/G y00 C 7y0 C 12y D �2 cos 2x C 36 sin2x; y.0/ D �3; y0.0/ D 3

29. C/G y00 � 6y0 C 9y D 18 cos 3x C 18 sin 3x; y.0/ D 2; y0.0/ D 2

30. Find the general solution of

y00 C !2
0y D M cos!x CN sin!x;

whereM and N are constants and ! and !0 are distinct positive numbers.

31. Show that the method suggested for finding a particular solution in Exercises 24-29 won’t yield a
particular solution of

y00 C y D cos x C sinxI .A/

that is, (A) does not have a particular solution of the form yp D A cos x C B sinx.
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32. Prove: If M , N are constants (not both zero) and ! > 0, the constant coefficient equation

ay00 C by0 C cy D M cos!x CN sin!x .A/

has a particular solution that’s a linear combination of cos!x and sin!x if and only if the left side

of (A) is not of the form a.y00 C!2y/, so that cos!x and sin!x are solutions of the complemen-

tary equation.

In Exercises 33–38 refer to the cited exercises and use the principal of superposition to find a particular

solution. Then find the general solution.

33. y00 C 5y0 � 6y D 22C 18x � 18x2 C 6e3x (See Exercises 1 and 16.)

34. y00 � 4y0 C 5y D 1C 5x C e2x (See Exercises 2 and 17.)

35. y00 C 8y0 C 7y D �8 � x C 24x2 C 7x3 C 10e�2x (See Exercises 3 and 18.)

36. y00 � 4y0 C 4y D 2C 8x � 4x2 C ex (See Exercises 4 and 19.)

37. y00 C 2y0 C 10y D 4C 26x C 6x2 C 10x3 C ex=2 (See Exercises 5 and 20.)

38. y00 C 6y0 C 10y D 22C 20x C e�3x (See Exercises 6 and 21.)

39. Prove: If yp1
is a particular solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D F1.x/

on .a; b/ and yp2
is a particular solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D F2.x/

on .a; b/, then yp D yp1
C yp2

is a solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D F1.x/C F2.x/

on .a; b/.

40. Supposep, q, and f are continuous on .a; b/. Let y1, y2, and yp be twice differentiable on .a; b/,

such that y D c1y1 C c2y2 C yp is a solution of

y00 C p.x/y0 C q.x/y D f

on .a; b/ for every choice of the constants c1; c2. Show that y1 and y2 are solutions of the com-

plementary equation on .a; b/.

5.4 THE METHOD OF UNDETERMINED COEFFICIENTS I

In this section we consider the constant coefficient equation

ay00 C by0 C cy D e˛xG.x/; (5.4.1)

where ˛ is a constant and G is a polynomial.
From Theorem 5.3.2, the general solution of (5.4.1) is y D yp C c1y1 C c2y2, where yp is a particular

solution of (5.4.1) and fy1; y2g is a fundamental set of solutions of the complementary equation

ay00 C by0 C cy D 0:

In Section 5.2 we showed how to find fy1; y2g. In this section we’ll show how to find yp . The procedure

that we’ll use is called the method of undetermined coefficients.
Our first example is similar to Exercises 16–21.
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Example 5.4.1 Find a particular solution of

y00 � 7y0 C 12y D 4e2x: (5.4.2)

Then find the general solution.

Solution Substituting yp D Ae2x for y in (5.4.2) will produce a constant multiple of Ae2x on the left

side of (5.4.2), so it may be possible to choose A so that yp is a solution of (5.4.2). Let’s try it; if

yp D Ae2x then

y00
p � 7y0

p C 12yp D 4Ae2x � 14Ae2x C 12Ae2x D 2Ae2x D 4e2x

if A D 2. Therefore yp D 2e2x is a particular solution of (5.4.2). To find the general solution, we note

that the characteristic polynomial of the complementary equation

y00 � 7y0 C 12y D 0 (5.4.3)

is p.r/ D r2 � 7r C 12 D .r � 3/.r � 4/, so fe3x; e4xg is a fundamental set of solutions of (5.4.3).

Therefore the general solution of (5.4.2) is

y D 2e2x C c1e
3x C c2e

4x:

Example 5.4.2 Find a particular solution of

y00 � 7y0 C 12y D 5e4x: (5.4.4)

Then find the general solution.

Solution Fresh from our success in finding a particular solution of (5.4.2) — where we chose yp D Ae2x

because the right side of (5.4.2) is a constant multiple of e2x — it may seem reasonable to try yp D Ae4x

as a particular solution of (5.4.4). However, this won’t work, since we saw in Example 5.4.1 that e4x is
a solution of the complementary equation (5.4.3), so substituting yp D Ae4x into the left side of (5.4.4)

produces zero on the left, no matter how we chooseA. To discover a suitable form for yp , we use the

same approach that we used in Section 5.2 to find a second solution of

ay00 C by0 C cy D 0

in the case where the characteristic equation has a repeated real root: we look for solutions of (5.4.4) in

the form y D ue4x, where u is a function to be determined. Substituting

y D ue4x; y0 D u0e4x C 4ue4x; and y00 D u00e4x C 8u0e4x C 16ue4x (5.4.5)

into (5.4.4) and canceling the common factor e4x yields

.u00 C 8u0 C 16u/� 7.u0 C 4u/C 12u D 5;

or

u00 C u0 D 5:

By inspection we see that up D 5x is a particular solution of this equation, so yp D 5xe4x is a particular

solution of (5.4.4). Therefore
y D 5xe4x C c1e

3x C c2e
4x

is the general solution.
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Example 5.4.3 Find a particular solution of

y00 � 8y0 C 16y D 2e4x: (5.4.6)

Solution Since the characteristic polynomial of the complementary equation

y00 � 8y0 C 16y D 0 (5.4.7)

is p.r/ D r2 � 8r C 16 D .r � 4/2, both y1 D e4x and y2 D xe4x are solutions of (5.4.7). Therefore

(5.4.6) does not have a solution of the form yp D Ae4x or yp D Axe4x. As in Example 5.4.2, we look

for solutions of (5.4.6) in the form y D ue4x, where u is a function to be determined. Substituting from

(5.4.5) into (5.4.6) and canceling the common factor e4x yields

.u00 C 8u0 C 16u/� 8.u0 C 4u/C 16u D 2;

or

u00 D 2:

Integrating twice and taking the constants of integration to be zero shows that up D x2 is a particular

solution of this equation, so yp D x2e4x is a particular solution of (5.4.4). Therefore

y D e4x.x2 C c1 C c2x/

is the general solution.

The preceding examples illustrate the following facts concerning the form of a particular solution yp

of a constant coefficent equation

ay00 C by0 C cy D ke˛x;

where k is a nonzero constant:

(a) If e˛x isn’t a solution of the complementary equation

ay00 C by0 C cy D 0; (5.4.8)

then yp D Ae˛x , where A is a constant. (See Example 5.4.1).

(b) If e˛x is a solution of (5.4.8) but xe˛x is not, then yp D Axe˛x, where A is a constant. (See

Example 5.4.2.)

(c) If both e˛x and xe˛x are solutions of (5.4.8), then yp D Ax2e˛x, where A is a constant. (See
Example 5.4.3.)

See Exercise 30 for the proofs of these facts.

In all three cases you can just substitute the appropriate form for yp and its derivatives directly into

ay00
p C by0

p C cyp D ke˛x ;

and solve for the constantA, as we did in Example 5.4.1. (See Exercises 31–33.) However, if the equation
is

ay00 C by0 C cy D ke˛xG.x/;

where G is a polynomial of degree greater than zero, we recommend that you use the substitution y D
ue˛x as we did in Examples 5.4.2 and 5.4.3. The equation for u will turn out to be

au00 C p0.˛/u0 C p.˛/u D G.x/; (5.4.9)
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where p.r/ D ar2 C brC c is the characteristic polynomial of the complementary equation and p0.r/ D
2ar C b (Exercise 30); however, you shouldn’t memorize this since it’s easy to derive the equation for

u in any particular case. Note, however, that if e˛x is a solution of the complementary equation then

p.˛/ D 0, so (5.4.9) reduces to

au00 C p0.˛/u0 D G.x/;

while if both e˛x and xe˛x are solutions of the complementary equation then p.r/ D a.r � ˛/2 and

p0.r/ D 2a.r � ˛/, so p.˛/ D p0.˛/ D 0 and (5.4.9) reduces to

au00 D G.x/:

Example 5.4.4 Find a particular solution of

y00 � 3y0 C 2y D e3x.�1 C 2x C x2/: (5.4.10)

Solution Substituting

y D ue3x; y0 D u0e3x C 3ue3x; and y00 D u00e3x C 6u0e3x C 9ue3x

into (5.4.10) and canceling e3x yields

.u00 C 6u0 C 9u/� 3.u0 C 3u/C 2u D �1C 2x C x2;

or
u00 C 3u0 C 2u D �1C 2x C x2: (5.4.11)

As in Example 2, in order to guess a form for a particular solution of (5.4.11), we note that substituting a

second degree polynomial up D ACBxCCx2 for u in the left side of (5.4.11) produces another second
degree polynomial with coefficients that depend upon A, B , and C ; thus,

if up D AC Bx C Cx2 then u0
p D B C 2Cx and u00

p D 2C:

If up is to satisfy (5.4.11), we must have

u00
p C 3u0

p C 2up D 2C C 3.B C 2Cx/C 2.AC Bx C Cx2/

D .2C C 3B C 2A/C .6C C 2B/x C 2Cx2 D �1C 2x C x2:

Equating coefficients of like powers of x on the two sides of the last equality yields

2C D 1

2B C 6C D 2

2AC 3B C 2C D �1:

Solving these equations for C , B , and A (in that order) yields C D 1=2; B D �1=2; A D �1=4.
Therefore

up D �1
4
.1C 2x � 2x2/

is a particular solution of (5.4.11), and

yp D upe
3x D �e

3x

4
.1C 2x � 2x2/

is a particular solution of (5.4.10).
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Example 5.4.5 Find a particular solution of

y00 � 4y0 C 3y D e3x.6C 8x C 12x2/: (5.4.12)

Solution Substituting

y D ue3x; y0 D u0e3x C 3ue3x; and y00 D u00e3x C 6u0e3x C 9ue3x

into (5.4.12) and canceling e3x yields

.u00 C 6u0 C 9u/� 4.u0 C 3u/C 3u D 6C 8x C 12x2;

or
u00 C 2u0 D 6C 8x C 12x2: (5.4.13)

There’s no u term in this equation, since e3x is a solution of the complementary equation for (5.4.12).

(See Exercise 30.) Therefore (5.4.13) does not have a particular solution of the form up D ACBxCCx2

that we used successfully in Example 5.4.4, since with this choice of up ,

u00
p C 2u0

p D 2C C .B C 2Cx/

can’t contain the last term (12x2) on the right side of (5.4.13). Instead, let’s try up D Ax C Bx2 CCx3

on the grounds that

u0
p D AC 2Bx C 3Cx2 and u00

p D 2B C 6Cx

together contain all the powers of x that appear on the right side of (5.4.13).

Substituting these expressions in place of u0 and u00 in (5.4.13) yields

.2B C 6Cx/C 2.AC 2Bx C 3Cx2/ D .2B C 2A/C .6C C 4B/x C 6Cx2 D 6C 8x C 12x2:

Comparing coefficients of like powers of x on the two sides of the last equality shows that up satisfies

(5.4.13) if
6C D 12

4B C 6C D 8

2AC 2B D 6:

Solving these equations successively yields C D 2, B D �1, and A D 4. Therefore

up D x.4 � x C 2x2/

is a particular solution of (5.4.13), and

yp D upe
3x D xe3x.4 � x C 2x2/

is a particular solution of (5.4.12).

Example 5.4.6 Find a particular solution of

4y00 C 4y0 C y D e�x=2.�8C 48x C 144x2/: (5.4.14)

Solution Substituting

y D ue�x=2; y0 D u0e�x=2 � 1

2
ue�x=2; and y00 D u00e�x=2 � u0e�x=2 C 1

4
ue�x=2
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into (5.4.14) and canceling e�x=2 yields

4
�

u00 � u0 C u

4

�

C 4
�

u0 � u

2

�

C u D 4u00 D �8C 48x C 144x2;

or
u00 D �2C 12x C 36x2; (5.4.15)

which does not contain u or u0 because e�x=2 and xe�x=2 are both solutions of the complementary

equation. (See Exercise 30.) To obtain a particular solution of (5.4.15) we integrate twice, taking the

constants of integration to be zero; thus,

u0
p D �2x C 6x2 C 12x3 and up D �x2 C 2x3 C 3x4 D x2.�1C 2x C 3x2/:

Therefore

yp D upe
�x=2 D x2e�x=2.�1 C 2x C 3x2/

is a particular solution of (5.4.14).

Summary

The preceding examples illustrate the following facts concerning particular solutions of a constant coef-

ficent equation of the form

ay00 C by0 C cy D e˛xG.x/;

where G is a polynomial (see Exercise 30):
(a) If e˛x isn’t a solution of the complementary equation

ay00 C by0 C cy D 0; (5.4.16)

then yp D e˛xQ.x/, where Q is a polynomial of the same degree as G. (See Example 5.4.4).

(b) If e˛x is a solution of (5.4.16) but xe˛x is not, then yp D xe˛xQ.x/, where Q is a polynomial of
the same degree as G. (See Example 5.4.5.)

(c) If both e˛x and xe˛x are solutions of (5.4.16), then yp D x2e˛xQ.x/, where Q is a polynomial of

the same degree as G. (See Example 5.4.6.)
In all three cases, you can just substitute the appropriate form for yp and its derivatives directly into

ay00
p C by0

p C cyp D e˛xG.x/;

and solve for the coefficients of the polynomialQ. However, if you try this you will see that the compu-

tations are more tedious than those that you encounter by making the substitution y D ue˛x and finding

a particular solution of the resulting equation for u. (See Exercises 34-36.) In Case (a) the equation for u
will be of the form

au00 C p0.˛/u0 C p.˛/u D G.x/;

with a particular solution of the form up D Q.x/, a polynomial of the same degree as G, whose coeffi-

cients can be found by the method used in Example 5.4.4. In Case (b) the equation for u will be of the

form
au00 C p0.˛/u0 D G.x/

(no u term on the left), with a particular solution of the form up D xQ.x/, where Q is a polynomial of

the same degree as G whose coefficents can be found by the method used in Example 5.4.5. In Case (c)

the equation for u will be of the form

au00 D G.x/
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with a particular solution of the form up D x2Q.x/ that can be obtained by integrating G.x/=a twice

and taking the constants of integration to be zero, as in Example 5.4.6.

Using the Principle of Superposition

The next example shows how to combine the method of undetermined coefficients and Theorem 5.3.3,
the principle of superposition.

Example 5.4.7 Find a particular solution of

y00 � 7y0 C 12y D 4e2x C 5e4x: (5.4.17)

Solution In Example 5.4.1 we found that yp1
D 2e2x is a particular solution of

y00 � 7y0 C 12y D 4e2x;

and in Example 5.4.2 we found that yp2
D 5xe4x is a particular solution of

y00 � 7y0 C 12y D 5e4x:

Therefore the principle of superposition implies that yp D 2e2x C 5xe4x is a particular solution of

(5.4.17).

5.4 Exercises

In Exercises 1–14 find a particular solution.

1. y00 � 3y0 C 2y D e3x.1C x/ 2. y00 � 6y0 C 5y D e�3x.35 � 8x/

3. y00 � 2y0 � 3y D ex.�8 C 3x/ 4. y00 C 2y0 C y D e2x.�7 � 15x C 9x2/

5. y00 C 4y D e�x.7 � 4x C 5x2/ 6. y00 � y0 � 2y D ex.9 C 2x � 4x2/

7. y00 � 4y0 � 5y D �6xe�x 8. y00 � 3y0 C 2y D ex.3 � 4x/

9. y00 C y0 � 12y D e3x.�6 C 7x/ 10. 2y00 � 3y0 � 2y D e2x.�6 C 10x/

11. y00 C 2y0 C y D e�x.2 C 3x/ 12. y00 � 2y0 C y D ex.1 � 6x/

13. y00 � 4y0 C 4y D e2x.1 � 3x C 6x2/

14. 9y00 C 6y0 C y D e�x=3.2 � 4x C 4x2/

In Exercises 15–19 find the general solution.

15. y00 � 3y0 C 2y D e3x.1C x/ 16. y00 � 6y0 C 8y D ex.11 � 6x/

17. y00 C 6y0 C 9y D e2x.3 � 5x/ 18. y00 C 2y0 � 3y D �16xex

19. y00 � 2y0 C y D ex.2 � 12x/
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In Exercises 20–23 solve the initial value problem and plot the solution.

20. C/G y00 � 4y0 � 5y D 9e2x.1C x/; y.0/ D 0; y0.0/ D �10
21. C/G y00 C 3y0 � 4y D e2x.7C 6x/; y.0/ D 2; y0.0/ D 8

22. C/G y00 C 4y0 C 3y D �e�x.2C 8x/; y.0/ D 1; y0.0/ D 2

23. C/G y00 � 3y0 � 10y D 7e�2x; y.0/ D 1; y0.0/ D �17

In Exercises 24–29 use the principle of superposition to find a particular solution.

24. y00 C y0 C y D xex C e�x.1C 2x/

25. y00 � 7y0 C 12y D �ex.17 � 42x/� e3x

26. y00 � 8y0 C 16y D 6xe4x C 2C 16x C 16x2

27. y00 � 3y0 C 2y D �e2x.3C 4x/� ex

28. y00 � 2y0 C 2y D ex.1 C x/C e�x.2 � 8x C 5x2/

29. y00 C y D e�x.2 � 4x C 2x2/C e3x.8 � 12x � 10x2/

30. (a) Prove that y is a solution of the constant coefficient equation

ay00 C by0 C cy D e˛xG.x/ .A/

if and only if y D ue˛x , where u satisfies

au00 C p0.˛/u0 C p.˛/u D G.x/ .B/

and p.r/ D ar2 C br C c is the characteristic polynomial of the complementary equation

ay00 C by0 C cy D 0:

For the rest of this exercise, let G be a polynomial. Give the requested proofs for the case

where

G.x/ D g0 C g1x C g2x
2 C g3x

3:

(b) Prove that if e˛x isn’t a solution of the complementary equation then (B) has a particular

solution of the form up D A.x/, where A is a polynomial of the same degree as G, as in

Example 5.4.4. Conclude that (A) has a particular solution of the form yp D e˛xA.x/.

(c) Show that if e˛x is a solution of the complementary equation and xe˛x isn’t , then (B)

has a particular solution of the form up D xA.x/, where A is a polynomial of the same

degree as G, as in Example 5.4.5. Conclude that (A) has a particular solution of the form
yp D xe˛xA.x/.

(d) Show that if e˛x and xe˛x are both solutions of the complementary equation then (B) has a
particular solution of the form up D x2A.x/, where A is a polynomial of the same degree as

G, and x2A.x/ can be obtained by integratingG=a twice, taking the constants of integration

to be zero, as in Example 5.4.6. Conclude that (A) has a particular solution of the form

yp D x2e˛xA.x/.

Exercises 31–36 treat the equations considered in Examples 5.4.1–5.4.6. Substitute the suggested form

of yp into the equation and equate the resulting coefficients of like functions on the two sides of the

resulting equation to derive a set of simultaneous equations for the coefficients in yp . Then solve for

the coefficients to obtain yp . Compare the work you’ve done with the work required to obtain the same

results in Examples 5.4.1–5.4.6.
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31. Compare with Example 5.4.1:

y00 � 7y0 C 12y D 4e2xI yp D Ae2x

32. Compare with Example 5.4.2:

y00 � 7y0 C 12y D 5e4xI yp D Axe4x

33. Compare with Example 5.4.3.

y00 � 8y0 C 16y D 2e4xI yp D Ax2e4x

34. Compare with Example 5.4.4:

y00 � 3y0 C 2y D e3x.�1 C 2x C x2/; yp D e3x.AC Bx C Cx2/

35. Compare with Example 5.4.5:

y00 � 4y0 C 3y D e3x.6C 8x C 12x2/; yp D e3x.Ax C Bx2 C Cx3/

36. Compare with Example 5.4.6:

4y00 C 4y0 C y D e�x=2.�8C 48x C 144x2/; yp D e�x=2.Ax2 C Bx3 C Cx4/

37. Write y D ue˛x to find the general solution.

(a) y00 C 2y0 C y D e�x

p
x

(b) y00 C 6y0 C 9y D e�3x lnx

(c) y00 � 4y0 C 4y D e2x

1C x
(d) 4y00 C 4y0 C y D 4e�x=2

�

1

x
C x

�

38. Suppose ˛ ¤ 0 and k is a positive integer. In most calculus books integrals like
R

xke˛x dx are

evaluated by integrating by parts k times. This exercise presents another method. Let

y D
Z

e˛xP.x/ dx

with

P.x/ D p0 C p1x C � � � C pkx
k; (where pk ¤ 0):

(a) Show that y D e˛xu, where

u0 C ˛u D P.x/: .A/

(b) Show that (A) has a particular solution of the form

up D A0 C A1x C � � � CAkx
k;

whereAk ,Ak�1, . . . , A0 can be computed successively by equating coefficients of xk; xk�1; : : : ; 1

on both sides of the equation

u0
p C ˛up D P.x/:

(c) Conclude that
Z

e˛xP.x/ dx D
�

A0 CA1x C � � � C Akx
k
�

e˛x C c;

where c is a constant of integration.
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39. Use the method of Exercise 38 to evaluate the integral.

(a)
R

ex.4 C x/ dx (b)
R

e�x.�1 C x2/ dx

(c)
R

x3e�2x dx (d)
R

ex.1 C x/2 dx

(e)
R

e3x.�14C 30x C 27x2/ dx (f)
R

e�x.1C 6x2 � 14x3 C 3x4/ dx

40. Use the method suggested in Exercise 38 to evaluate
R

xke˛x dx, where k is an arbitrary positive

integer and ˛ ¤ 0.

5.5 THE METHOD OF UNDETERMINED COEFFICIENTS II

In this section we consider the constant coefficient equation

ay00 C by0 C cy D e�x .P.x/ cos!x CQ.x/ sin!x/ (5.5.1)

where � and ! are real numbers, ! ¤ 0, and P and Q are polynomials. We want to find a particular
solution of (5.5.1). As in Section 5.4, the procedure that we will use is called the method of undetermined

coefficients.

Forcing Functions Without Exponential Factors

We begin with the case where � D 0 in (5.5.1); thus, we we want to find a particular solution of

ay00 C by0 C cy D P.x/ cos!x CQ.x/ sin!x; (5.5.2)

where P and Q are polynomials.

Differentiating xr cos!x and xr sin!x yields

d

dx
xr cos!x D �!xr sin!x C rxr�1 cos!x

and d

dx
xr sin!x D !xr cos!x C rxr�1 sin!x:

This implies that if

yp D A.x/ cos!x C B.x/ sin!x

where A and B are polynomials, then

ay00
p C by0

p C cyp D F.x/ cos !x CG.x/ sin!x;

where F and G are polynomials with coefficients that can be expressed in terms of the coefficients of A

and B . This suggests that we try to choose A and B so that F D P and G D Q, respectively. Then yp

will be a particular solution of (5.5.2). The next theorem tells us how to choose the proper form for yp .

For the proof see Exercise 37.

Theorem 5.5.1 Suppose ! is a positive number and P andQ are polynomials: Let k be the larger of the

degrees of P and Q: Then the equation

ay00 C by0 C cy D P.x/ cos!x CQ.x/ sin!x

has a particular solution

yp D A.x/ cos!x C B.x/ sin!x; (5.5.3)
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where

A.x/ D A0 CA1x C � � � C Akx
k and B.x/ D B0 C B1x C � � � C Bkx

k;

provided that cos!x and sin!x are not solutions of the complementary equation: The solutions of

a.y00 C !2y/ D P.x/ cos!x CQ.x/ sin!x

.for which cos!x and sin!x are solutions of the complementary equation/ are of the form (5.5.3); where

A.x/ D A0x C A1x
2 C � � � C Akx

kC1 and B.x/ D B0x C B1x
2 C � � � C Bkx

kC1:

For an analog of this theorem that’s applicable to (5.5.1), see Exercise 38.

Example 5.5.1 Find a particular solution of

y00 � 2y0 C y D 5 cos 2x C 10 sin 2x: (5.5.4)

Solution In (5.5.4) the coefficients of cos 2x and sin 2x are both zero degree polynomials (constants).

Therefore Theorem 5.5.1 implies that (5.5.4) has a particular solution

yp D A cos 2x C B sin 2x:

Since

y0
p D �2A sin 2x C 2B cos 2x and y00

p D �4.A cos 2x C B sin 2x/;

replacing y by yp in (5.5.4) yields

y00
p � 2y0

p C yp D �4.A cos 2x C B sin 2x/ � 4.�A sin 2x C B cos 2x/

C.A cos 2x C B sin 2x/

D .�3A � 4B/ cos 2x C .4A � 3B/ sin 2x:

Equating the coefficients of cos 2x and sin 2x here with the corresponding coefficients on the right side

of (5.5.4) shows that yp is a solution of (5.5.4) if

�3A� 4B D 5

4A� 3B D 10:

Solving these equations yields A D 1, B D �2. Therefore

yp D cos 2x � 2 sin 2x

is a particular solution of (5.5.4).

Example 5.5.2 Find a particular solution of

y00 C 4y D 8 cos 2x C 12 sin 2x: (5.5.5)

Solution The procedure used in Example 5.5.1 doesn’t work here; substitutingyp D A cos 2xCB sin 2x

for y in (5.5.5) yields

y00
p C 4yp D �4.A cos 2x C B sin 2x/C 4.A cos 2x C B sin 2x/ D 0
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for any choice of A and B , since cos 2x and sin 2x are both solutions of the complementary equation

for (5.5.5). We’re dealing with the second case mentioned in Theorem 5.5.1, and should therefore try a

particular solution of the form

yp D x.A cos 2x CB sin 2x/: (5.5.6)

Then

y0
p D A cos 2x C B sin 2x C 2x.�A sin 2x C B cos 2x/

and y00
p D �4A sin 2x C 4B cos 2x � 4x.A cos 2x C B sin 2x/

D �4A sin 2x C 4B cos 2x � 4yp (see (5.5.6));

so

y00
p C 4yp D �4A sin 2x C 4B cos 2x:

Therefore yp is a solution of (5.5.5) if

�4A sin 2x C 4B cos 2x D 8 cos 2x C 12 sin 2x;

which holds if A D �3 and B D 2. Therefore

yp D �x.3 cos 2x � 2 sin 2x/

is a particular solution of (5.5.5).

Example 5.5.3 Find a particular solution of

y00 C 3y0 C 2y D .16C 20x/ cos x C 10 sinx: (5.5.7)

Solution The coefficients of cos x and sin x in (5.5.7) are polynomials of degree one and zero, respec-
tively. Therefore Theorem 5.5.1 tells us to look for a particular solution of (5.5.7) of the form

yp D .A0 C A1x/ cos x C .B0 C B1x/ sinx: (5.5.8)

Then

y0
p D .A1 C B0 C B1x/ cos x C .B1 �A0 � A1x/ sinx (5.5.9)

and
y00

p D .2B1 � A0 �A1x/ cos x � .2A1 C B0 C B1x/ sin x; (5.5.10)

so
y00

p C 3y0
p C 2yp D ŒA0 C 3A1 C 3B0 C 2B1 C .A1 C 3B1/x� cos x

C ŒB0 C 3B1 � 3A0 � 2A1 C .B1 � 3A1/x� sin x:
(5.5.11)

Comparing the coefficients of x cos x, x sin x, cos x, and sin x here with the corresponding coefficients

in (5.5.7) shows that yp is a solution of (5.5.7) if

A1 C 3B1 D 20

�3A1 C B1 D 0

A0 C 3B0 C 3A1 C 2B1 D 16

�3A0 C B0 � 2A1 C 3B1 D 10:

Solving the first two equations yields A1 D 2, B1 D 6. Substituting these into the last two equations

yields

A0 C 3B0 D 16 � 3A1 � 2B1 D �2
�3A0 C B0 D 10C 2A1 � 3B1 D �4:
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Solving these equations yields A0 D 1, B0 D �1. SubstitutingA0 D 1, A1 D 2, B0 D �1, B1 D 6 into

(5.5.8) shows that

yp D .1C 2x/ cos x � .1 � 6x/ sinx

is a particular solution of (5.5.7).

A Useful Observation

In (5.5.9), (5.5.10), and (5.5.11) the polynomials multiplying sinx can be obtained by replacingA0; A1; B0,

and B1 byB0,B1, �A0, and �A1, respectively, in the polynomials mutiplying cos x. An analogous result

applies in general, as follows (Exercise 36).

Theorem 5.5.2 If

yp D A.x/ cos!x C B.x/ sin!x;

where A.x/ and B.x/ are polynomials with coefficientsA0 . . . , Ak andB0, . . . , Bk; then the polynomials

multiplying sin!x in

y0
p ; y00

p ; ay00
p C by0

p C cyp and y00
p C !2yp

can be obtained by replacing A0, . . . ; Ak by B0; . . . ; Bk and B0; . . . ; Bk by �A0; . . . ; �Ak in the

corresponding polynomials multiplying cos!x.

We won’t use this theorem in our examples, but we recommend that you use it to check your manipu-

lations when you work the exercises.

Example 5.5.4 Find a particular solution of

y00 C y D .8 � 4x/ cos x � .8 C 8x/ sinx: (5.5.12)

Solution According to Theorem 5.5.1, we should look for a particular solution of the form

yp D .A0x C A1x
2/ cos x C .B0x CB1x

2/ sin x; (5.5.13)

since cos x and sinx are solutions of the complementary equation. However, let’s try

yp D .A0 C A1x/ cos x C .B0 C B1x/ sin x (5.5.14)

first, so you can see why it doesn’t work. From (5.5.10),

y00
p D .2B1 � A0 �A1x/ cos x � .2A1 C B0 C B1x/ sin x;

which together with (5.5.14) implies that

y00
p C yp D 2B1 cos x � 2A1 sin x:

Since the right side of this equation does not contain x cos x or x sin x, (5.5.14) can’t satisfy (5.5.12) no

matter how we choose A0, A1, B0, and B1.

Now let yp be as in (5.5.13). Then

y0
p D

�

A0 C .2A1 C B0/x C B1x
2
�

cos x

C
�

B0 C .2B1 �A0/x �A1x
2
�

sin x

and y00
p D

�

2A1 C 2B0 � .A0 � 4B1/x �A1x
2
�

cos x

C
�

2B1 � 2A0 � .B0 C 4A1/x � B1x
2
�

sinx;
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so

y00
p C yp D .2A1 C 2B0 C 4B1x/ cos x C .2B1 � 2A0 � 4A1x/ sin x:

Comparing the coefficients of cos x and sinx here with the corresponding coefficients in (5.5.12) shows

that yp is a solution of (5.5.12) if

4B1 D �4
�4A1 D �8

2B0 C 2A1 D 8

�2A0 C 2B1 D �8:
The solution of this system is A1 D 2, B1 D �1, A0 D 3, B0 D 2. Therefore

yp D x Œ.3C 2x/ cos x C .2 � x/ sin x�

is a particular solution of (5.5.12).

Forcing Functions with Exponential Factors

To find a particular solution of

ay00 C by0 C cy D e�x .P.x/ cos!x CQ.x/ sin!x/ (5.5.15)

when � ¤ 0, we recall from Section 5.4 that substituting y D ue�x into (5.5.15) will produce a constant

coefficient equation for u with the forcing functionP.x/ cos!xCQ.x/ sin!x. We can find a particular
solution up of this equation by the procedure that we used in Examples 5.5.1–5.5.4. Then yp D upe

�x

is a particular solution of (5.5.15).

Example 5.5.5 Find a particular solution of

y00 � 3y0 C 2y D e�2x Œ2 cos 3x � .34 � 150x/ sin 3x� : (5.5.16)

Solution Let y D ue�2x. Then

y00 � 3y0 C 2y D e�2x
�

.u00 � 4u0 C 4u/� 3.u0 � 2u/C 2u
�

D e�2x.u00 � 7u0 C 12u/

D e�2x Œ2 cos 3x � .34 � 150x/ sin3x�

if

u00 � 7u0 C 12u D 2 cos3x � .34 � 150x/ sin 3x: (5.5.17)

Since cos 3x and sin 3x aren’t solutions of the complementary equation

u00 � 7u0 C 12u D 0;

Theorem 5.5.1 tells us to look for a particular solution of (5.5.17) of the form

up D .A0 C A1x/ cos 3x C .B0 CB1x/ sin 3x: (5.5.18)

Then

u0
p D .A1 C 3B0 C 3B1x/ cos 3x C .B1 � 3A0 � 3A1x/ sin 3x

and u00
p D .�9A0 C 6B1 � 9A1x/ cos 3x � .9B0 C 6A1 C 9B1x/ sin 3x;
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so

u00
p � 7u0

p C 12up D Œ3A0 � 21B0 � 7A1 C 6B1 C .3A1 � 21B1/x� cos 3x

C Œ21A0 C 3B0 � 6A1 � 7B1 C .21A1 C 3B1/x� sin 3x:

Comparing the coefficients of x cos 3x, x sin 3x, cos 3x, and sin 3x here with the corresponding coeffi-

cients on the right side of (5.5.17) shows that up is a solution of (5.5.17) if

3A1 � 21B1 D 0

21A1 C 3B1 D 150

3A0 � 21B0 � 7A1 C 6B1 D 2

21A0 C 3B0 � 6A1 � 7B1 D �34:
(5.5.19)

Solving the first two equations yields A1 D 7, B1 D 1. Substituting these values into the last two
equations of (5.5.19) yields

3A0 � 21B0 D 2C 7A1 � 6B1 D 45

21A0 C 3B0 D �34C 6A1 C 7B1 D 15:

Solving this system yields A0 D 1, B0 D �2. SubstitutingA0 D 1, A1 D 7, B0 D �2, and B1 D 1 into

(5.5.18) shows that

up D .1 C 7x/ cos 3x � .2 � x/ sin 3x

is a particular solution of (5.5.17). Therefore

yp D e�2x Œ.1 C 7x/ cos 3x � .2 � x/ sin 3x�

is a particular solution of (5.5.16).

Example 5.5.6 Find a particular solution of

y00 C 2y0 C 5y D e�x Œ.6 � 16x/ cos 2x � .8 C 8x/ sin 2x� : (5.5.20)

Solution Let y D ue�x. Then

y00 C 2y0 C 5y D e�x
�

.u00 � 2u0 C u/C 2.u0 � u/C 5u
�

D e�x.u00 C 4u/

D e�x Œ.6 � 16x/ cos 2x � .8 C 8x/ sin 2x�

if

u00 C 4u D .6 � 16x/ cos 2x � .8 C 8x/ sin 2x: (5.5.21)

Since cos 2x and sin 2x are solutions of the complementary equation

u00 C 4u D 0;

Theorem 5.5.1 tells us to look for a particular solution of (5.5.21) of the form

up D .A0x C A1x
2/ cos 2x C .B0x C B1x

2/ sin 2x:
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Then

u0
p D

�

A0 C .2A1 C 2B0/x C 2B1x
2
�

cos 2x

C
�

B0 C .2B1 � 2A0/x � 2A1x
2
�

sin 2x

and u00
p D

�

2A1 C 4B0 � .4A0 � 8B1/x � 4A1x
2
�

cos 2x

C
�

2B1 � 4A0 � .4B0 C 8A1/x � 4B1x
2
�

sin 2x;

so

u00
p C 4up D .2A1 C 4B0 C 8B1x/ cos 2x C .2B1 � 4A0 � 8A1x/ sin 2x:

Equating the coefficients of x cos 2x, x sin 2x, cos 2x, and sin 2x here with the corresponding coefficients

on the right side of (5.5.21) shows that up is a solution of (5.5.21) if

8B1 D �16
�8A1 D � 8

4B0 C 2A1 D 6

�4A0 C 2B1 D �8:
(5.5.22)

The solution of this system is A1 D 1, B1 D �2, B0 D 1, A0 D 1. Therefore

up D xŒ.1C x/ cos 2x C .1 � 2x/ sin 2x�

is a particular solution of (5.5.21), and

yp D xe�x Œ.1C x/ cos 2x C .1 � 2x/ sin 2x�

is a particular solution of (5.5.20).

You can also find a particular solution of (5.5.20) by substituting

yp D xe�x Œ.A0 C A1x/ cos 2x C .B0 C B1x/ sin 2x�

for y in (5.5.20) and equating the coefficients of xe�x cos 2x, xe�x sin 2x, e�x cos 2x, and e�x sin 2x in

the resulting expression for

y00
p C 2y0

p C 5yp

with the corresponding coefficients on the right side of (5.5.20). (See Exercise 38). This leads to the same
system (5.5.22) of equations for A0, A1, B0, and B1 that we obtained in Example 5.5.6. However, if you

try this approach you’ll see that deriving (5.5.22) this way is much more tedious than the way we did it

in Example 5.5.6.

5.5 Exercises

In Exercises 1–17 find a particular solution.

1. y00 C 3y0 C 2y D 7 cosx � sinx

2. y00 C 3y0 C y D .2 � 6x/ cos x � 9 sinx

3. y00 C 2y0 C y D ex.6 cos x C 17 sinx/

4. y00 C 3y0 � 2y D �e2x.5 cos 2x C 9 sin 2x/

5. y00 � y0 C y D ex.2C x/ sin x

6. y00 C 3y0 � 2y D e�2x Œ.4C 20x/ cos 3x C .26 � 32x/ sin 3x�
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7. y00 C 4y D �12 cos 2x � 4 sin 2x

8. y00 C y D .�4 C 8x/ cos x C .8 � 4x/ sinx

9. 4y00 C y D �4 cos x=2� 8x sin x=2

10. y00 C 2y0 C 2y D e�x.8 cos x � 6 sinx/

11. y00 � 2y0 C 5y D ex Œ.6C 8x/ cos 2x C .6 � 8x/ sin 2x�

12. y00 C 2y0 C y D 8x2 cos x � 4x sinx

13. y00 C 3y0 C 2y D .12C 20x C 10x2/ cos x C 8x sinx

14. y00 C 3y0 C 2y D .1 � x � 4x2/ cos 2x � .1C 7x C 2x2/ sin 2x

15. y00 � 5y0 C 6y D �ex
�

.4 C 6x � x2/ cos x � .2 � 4x C 3x2/ sinx
�

16. y00 � 2y0 C y D �ex
�

.3C 4x � x2/ cos x C .3 � 4x � x2/ sin x
�

17. y00 � 2y0 C 2y D ex
�

.2 � 2x � 6x2/ cos x C .2 � 10x C 6x2/ sinx
�

In Exercises 1–17 find a particular solution and graph it.

18. C/G y00 C 2y0 C y D e�x Œ.5 � 2x/ cos x � .3C 3x/ sin x�

19. C/G y00 C 9y D �6 cos 3x � 12 sin 3x

20. C/G y00 C 3y0 C 2y D .1 � x � 4x2/ cos 2x � .1 C 7x C 2x2/ sin 2x

21. C/G y00 C 4y0 C 3y D e�x
�

.2C x C x2/ cos x C .5C 4x C 2x2/ sin x
�

In Exercises 22–26 solve the initial value problem.

22. y00 � 7y0 C 6y D �ex.17 cos x � 7 sinx/; y.0/ D 4; y0.0/ D 2

23. y00 � 2y0 C 2y D �ex.6 cos x C 4 sinx/; y.0/ D 1; y0.0/ D 4

24. y00 C 6y0 C 10y D �40ex sinx; y.0/ D 2; y0.0/ D �3
25. y00 � 6y0 C 10y D �e3x.6 cos x C 4 sinx/; y.0/ D 2; y0.0/ D 7

26. y00 � 3y0 C 2y D e3x Œ21 cosx � .11C 10x/ sinx� ; y.0/ D 0; y0.0/ D 6

In Exercises 27–32 use the principle of superposition to find a particular solution. Where indicated, solve

the initial value problem.

27. y00 � 2y0 � 3y D 4e3x C ex.cos x � 2 sinx/

28. y00 C y D 4 cos x � 2 sinx C xex C e�x

29. y00 � 3y0 C 2y D xex C 2e2x C sin x

30. y00 � 2y0 C 2y D 4xex cos x C xe�x C 1C x2

31. y00 � 4y0 C 4y D e2x.1 C x/C e2x.cos x � sinx/C 3e3x C 1C x

32. y00 � 4y0 C 4y D 6e2x C 25 sinx; y.0/ D 5; y0.0/ D 3

In Exercises 33–35 solve the initial value problem and graph the solution.

33. C/G y00 C 4y D �e�2x Œ.4 � 7x/ cos x C .2 � 4x/ sinx� ; y.0/ D 3; y0.0/ D 1

34. C/G y00 C 4y0 C 4y D 2 cos 2x C 3 sin 2x C e�x; y.0/ D �1; y0.0/ D 2

35. C/G y00 C 4y D ex.11C 15x/C 8 cos 2x � 12 sin 2x; y.0/ D 3; y0.0/ D 5
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36. (a) Verify that if

yp D A.x/ cos!x C B.x/ sin!x

where A and B are twice differentiable, then

y0
p D .A0 C !B/ cos!x C .B 0 � !A/ sin!x and

y00
p D .A00 C 2!B 0 � !2A/ cos!x C .B 00 � 2!A0 � !2B/ sin!x:

(b) Use the results of (a) to verify that

ay00
p C by0

p C cyp D
�

.c � a!2/AC b!B C 2a!B 0 C bA0 C aA00� cos!x C
�

�b!AC .c � a!2/B � 2a!A0 C bB 0 C aB 00� sin!x:

(c) Use the results of (a) to verify that

y00
p C !2yp D .A00 C 2!B 0/ cos!x C .B 00 � 2!A0/ sin!x:

(d) Prove Theorem 5.5.2.

37. Let a, b, c, and ! be constants, with a ¤ 0 and ! > 0, and let

P.x/ D p0 C p1x C � � � C pkx
k and Q.x/ D q0 C q1x C � � � C qkx

k;

where at least one of the coefficients pk , qk is nonzero, so k is the larger of the degrees of P

and Q.

(a) Show that if cos!x and sin!x are not solutions of the complementary equation

ay00 C by0 C cy D 0;

then there are polynomials

A.x/ D A0 C A1x C � � � C Akx
k and B.x/ D B0 C B1x C � � � C Bkx

k .A/

such that
.c � a!2/AC b!B C 2a!B 0 C bA0 C aA00 D P

�b!AC .c � a!2/B � 2a!A0 C bB 0 C aB 00 D Q;

where .Ak; Bk/, .Ak�1; Bk�1/, . . . ,.A0 ; B0/ can be computed successively by solving the

systems
.c � a!2/Ak C b!Bk D pk

�b!Ak C .c � a!2/Bk D qk;

and, if 1 � r � k,

.c � a!2/Ak�r C b!Bk�r D pk�r C � � �
�b!Ak�r C .c � a!2/Bk�r D qk�r C � � � ;

where the terms indicated by “� � � ” depend upon the previously computed coefficients with

subscripts greater than k � r . Conclude from this and Exercise 36(b) that

yp D A.x/ cos!x C B.x/ sin!x .B/

is a particular solution of

ay00 C by0 C cy D P.x/ cos!x CQ.x/ sin!x:
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(b) Conclude from Exercise 36(c) that the equation

a.y00 C !2y/ D P.x/ cos!x CQ.x/ sin!x .C/

does not have a solution of the form (B) with A and B as in (A). Then show that there are
polynomials

A.x/ D A0x C A1x
2 C � � � C Akx

kC1 and B.x/ D B0x C B1x
2 C � � � C Bkx

kC1

such that
a.A00 C 2!B 0/ D P

a.B 00 � 2!A0/ D Q;

where the pairs .Ak; Bk/, .Ak�1; Bk�1/, . . . , .A0; B0/ can be computed successively as

follows:

Ak D � qk

2a!.k C 1/

Bk D pk

2a!.k C 1/
;

and, if k � 1,

Ak�j D � 1

2!

�

qk�j

a.k � j C 1/
� .k � j C 2/Bk�j C1

�

Bk�j D 1

2!

�

pk�j

a.k � j C 1/
� .k � j C 2/Ak�j C1

�

for 1 � j � k. Conclude that (B) with this choice of the polynomialsA and B is a particular
solution of (C).

38. Show that Theorem 5.5.1 implies the next theorem: Suppose ! is a positive number and P andQ

are polynomials. Let k be the larger of the degrees of P andQ. Then the equation

ay00 C by0 C cy D e�x .P.x/ cos !x CQ.x/ sin!x/

has a particular solution

yp D e�x .A.x/ cos!x C B.x/ sin!x/ ; .A/

where

A.x/ D A0 C A1x C � � � C Akx
k and B.x/ D B0 C B1x C � � � C Bkx

k;

provided that e�x cos!x and e�x sin!x are not solutions of the complementary equation. The

equation

a
�

y00 � 2�y0 C .�2 C !2/y
�

D e�x .P.x/ cos!x CQ.x/ sin!x/

.for which e�x cos!x and e�x sin!x are solutions of the complementary equation/ has a partic-

ular solution of the form (A), where

A.x/ D A0x C A1x
2 C � � � C Akx

kC1 and B.x/ D B0x C B1x
2 C � � � C Bkx

kC1:
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39. This exercise presents a method for evaluating the integral

y D
Z

e�x .P.x/ cos!x CQ.x/ sin!x/ dx

where ! ¤ 0 and

P.x/ D p0 C p1x C � � � C pkx
k; Q.x/ D q0 C q1x C � � � C qkx

k:

(a) Show that y D e�xu, where

u0 C �u D P.x/ cos!x CQ.x/ sin !x: .A/

(b) Show that (A) has a particular solution of the form

up D A.x/ cos!x C B.x/ sin!x;

where

A.x/ D A0 C A1x C � � � C Akx
k; B.x/ D B0 C B1x C � � � C Bkx

k;

and the pairs of coefficients .Ak; Bk/, .Ak�1; Bk�1/, . . . ,.A0 ; B0/ can be computed succes-

sively as the solutions of pairs of equations obtained by equating the coefficients of xr cos!x

and xr sin!x for r D k, k � 1, . . . , 0.

(c) Conclude that

Z

e�x .P.x/ cos!x CQ.x/ sin!x/ dx D e�x .A.x/ cos!x C B.x/ sin!x/C c;

where c is a constant of integration.

40. Use the method of Exercise 39 to evaluate the integral.

(a)
R

x2 cos x dx (b)
R

x2ex cos x dx

(c)
R

xe�x sin 2x dx (d)
R

x2e�x sinx dx

(e)
R

x3ex sinx dx (f)
R

ex Œx cos x � .1C 3x/ sinx� dx

(g)
R

e�x
�

.1C x2/ cos x C .1 � x2/ sin x
�

dx

5.6 REDUCTION OF ORDER

In this section we give a method for finding the general solution of

P0.x/y
00 CP1.x/y

0 C P2.x/y D F.x/ (5.6.1)

if we know a nontrivial solution y1 of the complementary equation

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0: (5.6.2)

The method is called reduction of order because it reduces the task of solving (5.6.1) to solving a first

order equation. Unlike the method of undetermined coefficients, it does not require P0, P1, and P2 to be
constants, or F to be of any special form.
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By now you shoudn’t be surprised that we look for solutions of (5.6.1) in the form

y D uy1 (5.6.3)

where u is to be determined so that y satisfies (5.6.1). Substituting (5.6.3) and

y0 D u0y1 C uy0
1

y00 D u00y1 C 2u0y0
1 C uy00

1

into (5.6.1) yields

P0.x/.u
00y1 C 2u0y0

1 C uy00
1/C P1.x/.u

0y1 C uy0
1/C P2.x/uy1 D F.x/:

Collecting the coefficients of u, u0, and u00 yields

.P0y1/u
00 C .2P0y

0
1 C P1y1/u

0 C .P0y
00
1 C P1y

0
1 C P2y1/u D F: (5.6.4)

However, the coefficient of u is zero, since y1 satisfies (5.6.2). Therefore (5.6.4) reduces to

Q0.x/u
00 CQ1.x/u

0 D F; (5.6.5)

with

Q0 D P0y1 and Q1 D 2P0y
0
1 C P1y1:

(It isn’t worthwhile to memorize the formulas forQ0 andQ1!) Since (5.6.5) is a linear first order equation

in u0, we can solve it for u0 by variation of parameters as in Section 1.2, integrate the solution to obtain

u, and then obtain y from (5.6.3).

Example 5.6.1

(a) Find the general solution of

xy00 � .2x C 1/y0 C .x C 1/y D x2; (5.6.6)

given that y1 D ex is a solution of the complementary equation

xy00 � .2x C 1/y0 C .x C 1/y D 0: (5.6.7)

(b) As a byproduct of (a), find a fundamental set of solutions of (5.6.7).

SOLUTION(a) If y D uex, then y0 D u0ex C uex and y00 D u00ex C 2u0ex C uex, so

xy00 � .2x C 1/y0 C .x C 1/y D x.u00ex C 2u0ex C uex/

�.2x C 1/.u0ex C uex/C .x C 1/uex

D .xu00 � u0/ex :

Therefore y D uex is a solution of (5.6.6) if and only if

.xu00 � u0/ex D x2;

which is a first order equation in u0. We rewrite it as

u00 � u0

x
D xe�x: (5.6.8)
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To focus on how we apply variation of parameters to this equation, we temporarily write ´ D u0, so that

(5.6.8) becomes

´0 � ´

x
D xe�x: (5.6.9)

We leave it to you to show (by separation of variables) that ´1 D x is a solution of the complementary
equation

´0 � ´

x
D 0

for (5.6.9). By applying variation of parameters as in Section 1.2, we can now see that every solution of

(5.6.9) is of the form

´ D vx where v0x D xe�x; so v0 D e�x and v D �e�x C C1:

Since u0 D ´ D vx, u is a solution of (5.6.8) if and only if

u0 D vx D �xe�x C C1x:

Integrating this yields

u D .x C 1/e�x C C1

2
x2 C C2:

Therefore the general solution of (5.6.6) is

y D uex D x C 1C C1

2
x2ex C C2e

x: (5.6.10)

SOLUTION(b) By letting C1 D C2 D 0 in (5.6.10), we see that yp1
D x C 1 is a solution of (5.6.6).

By letting C1 D 2 and C2 D 0, we see that yp2
D x C 1 C x2ex is also a solution of (5.6.6). Since

the difference of two solutions of (5.6.6) is a solution of (5.6.7), y2 D yp1
� yp2

D x2ex is a solution

of (5.6.7). Since y2=y1 is nonconstant and we already know that y1 D ex is a solution of (5.6.6),

Theorem 5.1.6 implies that fex; x2exg is a fundamental set of solutions of (5.6.7).
Although (5.6.10) is a correct form for the general solution of (5.6.6), it’s silly to leave the arbitrary

coefficient of x2ex as C1=2 where C1 is an arbitrary constant. Moreover, it’s sensible to make the

subscripts of the coefficients of y1 D ex and y2 D x2ex consistent with the subscripts of the functions

themselves. Therefore we rewrite (5.6.10) as

y D x C 1C c1e
x C c2x

2ex

by simply renaming the arbitrary constants. We’ll also do this in the next two examples, and in the
answers to the exercises.

Example 5.6.2

(a) Find the general solution of

x2y00 C xy0 � y D x2 C 1;

given that y1 D x is a solution of the complementary equation

x2y00 C xy0 � y D 0: (5.6.11)

As a byproduct of this result, find a fundamental set of solutions of (5.6.11).
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(b) Solve the initial value problem

x2y00 C xy0 � y D x2 C 1; y.1/ D 2; y0.1/ D �3: (5.6.12)

SOLUTION(a) If y D ux, then y0 D u0x C u and y00 D u00x C 2u0, so

x2y00 C xy0 � y D x2.u00x C 2u0/C x.u0x C u/ � ux

D x3u00 C 3x2u0:

Therefore y D ux is a solution of (5.6.12) if and only if

x3u00 C 3x2u0 D x2 C 1;

which is a first order equation in u0. We rewrite it as

u00 C 3

x
u0 D 1

x
C 1

x3
: (5.6.13)

To focus on how we apply variation of parameters to this equation, we temporarily write ´ D u0, so that

(5.6.13) becomes

´0 C 3

x
´ D 1

x
C 1

x3
: (5.6.14)

We leave it to you to show by separation of variables that ´1 D 1=x3 is a solution of the complementary

equation

´0 C 3

x
´ D 0

for (5.6.14). By variation of parameters, every solution of (5.6.14) is of the form

´ D v

x3
where

v0

x3
D 1

x
C 1

x3
; so v0 D x2 C 1 and v D x3

3
C x CC1:

Since u0 D ´ D v=x3, u is a solution of (5.6.14) if and only if

u0 D v

x3
D 1

3
C 1

x2
C C1

x3
:

Integrating this yields

u D x

3
� 1

x
� C1

2x2
C C2:

Therefore the general solution of (5.6.12) is

y D ux D x2

3
� 1 � C1

2x
C C2x: (5.6.15)

Reasoning as in the solution of Example 5.6.1(a), we conclude that y1 D x and y2 D 1=x form a

fundamental set of solutions for (5.6.11).
As we explained above, we rename the constants in (5.6.15) and rewrite it as

y D x2

3
� 1C c1x C c2

x
: (5.6.16)
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SOLUTION(b) Differentiating (5.6.16) yields

y0 D 2x

3
C c1 � c2

x2
: (5.6.17)

Setting x D 1 in (5.6.16) and (5.6.17) and imposing the initial conditions y.1/ D 2 and y0.1/ D �3
yields

c1 C c2 D 8

3

c1 � c2 D �11
3
:

Solving these equations yields c1 D �1=2, c2 D 19=6. Therefore the solution of (5.6.12) is

y D x2

3
� 1 � x

2
C 19

6x
:

Using reduction of order to find the general solution of a homogeneous linear second order equation

leads to a homogeneous linear first order equation in u0 that can be solved by separation of variables. The

next example illustrates this.

Example 5.6.3 Find the general solution and a fundamental set of solutions of

x2y00 � 3xy0 C 3y D 0; (5.6.18)

given that y1 D x is a solution.

Solution If y D ux then y0 D u0x C u and y00 D u00x C 2u0, so

x2y00 � 3xy0 C 3y D x2.u00x C 2u0/� 3x.u0x C u/C 3ux

D x3u00 � x2u0:

Therefore y D ux is a solution of (5.6.18) if and only if

x3u00 � x2u0 D 0:

Separating the variables u0 and x yields
u00

u0 D 1

x
;

so
ln ju0j D ln jxj C k; or, equivalently, u0 D C1x:

Therefore

u D C1

2
x2 C C2;

so the general solution of (5.6.18) is

y D ux D C1

2
x3 C C2x;

which we rewrite as
y D c1x C c2x

3:
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Therefore fx; x3g is a fundamental set of solutions of (5.6.18).

5.6 Exercises

In Exercises 1–17 find the general solution, given that y1 satisfies the complementary equation. As a

byproduct, find a fundamental set of solutions of the complementary equation.

1. .2x C 1/y00 � 2y0 � .2x C 3/y D .2x C 1/2I y1 D e�x

2. x2y00 C xy0 � y D 4

x2
I y1 D x

3. x2y00 � xy0 C y D xI y1 D x

4. y00 � 3y0 C 2y D 1

1C e�x
I y1 D e2x

5. y00 � 2y0 C y D 7x3=2exI y1 D ex

6. 4x2y00 C .4x � 8x2/y0 C .4x2 � 4x � 1/y D 4x1=2ex.1C 4x/I y1 D x1=2ex

7. y00 � 2y0 C 2y D ex sec xI y1 D ex cos x

8. y00 C 4xy0 C .4x2 C 2/y D 8e�x.xC2/I y1 D e�x2

9. x2y00 C xy0 � 4y D �6x � 4I y1 D x2

10. x2y00 C 2x.x � 1/y0 C .x2 � 2x C 2/y D x3e2x I y1 D xe�x

11. x2y00 � x.2x � 1/y0 C .x2 � x � 1/y D x2exI y1 D xex

12. .1 � 2x/y00 C 2y0 C .2x � 3/y D .1 � 4x C 4x2/exI y1 D ex

13. x2y00 � 3xy0 C 4y D 4x4I y1 D x2

14. 2xy00 C .4x C 1/y0 C .2x C 1/y D 3x1=2e�xI y1 D e�x

15. xy00 � .2x C 1/y0 C .x C 1/y D �exI y1 D ex

16. 4x2y00 � 4x.x C 1/y0 C .2x C 3/y D 4x5=2e2xI y1 D x1=2

17. x2y00 � 5xy0 C 8y D 4x2I y1 D x2

In Exercises 18–30 find a fundamental set of solutions, given that y1 is a solution.

18. xy00 C .2 � 2x/y0 C .x � 2/y D 0I y1 D ex

19. x2y00 � 4xy0 C 6y D 0I y1 D x2

20. x2.ln jxj/2y00 � .2x ln jxj/y0 C .2 C ln jxj/y D 0I y1 D ln jxj
21. 4xy00 C 2y0 C y D 0I y1 D sin

p
x

22. xy00 � .2x C 2/y0 C .x C 2/y D 0I y1 D ex

23. x2y00 � .2a � 1/xy0 C a2y D 0I y1 D xa

24. x2y00 � 2xy0 C .x2 C 2/y D 0I y1 D x sinx

25. xy00 � .4x C 1/y0 C .4x C 2/y D 0I y1 D e2x

26. 4x2.sin x/y00 � 4x.x cos x C sin x/y0 C .2x cos x C 3 sinx/y D 0I y1 D x1=2

27. 4x2y00 � 4xy0 C .3 � 16x2/y D 0I y1 D x1=2e2x

28. .2x C 1/xy00 � 2.2x2 � 1/y0 � 4.x C 1/y D 0I y1 D 1=x

29. .x2 � 2x/y00 C .2 � x2/y0 C .2x � 2/y D 0I y1 D ex
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30. xy00 � .4x C 1/y0 C .4x C 2/y D 0I y1 D e2x

In Exercises 31–33 solve the initial value problem, given that y1 satisfies the complementary equation.

31. x2y00 � 3xy0 C 4y D 4x4; y.�1/ D 7; y0.�1/ D �8I y1 D x2

32. .3x � 1/y00 � .3x C 2/y0 � .6x � 8/y D 0; y.0/ D 2; y0.0/ D 3I y1 D e2x

33. .x C 1/2y00 � 2.x C 1/y0 � .x2 C 2x � 1/y D .x C 1/3ex; y.0/ D 1; y0.0/ D � 1;

y1 D .x C 1/ex

In Exercises 34 and 35 solve the initial value problem and graph the solution, given that y1 satisfies the

complementary equation.

34. C/G x2y00 C 2xy0 � 2y D x2; y.1/ D 5

4
; y0.1/ D 3

2
I y1 D x

35. C/G .x2 � 4/y00 C 4xy0 C 2y D x C 2; y.0/ D �1
3
; y0.0/ D �1I y1 D 1

x � 2
36. Suppose p1 and p2 are continuous on .a; b/. Let y1 be a solution of

y00 C p1.x/y
0 C p2.x/y D 0 .A/

that has no zeros on .a; b/, and let x0 be in .a; b/. Use reduction of order to show that y1 and

y2.x/ D y1.x/

Z x

x0

1

y2
1.t/

exp

�

�
Z t

x0

p1.s/ ds

�

dt

form a fundamental set of solutions of (A) on .a; b/. (NOTE: This exercise is related to Exercise 9.)

37. The nonlinear first order equation

y0 C y2 C p.x/y C q.x/ D 0 .A/

is a Riccati equation. (See Exercise 2.4.55.) Assume that p and q are continuous.

(a) Show that y is a solution of (A) if and only if y D ´0=´, where

´00 C p.x/´0 C q.x/´ D 0: .B/

(b) Show that the general solution of (A) is

y D c1´
0
1 C c2´

0
2

c1´1 C c2´2

; .C/

where f´1; ´2g is a fundamental set of solutions of (B) and c1 and c2 are arbitrary constants.

(c) Does the formula (C) imply that the first order equation (A) has a two–parameter family of

solutions? Explain your answer.

38. Use a method suggested by Exercise 37 to find all solutions. of the equation.

(a) y0 C y2 C k2 D 0 (b) y0 C y2 � 3y C 2 D 0

(c) y0 C y2 C 5y � 6 D 0 (d) y0 C y2 C 8y C 7 D 0

(e) y0 C y2 C 14y C 50 D 0 (f) 6y0 C 6y2 � y � 1 D 0

(g) 36y0 C 36y2 � 12y C 1 D 0

http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
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39. Use a method suggested by Exercise 37 and reduction of order to find all solutions of the equation,

given that y1 is a solution.

(a) x2.y0 C y2/ � x.x C 2/y C x C 2 D 0I y1 D 1=x

(b) y0 C y2 C 4xy C 4x2 C 2 D 0I y1 D �2x
(c) .2x C 1/.y0 C y2/ � 2y � .2x C 3/ D 0I y1 D �1
(d) .3x � 1/.y0 C y2/ � .3x C 2/y � 6x C 8 D 0I y1 D 2

(e) x2.y0 C y2/C xy C x2 � 1

4
D 0I y1 D � tanx � 1

2x

(f) x2.y0 C y2/ � 7xy C 7 D 0I y1 D 1=x

40. The nonlinear first order equation

y0 C r.x/y2 C p.x/y C q.x/ D 0 .A/

is the generalized Riccati equation. (See Exercise 2.4.55.) Assume that p and q are continuous

and r is differentiable.

(a) Show that y is a solution of (A) if and only if y D ´0=r´, where

´00 C
�

p.x/ � r 0.x/

r.x/

�

´0 C r.x/q.x/´ D 0: .B/

(b) Show that the general solution of (A) is

y D c1´
0
1 C c2´

0
2

r.c1´1 C c2´2/
;

where f´1; ´2g is a fundamental set of solutions of (B) and c1 and c2 are arbitrary constants.

5.7 VARIATION OF PARAMETERS

In this section we give a method called variation of parameters for finding a particular solution of

P0.x/y
00 CP1.x/y

0 C P2.x/y D F.x/ (5.7.1)

if we know a fundamental set fy1; y2g of solutions of the complementary equation

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0: (5.7.2)

Having found a particular solution yp by this method, we can write the general solution of (5.7.1) as

y D yp C c1y1 C c2y2:

Since we need only one nontrivial solution of (5.7.2) to find the general solution of (5.7.1) by reduction

of order, it’s natural to ask why we’re interested in variation of parameters, which requires two linearly

independent solutions of (5.7.2) to achieve the same goal. Here’s the answer:

� If we already know two linearly independent solutions of (5.7.2) then variation of parameters will

probably be simpler than reduction of order.

http://http://www-history.mcs.st-and.ac.uk/Indexes/Riccati.html
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� Variation of parameters generalizes naturally to a method for finding particular solutions of higher

order linear equations (Section 9.4) and linear systems of equations (Section 10.7), while reduction

of order doesn’t.

� Variation of parameters is a powerful theoretical tool used by researchers in differential equations.

Although a detailed discussion of this is beyond the scope of this book, you can get an idea of what

it means from Exercises 37–39.

We’ll now derive the method. As usual, we consider solutions of (5.7.1) and (5.7.2) on an interval .a; b/
where P0, P1, P2, and F are continuous and P0 has no zeros. Suppose that fy1; y2g is a fundamental

set of solutions of the complementary equation (5.7.2). We look for a particular solution of (5.7.1) in the

form

yp D u1y1 C u2y2 (5.7.3)

where u1 and u2 are functions to be determined so that yp satisfies (5.7.1). You may not think this is a

good idea, since there are now two unknown functions to be determined, rather than one. However, since

u1 and u2 have to satisfy only one condition (that yp is a solution of (5.7.1)), we can impose a second

condition that produces a convenient simplification, as follows.
Differentiating (5.7.3) yields

y0
p D u1y

0
1 C u2y

0
2 C u0

1y1 C u0
2y2: (5.7.4)

As our second condition on u1 and u2 we require that

u0
1y1 C u0

2y2 D 0: (5.7.5)

Then (5.7.4) becomes

y0
p D u1y

0
1 C u2y

0
2I (5.7.6)

that is, (5.7.5) permits us to differentiate yp (once!) as if u1 and u2 are constants. Differentiating (5.7.4)

yields

y00
p D u1y

00
1 C u2y

00
2 C u0

1y
0
1 C u0

2y
0
2: (5.7.7)

(There are no terms involving u00
1 and u00

2 here, as there would be if we hadn’t required (5.7.5).) Substitut-

ing (5.7.3), (5.7.6), and (5.7.7) into (5.7.1) and collecting the coefficients of u1 and u2 yields

u1.P0y
00
1 C P1y

0
1 C P2y1/C u2.P0y

00
2 C P1y

0
2 C P2y2/C P0.u

0
1y

0
1 C u0

2y
0
2/ D F:

As in the derivation of the method of reduction of order, the coefficients of u1 and u2 here are both zero

because y1 and y2 satisfy the complementary equation. Hence, we can rewrite the last equation as

P0.u
0
1y

0
1 C u0

2y
0
2/ D F: (5.7.8)

Therefore yp in (5.7.3) satisfies (5.7.1) if

u0
1y1 C u0

2y2 D 0

u0
1y

0
1 C u0

2y
0
2 D F

P0

;
(5.7.9)

where the first equation is the same as (5.7.5) and the second is from (5.7.8).

We’ll now show that you can always solve (5.7.9) for u0
1 and u0

2. (The method that we use here will

always work, but simpler methods usually work when you’re dealing with specific equations.) To obtain

u0
1, multiply the first equation in (5.7.9) by y0

2 and the second equation by y2. This yields

u0
1y1y

0
2 C u0

2y2y
0
2 D 0

u0
1y

0
1y2 C u0

2y
0
2y2 D Fy2

P0

:
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Subtracting the second equation from the first yields

u0
1.y1y

0
2 � y0

1y2/ D �Fy2

P0

: (5.7.10)

Since fy1; y2g is a fundamental set of solutions of (5.7.2) on .a; b/, Theorem 5.1.6 implies that the

Wronskian y1y
0
2 � y0

1y2 has no zeros on .a; b/. Therefore we can solve (5.7.10) for u0
1, to obtain

u0
1 D � Fy2

P0.y1y
0
2 � y0

1y2/
: (5.7.11)

We leave it to you to start from (5.7.9) and show by a similar argument that

u0
2 D Fy1

P0.y1y
0
2 � y0

1y2/
: (5.7.12)

We can now obtain u1 and u2 by integrating u0
1 and u0

2. The constants of integration can be taken to

be zero, since any choice of u1 and u2 in (5.7.3) will suffice.

You should not memorize (5.7.11) and (5.7.12). On the other hand, you don’t want to rederive the

whole procedure for every specific problem. We recommend the a compromise:

(a) Write
yp D u1y1 C u2y2 (5.7.13)

to remind yourself of what you’re doing.

(b) Write the system
u0

1y1 C u0
2y2 D 0

u0
1y

0
1 C u0

2y
0
2 D F

P0

(5.7.14)

for the specific problem you’re trying to solve.

(c) Solve (5.7.14) for u0
1 and u0

2 by any convenient method.

(d) Obtain u1 and u2 by integrating u0
1 and u0

2, taking the constants of integration to be zero.

(e) Substitute u1 and u2 into (5.7.13) to obtain yp .

Example 5.7.1 Find a particular solution yp of

x2y00 � 2xy0 C 2y D x9=2; (5.7.15)

given that y1 D x and y2 D x2 are solutions of the complementary equation

x2y00 � 2xy0 C 2y D 0:

Then find the general solution of (5.7.15).

Solution We set

yp D u1x C u2x
2;

where

u0
1x C u0

2x
2 D 0

u0
1 C 2u0

2x D x9=2

x2
D x5=2:
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From the first equation, u0
1 D �u0

2x. Substituting this into the second equation yields u0
2x D x5=2, so

u0
2 D x3=2 and therefore u0

1 D �u0
2x D �x5=2. Integrating and taking the constants of integration to be

zero yields

u1 D �2
7
x7=2 and u2 D 2

5
x5=2:

Therefore

yp D u1x C u2x
2 D �2

7
x7=2x C 2

5
x5=2x2 D 4

35
x9=2;

and the general solution of (5.7.15) is

y D 4

35
x9=2 C c1x C c2x

2:

Example 5.7.2 Find a particular solution yp of

.x � 1/y00 � xy0 C y D .x � 1/2; (5.7.16)

given that y1 D x and y2 D ex are solutions of the complementary equation

.x � 1/y00 � xy0 C y D 0:

Then find the general solution of (5.7.16).

Solution We set

yp D u1x C u2e
x;

where

u0
1x C u0

2e
x D 0

u0
1 C u0

2e
x D .x � 1/2

x � 1 D x � 1:

Subtracting the first equation from the second yields �u0
1.x � 1/ D x � 1, so u0

1 D �1. From this and

the first equation, u0
2 D �xe�xu0

1 D xe�x. Integrating and taking the constants of integration to be zero

yields

u1 D �x and u2 D �.x C 1/e�x:

Therefore

yp D u1x C u2e
x D .�x/x C .�.x C 1/e�x/ex D �x2 � x � 1;

so the general solution of (5.7.16) is

y D yp C c1x C c2e
x D �x2 � x � 1C c1x C c2e

x D �x2 � 1C .c1 � 1/x C c2e
x: (5.7.17)

However, since c1 is an arbitrary constant, so is c1 �1; therefore, we improve the appearance of this result

by renaming the constant and writing the general solution as

y D �x2 � 1C c1x C c2e
x: (5.7.18)

There’s nothing wrong with leaving the general solution of (5.7.16) in the form (5.7.17); however, we

think you’ll agree that (5.7.18) is preferable. We can also view the transition from (5.7.17) to (5.7.18)

differently. In this example the particular solution yp D �x2 � x � 1 contained the term �x, which
satisfies the complementary equation. We can drop this term and redefine yp D �x2�1, since �x2�x�1
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is a solution of (5.7.16) and x is a solution of the complementary equation; hence, �x2 � 1 D .�x2 �
x � 1/ C x is also a solution of (5.7.16). In general, it’s always legitimate to drop linear combinations

of fy1; y2g from particular solutions obtained by variation of parameters. (See Exercise 36 for a general

discussion of this question.) We’ll do this in the following examples and in the answers to exercises that

ask for a particular solution. Therefore, don’t be concerned if your answer to such an exercise differs

from ours only by a solution of the complementary equation.

Example 5.7.3 Find a particular solution of

y00 C 3y0 C 2y D 1

1C ex
: (5.7.19)

Then find the general solution.

Solution

The characteristic polynomial of the complementary equation

y00 C 3y0 C 2y D 0 (5.7.20)

is p.r/ D r2 C3rC2 D .rC1/.rC2/, so y1 D e�x and y2 D e�2x form a fundamental set of solutions

of (5.7.20). We look for a particular solution of (5.7.19) in the form

yp D u1e
�x C u2e

�2x ;

where

u0
1e

�x C u0
2e

�2x D 0

�u0
1e

�x � 2u0
2e

�2x D 1

1C ex
:

Adding these two equations yields

�u0
2e

�2x D 1

1C ex
; so u0

2 D � e2x

1C ex
:

From the first equation,

u0
1 D �u0

2e
�x D ex

1C ex
:

Integrating by means of the substitution v D ex and taking the constants of integration to be zero yields

u1 D
Z

ex

1C ex
dx D

Z

dv

1C v
D ln.1 C v/ D ln.1C ex/

and

u2 D �
Z

e2x

1C ex
dx D �

Z

v

1C v
dv D

Z
�

1

1C v
� 1

�

dv

D ln.1C v/� v D ln.1 C ex/ � ex:

Therefore

yp D u1e
�x C u2e

�2x

D Œln.1 C ex/�e�x C Œln.1 C ex/� ex� e�2x ;
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so

yp D
�

e�x C e�2x
�

ln.1 C ex/ � e�x:

Since the last term on the right satisfies the complementary equation, we drop it and redefine

yp D
�

e�x C e�2x
�

ln.1 C ex/:

The general solution of (5.7.19) is

y D yp C c1e
�x C c2e

�2x D
�

e�x C e�2x
�

ln.1C ex/C c1e
�x C c2e

�2x:

Example 5.7.4 Solve the initial value problem

.x2 � 1/y00 C 4xy0 C 2y D 2

x C 1
; y.0/ D �1; y0.0/ D �5; (5.7.21)

given that

y1 D 1

x � 1
and y2 D 1

x C 1

are solutions of the complementary equation

.x2 � 1/y00 C 4xy0 C 2y D 0:

Solution We first use variation of parameters to find a particular solution of

.x2 � 1/y00 C 4xy0 C 2y D 2

x C 1

on .�1; 1/ in the form

yp D u1

x � 1 C u2

x C 1
;

where

u0
1

x � 1
C u0

2

x C 1
D 0 (5.7.22)

� u0
1

.x � 1/2
� u0

2

.x C 1/2
D 2

.x C 1/.x2 � 1/ :

Multiplying the first equation by 1=.x � 1/ and adding the result to the second equation yields

�

1

x2 � 1
� 1

.x C 1/2

�

u0
2 D 2

.x C 1/.x2 � 1/
: (5.7.23)

Since
�

1

x2 � 1
� 1

.x C 1/2

�

D .x C 1/ � .x � 1/
.x C 1/.x2 � 1/ D 2

.x C 1/.x2 � 1/ ;

(5.7.23) implies that u0
2 D 1. From (5.7.22),

u0
1 D � x � 1

x C 1
u0

2 D � x � 1

x C 1
:



Section 5.7 Variation of Parameters 261

Integrating and taking the constants of integration to be zero yields

u1 D �
Z

x � 1

x C 1
dx D �

Z

x C 1 � 2
x C 1

dx

D
Z �

2

x C 1
� 1

�

dx D 2 ln.x C 1/ � x

and

u2 D
Z

dx D x:

Therefore

yp D u1

x � 1
C u2

x C 1
D Œ2 ln.x C 1/ � x� 1

x � 1
C x

1

x C 1

D 2 ln.x C 1/

x � 1 C x

�

1

x C 1
� 1

x � 1

�

D 2 ln.x C 1/

x � 1 � 2x

.x C 1/.x � 1/
:

However, since
2x

.x C 1/.x � 1/ D
�

1

x C 1
C 1

x � 1

�

is a solution of the complementary equation, we redefine

yp D 2 ln.x C 1/

x � 1 :

Therefore the general solution of (5.7.24) is

y D 2 ln.x C 1/

x � 1 C c1

x � 1 C c2

x C 1
: (5.7.24)

Differentiating this yields

y0 D 2

x2 � 1
� 2 ln.x C 1/

.x � 1/2 � c1

.x � 1/2 � c2

.x C 1/2
:

Setting x D 0 in the last two equations and imposing the initial conditions y.0/ D �1 and y0.0/ D �5
yields the system

�c1 C c2 D �1
�2 � c1 � c2 D �5:

The solution of this system is c1 D 2; c2 D 1. Substituting these into (5.7.24) yields

y D 2 ln.x C 1/

x � 1 C 2

x � 1 C 1

x C 1

D 2 ln.x C 1/

x � 1 C 3x C 1

x2 � 1
as the solution of (5.7.21). Figure 5.7.1 is a graph of the solution.

Comparison of Methods

We’ve now considered three methods for solving nonhomogeneous linear equations: undetermined coeffi-
cients, reduction of order, and variation of parameters. It’s natural to ask which method is best for a given
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Figure 5.7.1 y D 2 ln.x C 1/

x � 1 C 3x C 1

x2 � 1

problem. The method of undetermined coefficients should be used for constant coefficient equations with

forcing functions that are linear combinations of polynomials multiplied by functions of the form e˛x,

e�x cos!x, or e�x sin!x. Although the other two methods can be used to solve such problems, they will

be more difficult except in the most trivial cases, because of the integrations involved.
If the equation isn’t a constant coefficient equation or the forcing function isn’t of the form just spec-

ified, the method of undetermined coefficients does not apply and the choice is necessarily between the

other two methods. The case could be made that reduction of order is better because it requires only

one solution of the complementary equation while variation of parameters requires two. However, vari-

ation of parameters will probably be easier if you already know a fundamental set of solutions of the

complementary equation.

5.7 Exercises

In Exercises 1–6 use variation of parameters to find a particular solution.

1. y00 C 9y D tan 3x 2. y00 C 4y D sin 2x sec2 2x

3. y00 � 3y0 C 2y D 4

1C e�x

4. y00 � 2y0 C 2y D 3ex sec x

5. y00 � 2y0 C y D 14x3=2ex 6. y00 � y D 4e�x

1 � e�2x
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In Exercises 7–29 use variation of parameters to find a particular solution, given the solutions y1, y2 of

the complementary equation.

7. x2y00 C xy0 � y D 2x2 C 2I y1 D x; y2 D 1

x

8. xy00 C .2 � 2x/y0 C .x � 2/y D e2xI y1 D ex; y2 D ex

x

9. 4x2y00 C .4x � 8x2/y0 C .4x2 � 4x � 1/y D 4x1=2ex; x > 0;

y1 D x1=2ex; y2 D x�1=2ex

10. y00 C 4xy0 C .4x2 C 2/y D 4e�x.xC2/I y1 D e�x2

; y2 D xe�x2

11. x2y00 � 4xy0 C 6y D x5=2; x > 0I y1 D x2; y2 D x3

12. x2y00 � 3xy0 C 3y D 2x4 sin xI y1 D x; y2 D x3

13. .2x C 1/y00 � 2y0 � .2x C 3/y D .2x C 1/2e�xI y1 D e�x ; y2 D xex

14. 4xy00 C 2y0 C y D sin
p
xI y1 D cos

p
x; y2 D sin

p
x

15. xy00 � .2x C 2/y0 C .x C 2/y D 6x3exI y1 D ex; y2 D x3ex

16. x2y00 � .2a � 1/xy0 C a2y D xaC1I y1 D xa; y2 D xa lnx

17. x2y00 � 2xy0 C .x2 C 2/y D x3 cos xI y1 D x cos x; y2 D x sinx

18. xy00 � y0 � 4x3y D 8x5I y1 D ex2
; y2 D e�x2

19. .sinx/y00 C .2 sinx � cos x/y0 C .sinx � cos x/y D e�xI y1 D e�x; y2 D e�x cos x

20. 4x2y00 � 4xy0 C .3 � 16x2/y D 8x5=2I y1 D p
xe2x; y2 D p

xe�2x

21. 4x2y00 � 4xy0 C .4x2 C 3/y D x7=2I y1 D
p
x sinx; y2 D

p
x cos x

22. x2y00 � 2xy0 � .x2 � 2/y D 3x4I y1 D xex; y2 D xe�x

23. x2y00 � 2x.x C 1/y0 C .x2 C 2x C 2/y D x3exI y1 D xex; y2 D x2ex

24. x2y00 � xy0 � 3y D x3=2I y1 D 1=x; y2 D x3

25. x2y00 � x.x C 4/y0 C 2.x C 3/y D x4exI y1 D x2; y2 D x2ex

26. x2y00 � 2x.x C 2/y0 C .x2 C 4x C 6/y D 2xexI y1 D x2ex; y2 D x3ex

27. x2y00 � 4xy0 C .x2 C 6/y D x4I y1 D x2 cos x; y2 D x2 sinx

28. .x � 1/y00 � xy0 C y D 2.x � 1/2exI y1 D x; y2 D ex

29. 4x2y00 � 4x.x C 1/y0 C .2x C 3/y D x5=2exI y1 D p
x; y2 D p

xex

In Exercises 30–32 use variation of parameters to solve the initial value problem, given y1; y2 are solu-

tions of the complementary equation.

30. .3x � 1/y00 � .3x C 2/y0 � .6x � 8/y D .3x � 1/2e2x; y.0/ D 1; y0.0/ D 2;

y1 D e2x; y2 D xe�x

31. .x � 1/2y00 � 2.x � 1/y0 C 2y D .x � 1/2; y.0/ D 3; y0.0/ D �6;

y1 D x � 1, y2 D x2 � 1
32. .x � 1/2y00 � .x2 � 1/y0 C .x C 1/y D .x � 1/3ex; y.0/ D 4; y0.0/ D �6;

y1 D .x � 1/ex ; y2 D x � 1
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In Exercises 33–35 use variation of parameters to solve the initial value problem and graph the solution,

given that y1; y2 are solutions of the complementary equation.

33. C/G .x2 � 1/y00 C 4xy0 C 2y D 2x; y.0/ D 0; y0.0/ D �2I y1 D 1

x � 1 ; y2 D 1

x C 1

34. C/G x2y00 C 2xy0 � 2y D �2x2; y.1/ D 1; y0.1/ D �1I y1 D x; y2 D 1

x2

35. C/G .x C 1/.2x C 3/y00 C 2.x C 2/y0 � 2y D .2x C 3/2; y.0/ D 0; y0.0/ D 0;

y1 D x C 2; y2 D 1

x C 1

36. Suppose

yp D y C a1y1 C a2y2

is a particular solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D F.x/; .A/

where y1 and y2 are solutions of the complementary equation

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0:

Show that y is also a solution of (A).

37. Supposep, q, and f are continuous on .a; b/ and let x0 be in .a; b/. Let y1 and y2 be the solutions

of

y00 C p.x/y0 C q.x/y D 0

such that

y1.x0/ D 1; y0
1.x0/ D 0; y2.x0/ D 0; y0

2.x0/ D 1:

Use variation of parameters to show that the solution of the initial value problem

y00 C p.x/y0 C q.x/y D f .x/; y.x0/ D k0; y
0.x0/ D k1;

is
y.x/ D k0y1.x/C k1y2.x/

C
Z x

x0

.y1.t/y2.x/ � y1.x/y2.t// f .t/ exp

�
Z t

x0

p.s/ ds

�

dt:

HINT: Use Abel’s formula for the Wronskian of fy1; y2g, and integrate u0
1 and u0

2 from x0 to x.

Show also that

y0.x/ D k0y
0
1.x/C k1y

0
2.x/

C
Z x

x0

�

y1.t/y
0
2.x/ � y0

1.x/y2.t/
�

f .t/ exp

�
Z t

x0

p.s/ ds

�

dt:

38. Suppose f is continuous on an open interval that contains x0 D 0. Use variation of parameters to

find a formula for the solution of the initial value problem

y00 � y D f .x/; y.0/ D k0; y0.0/ D k1:

39. Suppose f is continuous on .a;1/, where a < 0, so x0 D 0 is in .a;1/.
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(a) Use variation of parameters to find a formula for the solution of the initial value problem

y00 C y D f .x/; y.0/ D k0; y0.0/ D k1:

HINT: You will need the addition formulas for the sine and cosine:

sin.AC B/ D sinA cosB C cosA sinB

cos.AC B/ D cosA cosB � sinA sinB:

For the rest of this exercise assume that the improper integral
R1

0
f .t/ dt is absolutely convergent.

(b) Show that if y is a solution of

y00 C y D f .x/ .A/

on .a;1/, then

lim
x!1

.y.x/ �A0 cos x � A1 sinx/ D 0 .B/

and

lim
x!1

�

y0.x/C A0 sinx � A1 cos x
�

D 0; .C/

where

A0 D k0 �
Z 1

0

f .t/ sin t dt and A1 D k1 C
Z 1

0

f .t/ cos t dt:

HINT: Recall from calculus that if
R1

0
f .t/ dt converges absolutely, then limx!1

R1
x

jf .t/j dt D 0.

(c) Show that if A0 and A1 are arbitrary constants, then there’s a unique solution of y00 C y D
f .x/ on .a;1/ that satisfies (B) and (C).





CHAPTER 6

Applications of Linear Second Order
Equations

IN THIS CHAPTER we study applications of linear second order equations.

SECTIONS 6.1 AND 6.2 is about spring–mass systems.

SECTION 6.2 is about RLC circuits, the electrical analogs of spring–mass systems.

SECTION 6.3 is about motion of an object under a central force, which is particularly relevant in the

space age, since, for example, a satellite moving in orbit subject only to Earth’s gravity is experiencing

motion under a central force.

267
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6.1 SPRING PROBLEMS I

We consider the motion of an object of mass m, suspended from a spring of negligible mass. We say that
the spring–mass system is in equilibrium when the object is at rest and the forces acting on it sum to zero.

The position of the object in this case is the equilibrium position. We define y to be the displacement of

the object from its equilibrium position (Figure 6.1.1), measured positive upward.

 y

(a)

0

(b) (c)

Figure 6.1.1 (a) y > 0 (b) y D 0, (c) y < 0 Figure 6.1.2 A spring – mass system with damping

Our model accounts for the following kinds of forces acting on the object:

� The force �mg, due to gravity.

� A force Fs exerted by the spring resisting change in its length. The natural length of the spring

is its length with no mass attached. We assume that the spring obeys Hooke’s law: If the length

of the spring is changed by an amount �L from its natural length, then the spring exerts a force

Fs D k�L, where k is a positive number called the spring constant. If the spring is stretched then

�L > 0 and Fs > 0, so the spring force is upward, while if the spring is compressed then �L < 0
and Fs < 0, so the spring force is downward.

� A damping force Fd D �cy0 that resists the motion with a force proportional to the velocity of

the object. It may be due to air resistance or friction in the spring. However, a convenient way to

visualize a damping force is to assume that the object is rigidly attached to a piston with negligible

mass immersed in a cylinder (called a dashpot) filled with a viscous liquid (Figure 6.1.2). As the

piston moves, the liquid exerts a damping force. We say that the motion is undamped if c D 0, or
damped if c > 0.

� An external force F , other than the force due to gravity, that may vary with t , but is independent of
displacement and velocity. We say that the motion is free if F � 0, or forced if F 6� 0.

From Newton’s second law of motion,

my00 D �mg C Fd C Fs C F D �mg � cy0 C Fs C F: (6.1.1)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Hooke.html
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 y

(a)

0

(b)

 L

 ∆ L

Figure 6.1.3 (a) Natural length of spring (b) Spring stretched by mass

We must now relate Fs to y. In the absence of external forces the object stretches the spring by an amount

�l to assume its equilibrium position (Figure 6.1.3). Since the sum of the forces acting on the object is

then zero, Hooke’s Law implies that mg D k�l . If the object is displaced y units from its equilibrium

position, the total change in the length of the spring is�L D �l � y, so Hooke’s law implies that

Fs D k�L D k�l � ky:

Substituting this into (6.1.1) yields

my00 D �mg � cy0 C k�L � ky C F:

Since mg D k�l this can be written as

my00 C cy0 C ky D F: (6.1.2)

We call this the equation of motion.

Simple Harmonic Motion

Throughout the rest of this section we’ll consider spring–mass systems without damping; that is, c D 0.

We’ll consider systems with damping in the next section.
We first consider the case where the motion is also free; that is, F=0. We begin with an example.

Example 6.1.1 An object stretches a spring 6 inches in equilibrium.

(a) Set up the equation of motion and find its general solution.

(b) Find the displacement of the object for t > 0 if it’s initially displaced 18 inches above equilibrium
and given a downward velocity of 3 ft/s.
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SOLUTION(a) Setting c D 0 and F D 0 in (6.1.2) yields the equation of motion

my00 C ky D 0;

which we rewrite as

y00 C k

m
y D 0: (6.1.3)

Although we would need the weight of the object to obtain k from the equationmg D k�l we can obtain
k=m from �l alone; thus, k=m D g=�l . Consistent with the units used in the problem statement, we

take g D 32 ft/s2. Although �l is stated in inches, we must convert it to feet to be consistent with this

choice of g; that is, �l D 1=2 ft. Therefore

k

m
D 32

1=2
D 64

and (6.1.3) becomes

y00 C 64y D 0: (6.1.4)

The characteristic equation of (6.1.4) is

r2 C 64 D 0;

which has the zeros r D ˙8i . Therefore the general solution of (6.1.4) is

y D c1 cos 8t C c2 sin 8t: (6.1.5)

SOLUTION(b) The initial upward displacement of 18 inches is positive and must be expressed in feet.

The initial downward velocity is negative; thus,

y.0/ D 3

2
and y0.0/ D �3:

Differentiating (6.1.5) yields

y0 D �8c1 sin 8t C 8c2 cos 8t: (6.1.6)

Setting t D 0 in (6.1.5) and (6.1.6) and imposing the initial conditions shows that c1 D 3=2 and c2 D
�3=8. Therefore

y D 3

2
cos 8t � 3

8
sin 8t;

where y is in feet (Figure 6.1.4).

We’ll now consider the equation

my00 C ky D 0

where m and k are arbitrary positive numbers. Dividing through by m and defining !0 D
p

k=m yields

y00 C !2
0y D 0:

The general solution of this equation is

y D c1 cos!0t C c2 sin!0t: (6.1.7)

We can rewrite this in a more useful form by defining

R D
q

c2
1 C c2

2 ; (6.1.8)
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Figure 6.1.4 y D 3

2
cos 8t � 3

8
sin 8t

and
c1 D R cos� and c2 D R sin �: (6.1.9)

Substituting from (6.1.9) into (6.1.7) and applying the identity

cos!0t cos � C sin!0t sin� D cos.!0t � �/

yields
y D R cos.!0t � �/: (6.1.10)

From (6.1.8) and (6.1.9) we see that the R and � can be interpreted as polar coordinates of the point

with rectangular coordinates .c1; c2/ (Figure 6.1.5). Given c1 and c2, we can compute R from (6.1.8).

From (6.1.8) and (6.1.9), we see that � is related to c1 and c2 by

cos� D c1
q

c2
1 C c2

2

and sin � D c2
q

c2
1 C c2

2

:

There are infinitely many angles �, differing by integer multiples of 2� , that satisfy these equations. We

will always choose � so that �� � � < � .
The motion described by (6.1.7) or (6.1.10) is simple harmonic motion. We see from either of these

equations that the motion is periodic, with period

T D 2�=!0:

This is the time required for the object to complete one full cycle of oscillation (for example, to move from

its highest position to its lowest position and back to its highest position). Since the highest and lowest
positions of the object are y D R and y D �R, we say that R is the amplitude of the oscillation. The
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 θ
 c

1

 c
2

 R

Figure 6.1.5 R D
q

c2
1 C c2

2 ; c1 D R cos�; c2 D R sin �

angle � in (6.1.10) is the phase angle. It’s measured in radians. Equation (6.1.10) is the amplitude–phase

form of the displacement. If t is in seconds then !0 is in radians per second (rad/s); it’s the frequency of

the motion. It is also called the natural frequency of the spring–mass system without damping.

Example 6.1.2 We found the displacement of the object in Example 6.1.1 to be

y D 3

2
cos 8t � 3

8
sin 8t:

Find the frequency, period, amplitude, and phase angle of the motion.

Solution The frequency is !0 D 8 rad/s, and the period is T D 2�=!0 D �=4 s. Since c1 D 3=2 and

c2 D �3=8, the amplitude is

R D
q

c2
1 C c2

2 D

s

�

3

2

�2

C
�

3

8

�2

D 3

8

p
17:

The phase angle is determined by

cos� D
3
2

3
8

p
17

D 4p
17

(6.1.11)

and

sin� D
� 3

8

3
8

p
17

D � 1p
17
: (6.1.12)
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Using a calculator, we see from (6.1.11) that

� � ˙:245 rad:

Since sin� < 0 (see (6.1.12)), the minus sign applies here; that is,

� � �:245 rad:

Example 6.1.3 The natural length of a spring is 1 m. An object is attached to it and the length of the

spring increases to 102 cm when the object is in equilibrium. Then the object is initially displaced

downward 1 cm and given an upward velocity of 14 cm/s. Find the displacement for t > 0. Also, find

the natural frequency, period, amplitude, and phase angle of the resulting motion. Express the answers in

cgs units.

Solution In cgs units g D 980 cm/s2. Since �l D 2 cm, !2
0 D g=�l D 490. Therefore

y00 C 490y D 0; y.0/ D �1; y0.0/ D 14:

The general solution of the differential equation is

y D c1 cos 7
p
10t C c2 sin 7

p
10t;

so
y0 D 7

p
10
�

�c1 sin 7
p
10t C c2 cos 7

p
10t

�

:

Substituting the initial conditions into the last two equations yields c1 D �1 and c2 D 2=
p
10. Hence,

y D � cos 7
p
10t C 2p

10
sin 7

p
10t:

The frequency is 7
p
10 rad/s, and the period is T D 2�=.7

p
10/ s. The amplitude is

R D
q

c2
1 C c2

2 D

s

.�1/2 C
�

2p
10

�2

D
r

7

5
cm:

The phase angle is determined by

cos� D c1

R
D �

r

5

7
and sin � D c2

R
D
r

2

7
:

Therefore � is in the second quadrant and

� D cos�1

 

�
r

5

7

!

� 2:58 rad:

Undamped Forced Oscillation

In many mechanical problems a device is subjected to periodic external forces. For example, soldiers

marching in cadence on a bridge cause periodic disturbances in the bridge, and the engines of a propeller

driven aircraft cause periodic disturbances in its wings. In the absence of sufficient damping forces, such
disturbances – even if small in magnitude – can cause structural breakdown if they are at certain critical
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frequencies. To illustrate, this we’ll consider the motion of an object in a spring–mass system without

damping, subject to an external force

F.t/ D F0 cos!t

where F0 is a constant. In this case the equation of motion (6.1.2) is

my00 C ky D F0 cos!t;

which we rewrite as

y00 C !2
0y D F0

m
cos!t (6.1.13)

with !0 D
p

k=m. We’ll see from the next two examples that the solutions of (6.1.13) with ! ¤ !0

behave very differently from the solutions with ! D !0.

Example 6.1.4 Solve the initial value problem

y00 C !2
0y D F0

m
cos!t; y.0/ D 0; y0.0/ D 0; (6.1.14)

given that ! ¤ !0.

Solution We first obtain a particular solution of (6.1.13) by the method of undetermined coefficients.

Since ! ¤ !0, cos!t isn’t a solution of the complementary equation

y00 C !2
0y D 0:

Therefore (6.1.13) has a particular solution of the form

yp D A cos!t C B sin!t:

Since

y00
p D �!2.A cos!t C B sin!t/;

y00
p C !2

0yp D F0

m
cos!t

if and only if

.!2
0 � !2/ .A cos!t C B sin!t/ D F0

m
cos!t:

This holds if and only if

A D F0

m.!2
0 � !2/

and B D 0;

so

yp D F0

m.!2
0 � !2/

cos!t:

The general solution of (6.1.13) is

y D F0

m.!2
0 � !2/

cos!t C c1 cos!0t C c2 sin!0t; (6.1.15)

so

y0 D �!F0

m.!2
0 � !2/

sin!t C !0.�c1 sin!0t C c2 cos!0t/:
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The initial conditions y.0/ D 0 and y0.0/ D 0 in (6.1.14) imply that

c1 D � F0

m.!2
0 � !2/

and c2 D 0:

Substituting these into (6.1.15) yields

y D F0

m.!2
0 � !2/

.cos!t � cos!0t/: (6.1.16)

It is revealing to write this in a different form. We start with the trigonometric identities

cos.˛ � ˇ/ D cos˛ cosˇ C sin˛ sinˇ

cos.˛ C ˇ/ D cos˛ cosˇ � sin ˛ sinˇ:

Subtracting the second identity from the first yields

cos.˛ � ˇ/� cos.˛ C ˇ/ D 2 sin˛ sinˇ (6.1.17)

Now let

˛ � ˇ D !t and ˛ C ˇ D !0t; (6.1.18)

so that

˛ D .!0 C !/t

2
and ˇ D .!0 � !/t

2
: (6.1.19)

Substituting (6.1.18) and (6.1.19) into (6.1.17) yields

cos!t � cos!0t D 2 sin
.!0 � !/t

2
sin

.!0 C !/t

2
;

and substituting this into (6.1.16) yields

y D R.t/ sin
.!0 C !/t

2
; (6.1.20)

where

R.t/ D 2F0

m.!2
0 � !2/

sin
.!0 � !/t

2
: (6.1.21)

From (6.1.20) we can regard y as a sinusoidal variation with frequency .!0 C !/=2 and variable

amplitude jR.t/j. In Figure 6.1.6 the dashed curve above the t axis is y D jR.t/j, the dashed curve

below the t axis is y D �jR.t/j, and the displacement y appears as an oscillation bounded by them. The
oscillation of y for t on an interval between successive zeros of R.t/ is called a beat.

You can see from (6.1.20) and (6.1.21) that

jy.t/j � 2jF0j
mj!2

0 � !2j
I

moreover, if !C!0 is sufficiently large compared with !�!0, then jyj assumes values close to (perhaps

equal to) this upper bound during each beat. However, the oscillation remains bounded for all t . (This

assumes that the spring can withstand deflections of this size and continue to obey Hooke’s law.) The
next example shows that this isn’t so if ! D !0.
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 t

 y

Figure 6.1.6 Undamped oscillation with beats

Example 6.1.5 Find the general solution of

y00 C !2
0y D F0

m
cos!0t: (6.1.22)

Solution We first obtain a particular solution yp of (6.1.22). Since cos!0t is a solution of the comple-

mentary equation, the form for yp is

yp D t.A cos!0t C B sin!0t/: (6.1.23)

Then

y0
p D A cos!0t C B sin!0t C !0t.�A sin!0t C B cos!0t/

and

y00
p D 2!0.�A sin!0t C B cos!0t/ � !2

0 t.A cos!0t C B sin!0t/: (6.1.24)

From (6.1.23) and (6.1.24), we see that yp satisfies (6.1.22) if

�2A!0 sin!0t C 2B!0 cos!0t D F0

m
cos!0t I

that is, if

A D 0 and B D F0

2m!0

:

Therefore

yp D F0t

2m!0

sin!0t
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 y = F
0
 t / 2mω

0

 y = − F
0
 t / 2mω

0

Figure 6.1.7 Unbounded displacement due to resonance

is a particular solution of (6.1.22). The general solution of (6.1.22) is

y D F0t

2m!0

sin!0t C c1 cos!0t C c2 sin!0t:

The graph of yp is shown in Figure 6.1.7, where it can be seen that yp oscillates between the dashed lines

y D F0t

2m!0

and y D � F0t

2m!0

with increasing amplitude that approaches 1 as t ! 1. Of course, this means that the spring must

eventually fail to obey Hooke’s law or break.
This phenomenon of unbounded displacements of a spring–mass system in response to a periodic

forcing function at its natural frequency is called resonance. More complicated mechanical structures

can also exhibit resonance–like phenomena. For example, rhythmic oscillations of a suspension bridge

by wind forces or of an airplane wing by periodic vibrations of reciprocating engines can cause damage

or even failure if the frequencies of the disturbances are close to critical frequencies determined by the
parameters of the mechanical system in question.

6.1 Exercises

In the following exercises assume that there’s no damping.

1. C/G An object stretches a spring 4 inches in equilibrium. Find and graph its displacement for

t > 0 if it’s initially displaced 36 inches above equilibrium and given a downward velocity of 2
ft/s.
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2. An object stretches a string 1.2 inches in equilibrium. Find its displacement for t > 0 if it’s

initially displaced 3 inches below equilibrium and given a downward velocity of 2 ft/s.

3. A spring with natural length .5 m has length 50.5 cm with a mass of 2 gm suspended from it.

The mass is initially displaced 1.5 cm below equilibrium and released with zero velocity. Find its
displacement for t > 0.

4. An object stretches a spring 6 inches in equilibrium. Find its displacement for t > 0 if it’s initially

displaced 3 inches above equilibrium and given a downward velocity of 6 inches/s. Find the
frequency, period, amplitude and phase angle of the motion.

5. C/G An object stretches a spring 5 cm in equilibrium. It is initially displaced 10 cm above

equilibrium and given an upward velocity of .25 m/s. Find and graph its displacement for t > 0.

Find the frequency, period, amplitude, and phase angle of the motion.

6. A 10 kg mass stretches a spring 70 cm in equilibrium. Suppose a 2 kg mass is attached to the

spring, initially displaced 25 cm below equilibrium, and given an upward velocity of 2 m/s. Find

its displacement for t > 0. Find the frequency, period, amplitude, and phase angle of the motion.

7. A weight stretches a spring 1.5 inches in equilibrium. The weight is initially displaced 8 inches

above equilibrium and given a downward velocity of 4 ft/s. Find its displacement for t > 0.

8. A weight stretches a spring 6 inches in equilibrium. The weight is initially displaced 6 inches
above equilibrium and given a downward velocity of 3 ft/s. Find its displacement for t > 0.

9. A spring–mass system has natural frequency 7
p
10 rad/s. The natural length of the spring is .7 m.

What is the length of the spring when the mass is in equilibrium?

10. A 64 lb weight is attached to a spring with constant k D 8 lb/ft and subjected to an external force

F.t/ D 2 sin t . The weight is initially displaced 6 inches above equilibrium and given an upward

velocity of 2 ft/s. Find its displacement for t > 0.

11. A unit mass hangs in equilibrium from a spring with constant k D 1=16. Starting at t D 0, a force

F.t/ D 3 sin t is applied to the mass. Find its displacement for t > 0.

12. C/G A 4 lb weight stretches a spring 1 ft in equilibrium. An external force F.t/ D :25 sin 8t

lb is applied to the weight, which is initially displaced 4 inches above equilibrium and given a

downward velocity of 1 ft/s. Find and graph its displacement for t > 0.

13. A 2 lb weight stretches a spring 6 inches in equilibrium. An external force F.t/ D sin 8t lb is ap-

plied to the weight, which is released from rest 2 inches below equilibrium. Find its displacement

for t > 0.

14. A 10 gm mass suspended on a spring moves in simple harmonic motion with period 4 s. Find the

period of the simple harmonic motion of a 20 gm mass suspended from the same spring.

15. A 6 lb weight stretches a spring 6 inches in equilibrium. Suppose an external force F.t/ D
3

16
sin!t C 3

8
cos!t lb is applied to the weight. For what value of ! will the displacement

be unbounded? Find the displacement if ! has this value. Assume that the motion starts from

equilibrium with zero initial velocity.

16. C/G A 6 lb weight stretches a spring 4 inches in equilibrium. Suppose an external force F.t/ D
4 sin!t � 6 cos!t lb is applied to the weight. For what value of ! will the displacement be

unbounded? Find and graph the displacement if ! has this value. Assume that the motion starts

from equilibrium with zero initial velocity.

17. A mass of one kg is attached to a spring with constant k D 4 N/m. An external force F.t/ D
� cos!t � 2 sin!t n is applied to the mass. Find the displacement y for t > 0 if ! equals the
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natural frequency of the spring–mass system. Assume that the mass is initially displaced 3 m

above equilibrium and given an upward velocity of 450 cm/s.

18. An object is in simple harmonic motion with frequency !0, with y.0/ D y0 and y0.0/ D v0. Find

its displacement for t > 0. Also, find the amplitude of the oscillation and give formulas for the

sine and cosine of the initial phase angle.

19. Two objects suspended from identical springs are set into motion. The period of one object is
twice the period of the other. How are the weights of the two objects related?

20. Two objects suspended from identical springs are set into motion. The weight of one object is

twice the weight of the other. How are the periods of the resulting motions related?

21. Two identical objects suspended from different springs are set into motion. The period of one

motion is 3 times the period of the other. How are the two spring constants related?

6.2 SPRING PROBLEMS II

Free Vibrations With Damping

In this section we consider the motion of an object in a spring–mass system with damping. We start with

unforced motion, so the equation of motion is

my00 C cy0 C ky D 0: (6.2.1)

Now suppose the object is displaced from equilibrium and given an initial velocity. Intuition suggests that

if the damping force is sufficiently weak the resulting motion will be oscillatory, as in the undamped case
considered in the previous section, while if it’s sufficiently strong the object may just move slowly toward

the equilibrium position without ever reaching it. We’ll now confirm these intuitive ideas mathematically.

The characteristic equation of (6.2.1) is

mr2 C cr C k D 0:

The roots of this equation are

r1 D �c �
p
c2 � 4mk
2m

and r2 D �c C
p
c2 � 4mk
2m

: (6.2.2)

In Section 5.2 we saw that the form of the solution of (6.2.1) depends upon whether c2 �4mk is positive,

negative, or zero. We’ll now consider these three cases.

Underdamped Motion

We say the motion is underdamped if c <
p
4mk. In this case r1 and r2 in (6.2.2) are complex conjugates,

which we write as

r1 D � c

2m
� i!1 and r2 D � c

2m
C i!1;

where

!1 D
p
4mk � c2

2m
:

The general solution of (6.2.1) in this case is

y D e�ct=2m.c1 cos!1t C c2 sin!1t/:
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 x

 y

 y = Re
−ct / 2m

 y = −− Re
−ct / 2m

Figure 6.2.1 Underdamped motion

By the method used in Section 6.1 to derive the amplitude–phase form of the displacement of an object

in simple harmonic motion, we can rewrite this equation as

y D Re�ct=2m cos.!1t � �/; (6.2.3)

where

R D
q

c2
1 C c2

2 ; R cos� D c1; and R sin� D c2:

The factor Re�ct=2m in (6.2.3) is called the time–varying amplitude of the motion, the quantity !1 is
called the frequency, and T D 2�=!1 (which is the period of the cosine function in (6.2.3) is called the

quasi–period. A typical graph of (6.2.3) is shown in Figure 6.2.1. As illustrated in that figure, the graph

of y oscillates between the dashed exponential curves y D ˙Re�ct=2m.
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Overdamped Motion

We say the motion is overdamped if c >
p
4mk. In this case the zeros r1 and r2 of the characteristic

polynomial are real, with r1 < r2 < 0 (see (6.2.2)), and the general solution of (6.2.1) is

y D c1e
r1t C c2e

r2t :

Again limt!1 y.t/ D 0 as in the underdamped case, but the motion isn’t oscillatory, since y can’t equal
zero for more than one value of t unless c1 D c2 D 0. (Exercise 23.)

Critically Damped Motion

We say the motion is critically damped if c D
p
4mk. In this case r1 D r2 D �c=2m and the general

solution of (6.2.1) is

y D e�ct=2m.c1 C c2t/:

Again limt!1 y.t/ D 0 and the motion is nonoscillatory, since y can’t equal zero for more than one

value of t unless c1 D c2 D 0. (Exercise 22).

Example 6.2.1 Suppose a 64 lb weight stretches a spring 6 inches in equilibrium and a dashpot provides

a damping force of c lb for each ft/sec of velocity.

(a) Write the equation of motion of the object and determine the value of c for which the motion is

critically damped.

(b) Find the displacement y for t > 0 if the motion is critically damped and the initial conditions are

y.0/ D 1 and y0.0/ D 20.

(c) Find the displacement y for t > 0 if the motion is critically damped and the initial conditions are

y.0/ D 1 and y0.0/ D �20.

SOLUTION(a) Here m D 2 slugs and k D 64=:5 D 128 lb/ft. Therefore the equation of motion (6.2.1)

is

2y00 C cy0 C 128y D 0: (6.2.4)

The characteristic equation is

2r2 C cr C 128 D 0;

which has roots

r D �c ˙
p
c2 � 8 � 128
4

:

Therefore the damping is critical if

c D
p
8 � 128 D 32 lb–sec/ft:

SOLUTION(b) Setting c D 32 in (6.2.4) and cancelling the common factor 2 yields

y00 C 16y C 64y D 0:

The characteristic equation is

r2 C 16r C 64y D .r C 8/2 D 0:

Hence, the general solution is
y D e�8t.c1 C c2t/: (6.2.5)
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Figure 6.2.2 (a) y D e�8t.1 C 28t/ (b) y D e�8t.1 � 12t/

Differentiating this yields

y0 D �8y C c2e
�8t : (6.2.6)

Imposing the initial conditions y.0/ D 1 and y0.0/ D 20 in the last two equations shows that 1 D c1 and

20 D �8C c2. Hence, the solution of the initial value problem is

y D e�8t.1C 28t/:

Therefore the object approaches equilibrium from above as t ! 1. There’s no oscillation.

SOLUTION(c) Imposing the initial conditions y.0/ D 1 and y0.0/ D �20 in (6.2.5) and (6.2.6) yields

1 D c1 and �20 D �8C c2. Hence, the solution of this initial value problem is

y D e�8t.1 � 12t/:

Therefore the object moves downward through equilibrium just once, and then approaches equilibrium

from below as t ! 1. Again, there’s no oscillation. The solutions of these two initial value problems
are graphed in Figure 6.2.2.

Example 6.2.2 Find the displacement of the object in Example 6.2.1 if the damping constant is c D 4

lb–sec/ft and the initial conditions are y.0/ D 1:5 ft and y0.0/ D �3 ft/sec.

Solution With c D 4, the equation of motion (6.2.4) becomes

y00 C 2y0 C 64y D 0 (6.2.7)

after cancelling the common factor 2. The characteristic equation

r2 C 2r C 64 D 0
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has complex conjugate roots

r D �2˙
p
4 � 4 � 64
2

D �1˙ 3
p
7i:

Therefore the motion is underdamped and the general solution of (6.2.7) is

y D e�t.c1 cos 3
p
7t C c2 sin 3

p
7t/:

Differentiating this yields

y0 D �y C 3
p
7e�t.�c1 sin 3

p
7t C c2 cos 3

p
7t/:

Imposing the initial conditions y.0/ D 1:5 and y0.0/ D �3 in the last two equations yields 1:5 D c1 and

�3 D �1:5C 3
p
7c2. Hence, the solution of the initial value problem is

y D e�t

�

3

2
cos 3

p
7t � 1

2
p
7

sin 3
p
7t

�

: (6.2.8)

The amplitude of the function in parentheses is

R D

s

�

3

2

�2

C
�

1

2
p
7

�2

D
r

9

4
C 1

4 � 7 D
r

64

4 � 7 D 4p
7
:

Therefore we can rewrite (6.2.8) as

y D 4p
7
e�t cos.3

p
7t � �/;

where

cos� D 3

2R
D 3

p
7

8
and sin � D � 1

2
p
7R

D �1
8
:

Therefore � Š �:125 radians.

Example 6.2.3 Let the damping constant in Example 1 be c D 40 lb–sec/ft. Find the displacement y for

t > 0 if y.0/ D 1 and y0.0/ D 1.

Solution With c D 40, the equation of motion (6.2.4) reduces to

y00 C 20y0 C 64y D 0 (6.2.9)

after cancelling the common factor 2. The characteristic equation

r2 C 20r C 64 D .r C 16/.r C 4/ D 0

has the roots r1 D �4 and r2 D �16. Therefore the general solution of (6.2.9) is

y D c1e
�4t C c2e

�16t : (6.2.10)

Differentiating this yields

y0 D �4e�4t � 16c2e
�16t :
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Figure 6.2.3 y D 17

12
e�4t � 5

12
e�16t

The last two equations and the initial conditions y.0/ D 1 and y0.0/ D 1 imply that

c1 C c2 D 1

�4c1 � 16c2 D 1:

The solution of this system is c1 D 17=12, c2 D �5=12. Substituting these into (6.2.10) yields

y D 17

12
e�4t � 5

12
e�16t

as the solution of the given initial value problem (Figure 6.2.3).

Forced Vibrations With Damping

Now we consider the motion of an object in a spring-mass system with damping, under the influence of a

periodic forcing function F.t/ D F0 cos!t , so that the equation of motion is

my00 C cy0 C ky D F0 cos!t: (6.2.11)

In Section 6.1 we considered this equation with c D 0 and found that the resulting displacement y

assumed arbitrarily large values in the case of resonance (that is, when ! D !0 D
p

k=m). Here we’ll

see that in the presence of damping the displacement remains bounded for all t , and the initial conditions
have little effect on the motion as t ! 1. In fact, we’ll see that for large t the displacement is closely

approximated by a function of the form

y D R cos.!t � �/; (6.2.12)

where the amplitude R depends upon m, c, k, F0, and !. We’re interested in the following question:
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QUESTION:Assuming that m, c, k, and F0 are held constant, what value of ! produces the largest

amplitudeR in (6.2.12), and what is this largest amplitude?

To answer this question, we must solve (6.2.11) and determine R in terms of F0; !0; !, and c. We can

obtain a particular solution of (6.2.11) by the method of undetermined coefficients. Since cos!t does not

satisfy the complementary equation

my00 C cy0 C ky D 0;

we can obtain a particular solution of (6.2.11) in the form

yp D A cos!t C B sin!t: (6.2.13)

Differentiating this yields

y0
p D !.�A sin!t C B cos!t/

and
y00

p D �!2.A cos!t C B sin!t/:

From the last three equations,

my00
p C cy0

p C kyp D .�m!2AC c!B C kA/ cos !t C .�m!2B � c!AC kB/ sin!t;

so yp satisfies (6.2.11) if

.k �m!2/AC c!B D F0

�c!A C .k �m!2/B D 0:

Solving for A and B and substituting the results into (6.2.13) yields

yp D F0

.k �m!2/2 C c2!2

�

.k �m!2/ cos!t C c! sin!t
�

;

which can be written in amplitude–phase form as

yp D F0
p

.k �m!2/2 C c2!2
cos.!t � �/; (6.2.14)

where

cos� D k �m!2

p

.k �m!2/2 C c2!2
and sin � D c!

p

.k �m!2/2 C c2!2
: (6.2.15)

To compare this with the undamped forced vibration that we considered in Section 6.1 it’s useful to
write

k �m!2 D m

�

k

m
� !2

�

D m.!2
0 � !2/; (6.2.16)

where !0 D
p

k=m is the natural angular frequency of the undamped simple harmonic motion of an

object with mass m on a spring with constant k. Substituting (6.2.16) into (6.2.14) yields

yp D F0
q

m2.!2
0 � !2/2 C c2!2

cos.!t � �/: (6.2.17)
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The solution of an initial value problem

my00 C cy0 C ky D F0 cos!t; y.0/ D y0; y0.0/ D v0;

is of the form y D yc C yp, where yc has one of the three forms

yc D e�ct=2m.c1 cos!1t C c2 sin!1t/;

yc D e�ct=2m.c1 C c2t/;

yc D c1e
r1t C c2e

r2t .r1; r2 < 0/:

In all three cases limt!1 yc.t/ D 0 for any choice of c1 and c2. For this reason we say that yc is the
transient component of the solution y. The behavior of y for large t is determined by yp , which we

call the steady state component of y. Thus, for large t the motion is like simple harmonic motion at the

frequency of the external force.

The amplitude of yp in (6.2.17) is

R D F0
q

m2.!2
0 � !2/2 C c2!2

; (6.2.18)

which is finite for all !; that is, the presence of damping precludes the phenomenon of resonance that we

encountered in studying undamped vibrations under a periodic forcing function. We’ll now find the value

!max of ! for which R is maximized. This is the value of ! for which the function

�.!/ D m2.!2
0 � !2/2 C c2!2

in the denominator of (6.2.18) attains its minimum value. By rewriting this as

�.!/ D m2.!4
0 C !4/C .c2 � 2m2!2

0 /!
2; (6.2.19)

you can see that � is a strictly increasing function of !2 if

c �
q

2m2!2
0 D

p
2mk:

(Recall that !2
0 D k=m). Therefore !max D 0 if this inequality holds. From (6.2.15), you can see that

� D 0 if ! D 0. In this case, (6.2.14) reduces to

yp D F0
q

m2!4
0

D F0

k
;

which is consistent with Hooke’s law: if the mass is subjected to a constant force F0, its displacement

should approach a constant yp such that kyp D F0. Now suppose c <
p
2mk. Then, from (6.2.19),

�0.!/ D 2!.2m2!2 C c2 � 2m2!2
0 /;

and !max is the value of ! for which the expression in parentheses equals zero; that is,

!max D
r

!2
0 � c2

2m2
D
s

k

m

�

1 � c2

2km

�

:

(To see that �.!max/ is the minimum value of �.!/, note that �0.!/ < 0 if ! < !max and �0.!/ > 0 if

! > !max.) Substituting! D !max in (6.2.18) and simplifying shows that the maximum amplitudeRmax

is

Rmax D 2mF0

c
p
4mk � c2

if c <
p
2mk:

We summarize our results as follows.
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Theorem 6.2.1 Suppose we consider the amplitudeR of the steady state component of the solution of

my00 C cy0 C ky D F0 cos!t

as a function of !.

(a) If c �
p
2mk, the maximum amplitude is Rmax D F0=k and it’s attained when ! D !max D 0.

(b) If c <
p
2mk, the maximum amplitude is

Rmax D 2mF0

c
p
4mk � c2

; (6.2.20)

and it’s attained when

! D !max D
s

k

m

�

1 � c2

2km

�

: (6.2.21)

Note that Rmax and !max are continuous functions of c, for c � 0, since (6.2.20) and (6.2.21) reduce to

Rmax D F0=k and !max D 0 if c D
p
2km.
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6.2 Exercises

1. A 64 lb object stretches a spring 4 ft in equilibrium. It is attached to a dashpot with damping
constant c D 8 lb-sec/ft. The object is initially displaced 18 inches above equilibrium and given a

downward velocity of 4 ft/sec. Find its displacement and time–varying amplitude for t > 0.

2. C/G A 16 lb weight is attached to a spring with natural length 5 ft. With the weight attached,

the spring measures 8.2 ft. The weight is initially displaced 3 ft below equilibrium and given an

upward velocity of 2 ft/sec. Find and graph its displacement for t > 0 if the medium resists the

motion with a force of one lb for each ft/sec of velocity. Also, find its time–varying amplitude.

3. C/G An 8 lb weight stretches a spring 1.5 inches. It is attached to a dashpot with damping
constant c=8 lb-sec/ft. The weight is initially displaced 3 inches above equilibrium and given an

upward velocity of 6 ft/sec. Find and graph its displacement for t > 0.

4. A 96 lb weight stretches a spring 3.2 ft in equilibrium. It is attached to a dashpot with damping
constant c=18 lb-sec/ft. The weight is initially displaced 15 inches below equilibrium and given a

downward velocity of 12 ft/sec. Find its displacement for t > 0.

5. A 16 lb weight stretches a spring 6 inches in equilibrium. It is attached to a damping mechanism
with constant c. Find all values of c such that the free vibration of the weight has infinitely many

oscillations.

6. An 8 lb weight stretches a spring .32 ft. The weight is initially displaced 6 inches above equilibrium

and given an upward velocity of 4 ft/sec. Find its displacement for t > 0 if the medium exerts a
damping force of 1.5 lb for each ft/sec of velocity.

7. A 32 lb weight stretches a spring 2 ft in equilibrium. It is attached to a dashpot with constant c D 8

lb-sec/ft. The weight is initially displaced 8 inches below equilibrium and released from rest. Find
its displacement for t > 0.

8. A mass of 20 gm stretches a spring 5 cm. The spring is attached to a dashpot with damping

constant 400 dyne sec/cm. Determine the displacement for t > 0 if the mass is initially displaced
9 cm above equilibrium and released from rest.

9. A 64 lb weight is suspended from a spring with constant k D 25 lb/ft. It is initially displaced 18

inches above equilibrium and released from rest. Find its displacement for t > 0 if the medium
resists the motion with 6 lb of force for each ft/sec of velocity.

10. A 32 lb weight stretches a spring 1 ft in equilibrium. The weight is initially displaced 6 inches

above equilibrium and given a downward velocity of 3 ft/sec. Find its displacement for t > 0 if

the medium resists the motion with a force equal to 3 times the speed in ft/sec.

11. An 8 lb weight stretches a spring 2 inches. It is attached to a dashpot with damping constant

c=4 lb-sec/ft. The weight is initially displaced 3 inches above equilibrium and given a downward

velocity of 4 ft/sec. Find its displacement for t > 0.

12. C/G A 2 lb weight stretches a spring .32 ft. The weight is initially displaced 4 inches below
equilibrium and given an upward velocity of 5 ft/sec. The medium provides damping with constant

c D 1=8 lb-sec/ft. Find and graph the displacement for t > 0.

13. An 8 lb weight stretches a spring 8 inches in equilibrium. It is attached to a dashpot with damping
constant c D :5 lb-sec/ft and subjected to an external force F.t/ D 4 cos 2t lb. Determine the

steady state component of the displacement for t > 0.
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14. A 32 lb weight stretches a spring 1 ft in equilibrium. It is attached to a dashpot with constant

c D 12 lb-sec/ft. The weight is initially displaced 8 inches above equilibrium and released from

rest. Find its displacement for t > 0.

15. A mass of one kg stretches a spring 49 cm in equilibrium. A dashpot attached to the spring

supplies a damping force of 4 N for each m/sec of speed. The mass is initially displaced 10 cm

above equilibrium and given a downward velocity of 1 m/sec. Find its displacement for t > 0.

16. A mass of 100 grams stretches a spring 98 cm in equilibrium. A dashpot attached to the spring
supplies a damping force of 600 dynes for each cm/sec of speed. The mass is initially displaced 10

cm above equilibrium and given a downward velocity of 1 m/sec. Find its displacement for t > 0.

17. A 192 lb weight is suspended from a spring with constant k D 6 lb/ft and subjected to an external
force F.t/ D 8 cos 3t lb. Find the steady state component of the displacement for t > 0 if the

medium resists the motion with a force equal to 8 times the speed in ft/sec.

18. A 2 gm mass is attached to a spring with constant 20 dyne/cm. Find the steady state component
of the displacement if the mass is subjected to an external force F.t/ D 3 cos 4t � 5 sin 4t dynes

and a dashpot supplies 4 dynes of damping for each cm/sec of velocity.

19. C/G A 96 lb weight is attached to a spring with constant 12 lb/ft. Find and graph the steady state

component of the displacement if the mass is subjected to an external forceF.t/ D 18 cos t�9 sin t

lb and a dashpot supplies 24 lb of damping for each ft/sec of velocity.

20. A mass of one kg stretches a spring 49 cm in equilibrium. It is attached to a dashpot that supplies a

damping force of 4 N for each m/sec of speed. Find the steady state component of its displacement

if it’s subjected to an external force F.t/ D 8 sin 2t � 6 cos 2t N.

21. A mass m is suspended from a spring with constant k and subjected to an external force F.t/ D
˛ cos!0tCˇ sin!0t , where !0 is the natural frequency of the spring–mass system without damp-

ing. Find the steady state component of the displacement if a dashpot with constant c supplies

damping.

22. Show that if c1 and c2 are not both zero then

y D er1t.c1 C c2t/

can’t equal zero for more than one value of t .

23. Show that if c1 and c2 are not both zero then

y D c1e
r1t C c2e

r2t

can’t equal zero for more than one value of t .

24. Find the solution of the initial value problem

my00 C cy0 C ky D 0; y.0/ D y0; y
0.0/ D v0;

given that the motion is underdamped, so the general solution of the equation is

y D e�ct=2m.c1 cos!1t C c2 sin!1t/:

25. Find the solution of the initial value problem

my00 C cy0 C ky D 0; y.0/ D y0; y
0.0/ D v0;

given that the motion is overdamped, so the general solution of the equation is

y D c1e
r1t C c2e

r2t .r1; r2 < 0/:
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26. Find the solution of the initial value problem

my00 C cy0 C ky D 0; y.0/ D y0; y
0.0/ D v0;

given that the motion is critically damped, so that the general solution of the equation is of the

form

y D er1t .c1 C c2t/ .r1 < 0/:

6.3 THE RLC CIRCUIT

In this section we consider theRLC circuit, shown schematically in Figure 6.3.1. As we’ll see, theRLC

circuit is an electrical analog of a spring-mass system with damping.

Nothing happens while the switch is open (dashed line). When the switch is closed (solid line) we say

that the circuit is closed. Differences in electrical potential in a closed circuit cause current to flow in

the circuit. The battery or generator in Figure 6.3.1 creates a difference in electrical potential E D E.t/

between its two terminals, which we’ve marked arbitrarily as positive and negative. (We could just as
well interchange the markings.) We’ll say that E.t/ > 0 if the potential at the positive terminal is greater

than the potential at the negative terminal, E.t/ < 0 if the potential at the positive terminal is less than

the potential at the negative terminal, and E.t/ D 0 if the potential is the same at the two terminals. We

call E the impressed voltage.

Induction Coil
(Inductance  L)

+ −−

Capacitor
(Capacitance  C)

+

−−

Resistor
(Resistance  R)

+

−−

Battery or Generator
(Impressed Voltage  E=E(t))

+ −−
Switch

Figure 6.3.1 An RLC circuit

At any time t , the same current flows in all points of the circuit. We denote current by I D I.t/. We

say that I.t/ > 0 if the direction of flow is around the circuit from the positive terminal of the battery or

generator back to the negative terminal, as indicated by the arrows in Figure 6.3.1 I.t/ < 0 if the flow is
in the opposite direction, and I.t/ D 0 if no current flows at time t .
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Differences in potential occur at the resistor, induction coil, and capacitor in Figure 6.3.1. Note that the

two sides of each of these components are also identified as positive and negative. The voltage drop across

each component is defined to be the potential on the positive side of the component minus the potential

on the negative side. This terminology is somewhat misleading, since “drop” suggests a decrease even

though changes in potential are signed quantities and therefore may be increases. Nevertheless, we’ll go

along with tradition and call them voltage drops. The voltage drop across the resistor in Figure 6.3.1 is
given by

VR D IR; (6.3.1)

where I is current and R is a positive constant, the resistance of the resistor. The voltage drop across the

induction coil is given by

VI D L
dI

dt
D LI 0; (6.3.2)

where L is a positive constant, the inductance of the coil.

A capacitor stores electrical charge Q D Q.t/, which is related to the current in the circuit by the

equation

Q.t/ D Q0 C
Z t

0

I.�/ d�; (6.3.3)

where Q0 is the charge on the capacitor at t D 0. The voltage drop across a capacitor is given by

VC D Q

C
; (6.3.4)

where C is a positive constant, the capacitance of the capacitor.

Table 6.3.8 names the units for the quantities that we’ve discussed. The units are defined so that

1 volt D 1 ampere � 1 ohm

D 1 henry � 1 ampere=second

D 1 coulomb= farad

and

1 ampere D 1 coulomb=second:

Table 6.3.8. Electrical Units

Symbol Name Unit

E Impressed Voltage volt

I Current ampere

Q Charge coulomb

R Resistance ohm

L Inductance henry

C Capacitance farad

According to Kirchoff ’s law, the sum of the voltage drops in a closedRLC circuit equals the impressed
voltage. Therefore, from (6.3.1), (6.3.2), and (6.3.4),

LI 0 CRI C 1

C
Q D E.t/: (6.3.5)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Kirchhoff.html
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This equation contains two unknowns, the current I in the circuit and the charge Q on the capacitor.

However, (6.3.3) implies thatQ0 D I , so (6.3.5) can be converted into the second order equation

LQ00 CRQ0 C 1

C
Q D E.t/ (6.3.6)

in Q. To find the current flowing in an RLC circuit, we solve (6.3.6) for Q and then differentiate the

solution to obtain I .

In Sections 6.1 and 6.2 we encountered the equation

my00 C cy0 C ky D F.t/ (6.3.7)

in connection with spring-mass systems. Except for notation this equation is the same as (6.3.6). The

correspondence between electrical and mechanical quantities connected with (6.3.6) and (6.3.7) is shown

in Table 6.3.9.

Table 6.3.9. Electrical and Mechanical Units

Electrical Mechanical

charge Q displacement y

curent I velocity y0

impressed voltage E.t/ external force F.t/

inductance L Mass m

resistance R damping c

1/capacitance 1=C cpring constant k

The equivalence between (6.3.6) and (6.3.7) is an example of how mathematics unifies fundamental
similarities in diverse physical phenomena. Since we’ve already studied the properties of solutions of

(6.3.7) in Sections 6.1 and 6.2, we can obtain results concerning solutions of (6.3.6) by simpling changing

notation, according to Table 6.3.8.

Free Oscillations

We say that an RLC circuit is in free oscillation if E.t/ D 0 for t > 0, so that (6.3.6) becomes

LQ00 CRQ0 C 1

C
Q D 0: (6.3.8)

The characteristic equation of (6.3.8) is

Lr2 CRr C 1

C
D 0;

with roots

r1 D �R �
p

R2 � 4L=C
2L

and r2 D �RC
p

R2 � 4L=C
2L

: (6.3.9)

There are three cases to consider, all analogous to the cases considered in Section 6.2 for free vibrations

of a damped spring-mass system.

CASE 1. The oscillation is underdamped ifR <
p

4L=C . In this case, r1 and r2 in (6.3.9) are complex

conjugates, which we write as

r1 D � R

2L
C i!1 and r2 D � R

2L
� i!1;
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where

!1 D
p

4L=C � R2

2L
:

The general solution of (6.3.8) is

Q D e�Rt=2L.c1 cos!1t C c2 sin!1t/;

which we can write as
Q D Ae�Rt=2L cos.!1t � �/; (6.3.10)

where

A D
q

c2
1 C c2

2 ; A cos� D c1; and A sin� D c2:

In the idealized case where R D 0, the solution (6.3.10) reduces to

Q D A cos

�

tp
LC

� �
�

;

which is analogous to the simple harmonic motion of an undamped spring-mass system in free vibration.

ActualRLC circuits are usually underdamped, so the case we’ve just considered is the most important.

However, for completeness we’ll consider the other two possibilities.

CASE 2. The oscillation is overdamped if R >
p

4L=C . In this case, the zeros r1 and r2 of the

characteristic polynomial are real, with r1 < r2 < 0 (see (6.3.9)), and the general solution of (6.3.8) is

Q D c1e
r1t C c2e

r2t : (6.3.11)

CASE 3. The oscillation is critically damped if R D
p

4L=C . In this case, r1 D r2 D �R=2L and

the general solution of (6.3.8) is

Q D e�Rt=2L.c1 C c2t/: (6.3.12)

If R ¤ 0, the exponentials in (6.3.10), (6.3.11), and (6.3.12) are negative, so the solution of any

homogeneous initial value problem

LQ00 CRQ0 C 1

C
Q D 0; Q.0/ D Q0; Q0.0/ D I0;

approaches zero exponentially as t ! 1. Thus, all such solutions are transient, in the sense defined

Section 6.2 in the discussion of forced vibrations of a spring-mass system with damping.

Example 6.3.1 At t D 0 a current of 2 amperes flows in an RLC circuit with resistance R D 40 ohms,

inductance L D :2 henrys, and capacitance C D 10�5 farads. Find the current flowing in the circuit at

t > 0 if the initial charge on the capacitor is 1 coulomb. Assume that E.t/ D 0 for t > 0.

Solution The equation for the charge Q is

1

5
Q00 C 40Q0 C 10000Q D 0;

or

Q00 C 200Q0 C 50000Q D 0: (6.3.13)

Therefore we must solve the initial value problem

Q00 C 200Q0 C 50000Q D 0; Q.0/ D 1; Q0.0/ D 2: (6.3.14)
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The desired current is the derivative of the solution of this initial value problem.

The characteristic equation of (6.3.13) is

r2 C 200r C 50000 D 0;

which has complex zeros r D �100˙ 200i . Therefore the general solution of (6.3.13) is

Q D e�100t .c1 cos 200t C c2 sin 200t/: (6.3.15)

Differentiating this and collecting like terms yields

Q0 D �e�100t Œ.100c1 � 200c2/ cos 200t C .100c2 C 200c1/ sin 200t� : (6.3.16)

To find the solution of the initial value problem (6.3.14), we set t D 0 in (6.3.15) and (6.3.16) to obtain

c1 D Q.0/ D 1 and � 100c1 C 200c2 D Q0.0/ D 2I

therefore, c1 D 1 and c2 D 51=100, so

Q D e�100t

�

cos 200t C 51

100
sin 200t

�

is the solution of (6.3.14). Differentiating this yields

I D e�100t.2 cos 200t � 251 sin200t/:

Forced Oscillations With Damping

An initial value problem for (6.3.6) has the form

LQ00 CRQ0 C 1

C
Q D E.t/; Q.0/ D Q0; Q0.0/ D I0; (6.3.17)

where Q0 is the initial charge on the capacitor and I0 is the initial current in the circuit. We’ve already

seen that if E � 0 then all solutions of (6.3.17) are transient. If E 6� 0, we know that the solution of

(6.3.17) has the form Q D Qc C Qp , where Qc satisfies the complementary equation, and approaches

zero exponentially as t ! 1 for any initial conditions , whileQp depends only onE and is independent

of the initial conditions. As in the case of forced oscillations of a spring-mass system with damping, we
call Qp the steady state charge on the capacitor of the RLC circuit. Since I D Q0 D Q0

c CQ0
p and Q0

c

also tends to zero exponentially as t ! 1, we say that Ic D Q0
c is the transient current and Ip D Q0

p is

the steady state current. In most applications we’re interested only in the steady state charge and current.

Example 6.3.2 Find the amplitude-phase form of the steady state current in the RLC circuit in Fig-

ure 6.3.1 if the impressed voltage, provided by an alternating current generator, is E.t/ D E0 cos!t .

Solution We’ll first find the steady state charge on the capacitor as a particular solution of

LQ00 CRQ0 C 1

C
Q D E0 cos!t:

To do, this we’ll simply reinterpret a result obtained in Section 6.2, where we found that the steady state

solution of
my00 C cy0 C ky D F0 cos!t
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is

yp D F0
p

.k �m!2/2 C c2!2
cos.!t � �/;

where

cos� D k �m!2

p

.k �m!2/2 C c2!2
and sin � D c!

p

.k �m!2/2 C c2!2
:

(See Equations (6.2.14) and (6.2.15).) By making the appropriate changes in the symbols (according to

Table 2) yields the steady state charge

Qp D E0
p

.1=C �L!2/2 CR2!2
cos.!t � �/;

where

cos� D 1=C � L!2

p

.1=C �L!2/2 CR2!2
and sin � D R!

p

.1=C �L!2/2 CR2!2
:

Therefore the steady state current in the circuit is

Ip D Q0
p D � !E0

p

.1=C � L!2/2 CR2!2
sin.!t � �/:

6.3 Exercises

In Exercises 1-5 find the current in the RLC circuit, assuming that E.t/ D 0 for t > 0.

1. R D 3 ohms; L D :1 henrys; C D :01 farads; Q0 D 0 coulombs; I0 D 2 amperes.

2. R D 2 ohms; L D :05 henrys; C D :01 farads’;Q0 D 2 coulombs; I0 D �2 amperes.

3. R D 2 ohms; L D :1 henrys; C D :01 farads; Q0 D 2 coulombs; I0 D 0 amperes.

4. R D 6 ohms; L D :1 henrys; C D :004 farads’;Q0 D 3 coulombs; I0 D �10 amperes.

5. R D 4 ohms; L D :05 henrys; C D :008 farads; Q0 D �1 coulombs; I0 D 2 amperes.

In Exercises 6-10 find the steady state current in the circuit described by the equation.

6.
1

10
Q00 C 3Q0 C 100Q D 5 cos 10t � 5 sin 10t

7.
1

20
Q00 C 2Q0 C 100Q D 10 cos25t � 5 sin 25t

8.
1

10
Q00 C 2Q0 C 100Q D 3 cos50t � 6 sin 50t

9.
1

10
Q00 C 6Q0 C 250Q D 10 cos100t C 30 sin100t

10.
1

20
Q00 C 4Q0 C 125Q D 15 cos30t � 30 sin 30t
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11. Show that if E.t/ D U cos!t C V sin!t where U and V are constants then the steady state

current in the RLC circuit shown in Figure 6.3.1 is

Ip D !2RE.t/ C .1=C �L!2/E 0.t/

�
;

where

� D .1=C � L!2/2 CR2!2:

12. Find the amplitude of the steady state current Ip in the RLC circuit shown in Figure 6.3.1 if
E.t/ D U cos!tCV sin!t , whereU and V are constants. Then find the value!0 of ! maximizes

the amplitude, and find the maximum amplitude.

In Exercises 13-17 plot the amplitude of the steady state current against !. Estimate the value of ! that

maximizes the amplitude of the steady state current, and estimate this maximum amplitude. HINT: You

can confirm your results by doing Exercise 12.

13. L
1

10
Q00 C 3Q0 C 100Q D U cos!t C V sin!t

14. L
1

20
Q00 C 2Q0 C 100Q D U cos!t C V sin!t

15. L
1

10
Q00 C 2Q0 C 100Q D U cos!t C V sin!t

16. L
1

10
Q00 C 6Q0 C 250Q D U cos!t C V sin!t

17. L
1

20
Q00 C 4Q0 C 125Q D U cos!t C V sin!t

6.4 MOTION UNDER A CENTRAL FORCE

We’ll now study the motion of a object moving under the influence of a central force; that is, a force

whose magnitude at any point P other than the origin depends only on the distance from P to the origin,

and whose direction at P is parallel to the line connecting P and the origin, as indicated in Figure 6.4.1
for the case where the direction of the force at every point is toward the origin. Gravitational forces

are central forces; for example, as mentioned in Section 4.3, if we assume that Earth is a perfect sphere

with constant mass density then Newton’s law of gravitation asserts that the force exerted on an object

by Earth’s gravitational field is proportional to the mass of the object and inversely proportional to the

square of its distance from the center of Earth, which we take to be the origin.

If the initial position and velocity vectors of an object moving under a central force are parallel, then
the subsequent motion is along the line from the origin to the initial position. Here we’ll assume that the

initial position and velocity vectors are not parallel; in this case the subsequent motion is in the plane

determined by them. For convenience we take this to be the xy-plane. We’ll consider the problem of

determining the curve traversed by the object. We call this curve the orbit.

We can represent a central force in terms of polar coordinates

x D r cos �; y D r sin �

as
F.r; �/ D f .r/.cos � i C sin � j/:
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 x

 y

Figure 6.4.1

We assume that f is continuous for all r > 0. The magnitude of F at .x; y/ D .r cos �; r sin �/ is jf .r/j,
so it depends only on the distance r from the point to the origin the direction of F is from the point to the

origin if f .r/ < 0, or from the origin to the point if f .r/ > 0. We’ll show that the orbit of an object with

mass m moving under this force is given by

r.�/ D 1

u.�/
;

where u is solution of the differential equation

d 2u

d�2
C u D � 1

mh2u2
f .1=u/; (6.4.1)

and h is a constant defined below.

Newton’s second law of motion (F D ma) says that the polar coordinates r D r.t/ and � D �.t/ of

the particle satisfy the vector differential equation

m.r cos � i C r sin � j/00 D f .r/.cos � i C sin � j/: (6.4.2)

To deal with this equation we introduce the unit vectors

e1 D cos � i C sin � j and e2 D � sin � i C cos � j:

Note that e1 points in the direction of increasing r and e2 points in the direction of increasing � (Fig-

ure 6.4.2); moreover,
de1

d�
D e2;

de2

d�
D �e1; (6.4.3)
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Figure 6.4.2

and

e1 � e2 D cos �.� sin �/C sin � cos � D 0;

so e1 and e2 are perpendicular. Recalling that the single prime .0/ stands for differentiation with respect

to t , we see from (6.4.3) and the chain rule that

e0
1 D � 0e2 and e0

2 D �� 0e1: (6.4.4)

Now we can write (6.4.2) as

m.re1/
00 D f .r/e1: (6.4.5)

But
.re1/

0 D r 0e1 C re0
1 D r 0e1 C r� 0e2

(from (6.4.4)), and

.re1/
00 D .r 0e1 C r� 0e2/

0

D r 00e1 C r 0e0
1 C .r� 00 C r 0� 0/e2 C r� 0e0

2

D r 00e1 C r 0� 0e2 C .r� 00 C r 0� 0/e2 � r.� 0/2e1 (from (6.4.4))

D
�

r 00 � r.� 0/2
�

e1 C .r� 00 C 2r 0� 0/e2:

Substituting this into (6.4.5) yields

m
�

r 00 � r.� 0/2
�

e1 Cm.r� 00 C 2r 0� 0/e2 D f .r/e1:

By equating the coefficients of e1 and e2 on the two sides of this equation we see that

m
�

r 00 � r.� 0/2
�

D f .r/ (6.4.6)
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and

r� 00 C 2r 0� 0 D 0:

Multiplying the last equation by r yields

r2� 00 C 2rr 0� 0 D .r2� 0/0 D 0;

so

r2� 0 D h; (6.4.7)

where h is a constant that we can write in terms of the initial conditions as

h D r2.0/� 0.0/:

Since the initial position and velocity vectors are

r.0/e1.0/ and r 0.0/e1.0/C r.0/� 0.0/e2.0/;

our assumption that these two vectors are not parallel implies that � 0.0/ ¤ 0, so h ¤ 0.

Now let u D 1=r . Then u2 D � 0=h (from (6.4.7)) and

r 0 D � u
0

u2
D �h

�

u0

� 0

�

;

which implies that

r 0 D �hdu
d�
; (6.4.8)

since
u0

� 0 D du

dt

�

d�

dt
D du

d�
:

Differentiating (6.4.8) with respect to t yields

r 00 D �h d
dt

�

du

d�

�

D �hd
2u

d�2
� 0;

which implies that

r 00 D �h2u2 d
2u

d�2
since � 0 D hu2:

Substituting from these equalities into (6.4.6) and recalling that r D 1=u yields

�m
�

h2u2 d
2u

d�2
C 1

u
h2u4

�

D f .1=u/;

and dividing through by �mh2u2 yields (6.4.1).

Eqn. (6.4.7) has the following geometrical interpretation, which is known as Kepler’s Second Law.

Theorem 6.4.1 The position vector of an object moving under a central force sweeps out equal areas in

equal times; more precisely; if �.t1/ � �.t2/ then the .signed/ area of the sector

f.x; y/ D .r cos �; r sin �/ W 0 � r � r.�/; �.t1/ � �.t2/g

(Figure 6.4.3) is given by

A D h.t2 � t1/
2

;

where h D r2� 0; which we have shown to be constant.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Kepler.html
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Figure 6.4.3

Proof Recall from calculus that the area of the shaded sector in Figure 6.4.3 is

A D 1

2

Z �.t2/

�.t1/

r2.�/ d�;

where r D r.�/ is the polar representation of the orbit. Making the change of variable � D �.t/ yields

A D 1

2

Z t2

t1

r2.�.t//� 0.t/ dt: (6.4.9)

But (6.4.7) and (6.4.9) imply that

A D 1

2

Z t2

t1

h dt D h.t2 � t1/

2
;

which completes the proof.

Motion Under an Inverse Square Law Force

In the special case where f .r/ D �mk=r2 D �mku2, so F can be interpreted as a gravitational force,

(6.4.1) becomes
d 2u

d�2
C u D k

h2
: (6.4.10)

The general solution of the complementary equation

d 2u

d�2
C u D 0
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can be written in amplitude–phase form as

u D A cos.� � �/;

where A � 0 and � is a phase angle. Since up D k=h2 is a particular solution of (6.4.10), the general

solution of (6.4.10) is

u D A cos.� � �/C k

h2
I

hence, the orbit is given by

r D
�

A cos.� � �/C k

h2

��1

;

which we rewrite as

r D �

1C e cos.� � �/ ; (6.4.11)

where

� D h2

k
and e D A�:

A curve satisfying (6.4.11) is a conic section with a focus at the origin (Exercise 1). The nonnegative

constant e is the eccentricity of the orbit, which is an ellipse if e < 1 ellipse (a circle if e D 0), a parabola

if e D 1, or a hyperbola if e > 1.

 A

 P

 x

 y

Figure 6.4.4

If the orbit is an ellipse, then the minimum and maximum values of r are

rmin D �

1C e
(the perihelion distance, attained when � D �)

rmax D �

1 � e
(the aphelion distance, attained when � D � C � ):

Figure 6.4.4 shows a typical elliptic orbit. The point P on the orbit where r D rmin is the perigee and the

point A where r D rmax is the apogee.
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For example, Earth’s orbit around the Sun is approximately an ellipse with e � :017, rmin � 91 � 106

miles, and rmax � 95 � 106 miles. Halley’s comet has a very elongated approximately elliptical orbit

around the sun, with e � :967, rmin � 55 � 106 miles, and rmax � 33 � 108 miles. Some comets (the

nonrecurring type) have parabolic or hyperbolic orbits.

6.4 Exercises

1. Find the equation of the curve

r D �

1C e cos.� � �/ .A/

in terms of .X; Y / D .r cos.� � �/; r sin.� � �//, which are rectangular coordinates with respect

to the axes shown in Figure 6.4.5. Use your results to verify that (A) is the equation of an ellipse

if 0 < e < 1, a parabola if e D 1, or a hyperbola if e > 1. If e < 1, leave your answer in the form

.X �X0/
2

a2
C .Y � Y0/

2

b2
D 1;

and show that the area of the ellipse is

A D ��2

.1 � e2/3=2
:

Then use Theorem 6.4.1 to show that the time required for the object to traverse the entire orbit is

T D 2��2

h.1 � e2/3=2
:

(This is Kepler’s third law; T is called the period of the orbit.)

 x

 y

 X Y

 φ

Figure 6.4.5

http://www-history.mcs.st-and.ac.uk/Mathematicians/Kepler.html
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2. Suppose an object with mass m moves in the xy-plane under the central force

F.r; �/ D �mk
r2
.cos � i C sin � j/;

where k is a positive constant. As we shown, the orbit of the object is given by

r D �

1C e cos.� � �/ :

Determine �, e, and � in terms of the initial conditions

r.0/ D r0; r 0.0/ D r 0
0; and �.0/ D �0; � 0.0/ D � 0

0:

Assume that the initial position and velocity vectors are not collinear.

3. Suppose we wish to put a satellite with mass m into an elliptical orbit around Earth. Assume that
the only force acting on the object is Earth’s gravity, given by

F.r; �/ D �mg
�

R2

r2

�

.cos � i C sin � j/;

where R is Earth’s radius, g is the acceleration due to gravity at Earth’s surface, and r and � are
polar coordinates in the plane of the orbit, with the origin at Earth’s center.

(a) Find the eccentricity required to make the aphelion and perihelion distances equal to R
1

and R
2, respectively, where 1 < 
1 < 
2.

(b) Find the initial conditions

r.0/ D r0; r 0.0/ D r 0
0; and �.0/ D �0; � 0.0/ D � 0

0

required to make the initial point the perigee, and the motion along the orbit in the direction

of increasing � . HINT: Use the results of Exercise 2.

4. An object with mass m moves in a spiral orbit r D c�2 under a central force

F.r; �/ D f .r/.cos � i C sin � j/:

Find f .

5. An object with mass m moves in the orbit r D r0e

� under a central force

F.r; �/ D f .r/.cos � i C sin � j/:

Find f .

6. Suppose an object with mass m moves under the central force

F.r; �/ D �mk
r3
.cos � i C sin � j/;

with

r.0/ D r0; r 0.0/ D r 0
0; and �.0/ D �0; � 0.0/ D � 0

0;

where h D r2
0�

0
0 ¤ 0.

(a) Set up a second order initial value problem for u D 1=r as a function of � .

(b) Determine r D r.�/ if (i) h2 < k; (ii) h2 D k; (iii) h2 > k.





CHAPTER 7

Series Solutions of Linear Second
Equations

IN THIS CHAPTER we study a class of second order differential equations that occur in many applica-

tions, but can’t be solved in closed form in terms of elementary functions. Here are some examples:

(1) Bessel’s equation

x2y00 C xy0 C .x2 � �2/y D 0;

which occurs in problems displaying cylindrical symmetry, such as diffraction of light through a circular

aperture, propagation of electromagnetic radiation through a coaxial cable, and vibrations of a circular

drum head.

(2) Airy’s equation,
y00 � xy D 0;

which occurs in astronomy and quantum physics.

(3) Legendre’s equation

.1 � x2/y00 � 2xy0 C ˛.˛ C 1/y D 0;

which occurs in problems displaying spherical symmetry, particularly in electromagnetism.

These equations and others considered in this chapter can be written in the form

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0; (A)

where P0, P1, and P2 are polynomials with no common factor. For most equations that occur in appli-

cations, these polynomials are of degree two or less. We’ll impose this restriction, although the methods
that we’ll develop can be extended to the case where the coefficient functions are polynomials of arbitrary

degree, or even power series that converge in some circle around the origin in the complex plane.

Since (A) does not in general have closed form solutions, we seek series representations for solutions.

We’ll see that if P0.0/ ¤ 0 then solutions of (A) can be written as power series

y D
1
X

nD0

anx
n

that converge in an open interval centered at x D 0.

305
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SECTION 7.1 reviews the properties of power series.

SECTIONS 7.2 AND 7.3 are devoted to finding power series solutionsof (A) in the case whereP0.0/ ¤ 0.

The situation is more complicated if P0.0/ D 0; however, if P1 and P2 satisfy assumptions that apply to

most equations of interest, then we’re able to use a modified series method to obtain solutions of (A).

SECTION 7.4 introduces the appropriate assumptions on P1 and P2 in the case where P0.0/ D 0, and
deals with Euler’s equation

ax2y00 C bxy0 C cy D 0;

where a, b, and c are constants. This is the simplest equation that satisfies these assumptions.

SECTIONS 7.5 –7.7 deal with three distinct cases satisfying the assumptions introduced in Section 7.4.
In all three cases, (A) has at least one solution of the form

y1 D xr

1
X

nD0

anx
n;

where r need not be an integer. The problem is that there are three possibilities – each requiring a

different approach – for the form of a second solution y2 such that fy1; y2g is a fundamental pair of

solutions of (A).
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7.1 REVIEW OF POWER SERIES

Many applications give rise to differential equations with solutions that can’t be expressed in terms of
elementary functions such as polynomials, rational functions, exponential and logarithmic functions, and

trigonometric functions. The solutions of some of the most important of these equations can be expressed

in terms of power series. We’ll study such equations in this chapter. In this section we review relevant

properties of power series. We’ll omit proofs, which can be found in any standard calculus text.

Definition 7.1.1 An infinite series of the form

1
X

nD0

an.x � x0/
n; (7.1.1)

where x0 and a0, a1; . . . , an; . . . are constants; is called a power series in x � x0: We say that the power
series (7.1.1) converges for a given x if the limit

lim
N!1

N
X

nD0

an.x � x0/
n

existsI otherwise, we say that the power series diverges for the given x:

A power series in x � x0 must converge if x D x0, since the positive powers of x � x0 are all zero

in this case. This may be the only value of x for which the power series converges. However, the next
theorem shows that if the power series converges for some x ¤ x0 then the set of all values of x for

which it converges forms an interval.

Theorem 7.1.2 For any power series
1
X

nD0

an.x � x0/
n;

exactly one of the these statements is trueW
(i) The power series converges only for x D x0:

(ii) The power series converges for all values of x:

(iii) There’s a positive number R such that the power series converges if jx � x0j < R and diverges if

jx � x0j > R:

In case (iii) we say thatR is the radius of convergence of the power series. For convenience, we include
the other two cases in this definition by definingR D 0 in case (i) and R D 1 in case (ii). We define the

open interval of convergence of
P1

nD0 an.x � x0/
n to be

.x0 �R; x0 CR/ if 0 < R < 1; or .�1;1/ if R D 1:

If R is finite, no general statement can be made concerning convergence at the endpoints x D x0 ˙R of

the open interval of convergence; the series may converge at one or both points, or diverge at both.

Recall from calculus that a series of constants
P1

nD0 ˛n is said to converge absolutely if the series of

absolute values
P1

nD0 j˛nj converges. It can be shown that a power series
P1

nD0 an.x � x0/
n with a

positive radius of convergence R converges absolutely in its open interval of convergence; that is, the
series

1
X

nD0

janjjx � x0jn
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of absolute values converges if jx � x0j < R. However, if R < 1, the series may fail to converge

absolutely at an endpoint x0 ˙R, even if it converges there.

The next theorem provides a useful method for determining the radius of convergence of a power

series. It’s derived in calculus by applying the ratio test to the corresponding series of absolute values.

For related theorems see Exercises 2 and 4.

Theorem 7.1.3 Suppose there’s an integer N such that an ¤ 0 if n � N and

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

D L;

where 0 � L � 1: Then the radius of convergence of
P1

nD0 an.x � x0/
n is R D 1=L; which should be

interpreted to mean that R D 0 if L D 1; or R D 1 if L D 0:

Example 7.1.1 Find the radius of convergence of the series:

(a)

1
X

nD0

nŠxn (b)

1
X

nD10

.�1/n x
n

nŠ
(c)

1
X

nD0

2nn2.x � 1/n:

SOLUTION(a) Here an D nŠ, so

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

D lim
n!1

.nC 1/Š

nŠ
D lim

n!1
.nC 1/ D 1:

Hence, R D 0.

SOLUTION(b) Here an D .1/n=nŠ for n � N D 10, so

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

D lim
n!1

nŠ

.nC 1/Š
D lim

n!1

1

nC 1
D 0:

Hence, R D 1.

SOLUTION(c) Here an D 2nn2, so

lim
n!1

ˇ

ˇ

ˇ

ˇ

anC1

an

ˇ

ˇ

ˇ

ˇ

D lim
n!1

2nC1.nC 1/2

2nn2
D 2 lim

n!1

�

1C 1

n

�2

D 2:

Hence, R D 1=2.

Taylor Series

If a function f has derivatives of all orders at a point x D x0, then the Taylor series of f about x0 is

defined by
1
X

nD0

f .n/.x0/

nŠ
.x � x0/

n:

In the special case where x0 D 0, this series is also called the Maclaurin series of f .

http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Maclaurin.html
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Taylor series for most of the common elementary functions converge to the functions on their open

intervals of convergence. For example, you are probably familiar with the following Maclaurin series:

ex D
1
X

nD0

xn

nŠ
; �1 < x < 1; (7.1.2)

sin x D
1
X

nD0

.�1/n x2nC1

.2nC 1/Š
; �1 < x < 1; (7.1.3)

cos x D
1
X

nD0

.�1/n x2n

.2n/Š
; �1 < x < 1; (7.1.4)

1

1 � x D
1
X

nD0

xn; �1 < x < 1: (7.1.5)

Differentiation of Power Series

A power series with a positive radius of convergence defines a function

f .x/ D
1
X

nD0

an.x � x0/
n

on its open interval of convergence. We say that the series represents f on the open interval of con-

vergence. A function f represented by a power series may be a familiar elementary function as in

(7.1.2)–(7.1.5); however, it often happens that f isn’t a familiar function, so the series actually defines f .

The next theorem shows that a function represented by a power series has derivatives of all orders on
the open interval of convergence of the power series, and provides power series representations of the

derivatives.

Theorem 7.1.4 A power series

f .x/ D
1
X

nD0

an.x � x0/
n

with positive radius of convergence R has derivatives of all orders in its open interval of convergence;

and successive derivatives can be obtained by repeatedly differentiating term by termI that is,

f 0.x/ D
1
X

nD1

nan.x � x0/
n�1; (7.1.6)

f 00.x/ D
1
X

nD2

n.n � 1/an.x � x0/
n�2; (7.1.7)

:::

f .k/.x/ D
1
X

nDk

n.n � 1/ � � � .n � k C 1/an.x � x0/
n�k : (7.1.8)

Moreover; all of these series have the same radius of convergence R:
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Example 7.1.2 Let f .x/ D sin x. From (7.1.3),

f .x/ D
1
X

nD0

.�1/n x2nC1

.2nC 1/Š
:

From (7.1.6),

f 0.x/ D
1
X

nD0

.�1/n d
dx

�

x2nC1

.2nC 1/Š

�

D
1
X

nD0

.�1/n x2n

.2n/Š
;

which is the series (7.1.4) for cos x.

Uniqueness of Power Series

The next theorem shows that if f is defined by a power series in x � x0 with a positive radius of conver-

gence, then the power series is the Taylor series of f about x0.

Theorem 7.1.5 If the power series

f .x/ D
1
X

nD0

an.x � x0/
n

has a positive radius of convergence, then

an D f .n/.x0/

nŠ
I (7.1.9)

that is,
P1

nD0 an.x � x0/
n is the Taylor series of f about x0.

This result can be obtained by setting x D x0 in (7.1.8), which yields

f .k/.x0/ D k.k � 1/ � � � 1 � ak D kŠak :

This implies that

ak D f .k/.x0/

kŠ
:

Except for notation, this is the same as (7.1.9).

The next theorem lists two important properties of power series that follow from Theorem 7.1.5.

Theorem 7.1.6

(a) If
1
X

nD0

an.x � x0/
n D

1
X

nD0

bn.x � x0/
n

for all x in an open interval that contains x0; then an D bn for n D 0, 1, 2, . . . .

(b) If
1
X

nD0

an.x � x0/
n D 0

for all x in an open interval that contains x0; then an D 0 for n D 0, 1, 2, . . . .
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To obtain (a) we observe that the two series represent the same function f on the open interval; hence,

Theorem 7.1.5 implies that

an D bn D f .n/.x0/

nŠ
; n D 0; 1; 2; : : : :

(b) can be obtained from (a) by taking bn D 0 for n D 0, 1, 2, . . . .

Taylor Polynomials

If f has N derivatives at a point x0, we say that

TN .x/ D
N
X

nD0

f .n/.x0/

nŠ
.x � x0/

n

is the N -th Taylor polynomial of f about x0. This definition and Theorem 7.1.5 imply that if

f .x/ D
1
X

nD0

an.x � x0/
n;

where the power series has a positive radius of convergence; then the Taylor polynomials of f about x0

are given by

TN .x/ D
N
X

nD0

an.x � x0/
n:

In numerical applications, we use the Taylor polynomials to approximate f on subintervals of the open
interval of convergence of the power series. For example, (7.1.2) implies that the Taylor polynomial TN

of f .x/ D ex is

TN .x/ D
N
X

nD0

xn

nŠ
:

The solid curve in Figure 7.1.1 is the graph of y D ex on the interval Œ0; 5�. The dotted curves in

Figure 7.1.1 are the graphs of the Taylor polynomials T1, . . . , T6 of y D ex about x0 D 0. From this

figure, we conclude that the accuracy of the approximation of y D ex by its Taylor polynomial TN

improves as N increases.

Shifting the Summation Index

In Definition 7.1.1 of a power series in x � x0, the n-th term is a constant multiple of .x � x0/
n. This

isn’t true in (7.1.6), (7.1.7), and (7.1.8), where the general terms are constant multiples of .x � x0/
n�1,

.x � x0/
n�2, and .x � x0/

n�k , respectively. However, these series can all be rewritten so that their n-th

terms are constant multiples of .x � x0/
n. For example, letting n D k C 1 in the series in (7.1.6) yields

f 0.x/ D
1
X

kD0

.k C 1/akC1.x � x0/
k ; (7.1.10)

where we start the new summation index k from zero so that the first term in (7.1.10) (obtained by setting

k D 0) is the same as the first term in (7.1.6) (obtained by setting n D 1). However, the sum of a series

is independent of the symbol used to denote the summation index, just as the value of a definite integral

is independent of the symbol used to denote the variable of integration. Therefore we can replace k by n
in (7.1.10) to obtain

f 0.x/ D
1
X

nD0

.nC 1/anC1.x � x0/
n; (7.1.11)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Taylor.html
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 x

 y

1 2 3 4 5

 N = 1

 N = 2

 N = 3

 N = 4

 N = 5

 N = 6

Figure 7.1.1 Approximation of y D ex by Taylor polynomials about x D 0

where the general term is a constant multiple of .x � x0/
n.

It isn’t really necessary to introduce the intermediate summation index k. We can obtain (7.1.11)

directly from (7.1.6) by replacing n by n C 1 in the general term of (7.1.6) and subtracting 1 from the

lower limit of (7.1.6). More generally, we use the following procedure for shifting indices.

Shifting the Summation Index in a Power Series

For any integer k, the power series
1
X

nDn0

bn.x � x0/
n�k

can be rewritten as
1
X

nDn0�k

bnCk.x � x0/
nI

that is, replacing n by n C k in the general term and subtracting k from the lower limit of summation

leaves the series unchanged.

Example 7.1.3 Rewrite the following power series from (7.1.7) and (7.1.8) so that the general term in
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each is a constant multiple of .x � x0/
n:

(a)

1
X

nD2

n.n � 1/an.x � x0/
n�2 (b)

1
X

nDk

n.n � 1/ � � � .n � k C 1/an.x � x0/
n�k :

SOLUTION(a) Replacing n by n C 2 in the general term and subtracting 2 from the lower limit of
summation yields

1
X

nD2

n.n � 1/an.x � x0/
n�2 D

1
X

nD0

.nC 2/.n C 1/anC2.x � x0/
n:

SOLUTION(b) Replacing n by n C k in the general term and subtracting k from the lower limit of
summation yields

1
X

nDk

n.n � 1/ � � � .n � k C 1/an.x � x0/
n�k D

1
X

nD0

.nC k/.nC k � 1/ � � � .nC 1/anCk .x � x0/
n:

Example 7.1.4 Given that

f .x/ D
1
X

nD0

anx
n;

write the function xf 00 as a power series in which the general term is a constant multiple of xn.

Solution From Theorem 7.1.4 with x0 D 0,

f 00.x/ D
1
X

nD2

n.n � 1/anx
n�2:

Therefore

xf 00.x/ D
1
X

nD2

n.n � 1/anx
n�1:

Replacing n by nC 1 in the general term and subtracting 1 from the lower limit of summation yields

xf 00.x/ D
1
X

nD1

.nC 1/nanC1x
n:

We can also write this as

xf 00.x/ D
1
X

nD0

.nC 1/nanC1x
n;

since the first term in this last series is zero. (We’ll see later that sometimes it’s useful to include zero

terms at the beginning of a series.)

Linear Combinations of Power Series

If a power series is multiplied by a constant, then the constant can be placed inside the summation; that

is,

c

1
X

nD0

an.x � x0/
n D

1
X

nD0

can.x � x0/
n:
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Two power series

f .x/ D
1
X

nD0

an.x � x0/
n and g.x/ D

1
X

nD0

bn.x � x0/
n

with positive radii of convergence can be added term by term at points common to their open intervals of

convergence; thus, if the first series converges for jx� x0j < R1 and the second converges for jx� x0j <
R2, then

f .x/C g.x/ D
1
X

nD0

.an C bn/.x � x0/
n

for jx � x0j < R, where R is the smaller of R1 and R2. More generally, linear combinations of power

series can be formed term by term; for example,

c1f .x/C c2f .x/ D
1
X

nD0

.c1an C c2bn/.x � x0/
n:

Example 7.1.5 Find the Maclaurin series for cosh x as a linear combination of the Maclaurin series for

ex and e�x.

Solution By definition,

cosh x D 1

2
ex C 1

2
e�x:

Since

ex D
1
X

nD0

xn

nŠ
and e�x D

1
X

nD0

.�1/n x
n

nŠ
;

it follows that

cosh x D
1
X

nD0

1

2
Œ1C .�1/n� x

n

nŠ
: (7.1.12)

Since
1

2
Œ1C .�1/n� D

�

1 if n D 2m; an even integer;

0 if n D 2mC 1; an odd integer;

we can rewrite (7.1.12) more simply as

cosh x D
1
X

mD0

x2m

.2m/Š
:

This result is valid on .�1;1/, since this is the open interval of convergence of the Maclaurin series for

ex and e�x.

Example 7.1.6 Suppose

y D
1
X

nD0

anx
n

on an open interval I that contains the origin.

(a) Express

.2 � x/y00 C 2y

as a power series in x on I .
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(b) Use the result of (a) to find necessary and sufficient conditions on the coefficients fang for y to be

a solution of the homogeneous equation

.2 � x/y00 C 2y D 0 (7.1.13)

on I .

SOLUTION(a) From (7.1.7) with x0 D 0,

y00 D
1
X

nD2

n.n � 1/anx
n�2:

Therefore

.2 � x/y00 C 2y D 2y00 � xy0 C 2y

D
1
X

nD2

2n.n � 1/anx
n�2 �

1
X

nD2

n.n � 1/anx
n�1 C

1
X

nD0

2anx
n:

(7.1.14)

To combine the three series we shift indices in the first two to make their general terms constant multiples

of xn; thus,
1
X

nD2

2n.n� 1/anx
n�2 D

1
X

nD0

2.nC 2/.nC 1/anC2x
n (7.1.15)

and
1
X

nD2

n.n � 1/anx
n�1 D

1
X

nD1

.nC 1/nanC1x
n D

1
X

nD0

.nC 1/nanC1x
n; (7.1.16)

where we added a zero term in the last series so that when we substitute from (7.1.15) and (7.1.16) into
(7.1.14) all three series will start with n D 0; thus,

.2 � x/y00 C 2y D
1
X

nD0

Œ2.nC 2/.n C 1/anC2 � .nC 1/nanC1 C 2an�x
n: (7.1.17)

SOLUTION(b) From (7.1.17) we see that y satisfies (7.1.13) on I if

2.nC 2/.n C 1/anC2 � .nC 1/nanC1 C 2an D 0; n D 0; 1; 2; : : : : (7.1.18)

Conversely, Theorem 7.1.6 (b) implies that if y D
P1

nD0 anx
n satisfies (7.1.13) on I , then (7.1.18) holds.

Example 7.1.7 Suppose

y D
1
X

nD0

an.x � 1/n

on an open interval I that contains x0 D 1. Express the function

.1 C x/y00 C 2.x � 1/2y0 C 3y (7.1.19)

as a power series in x � 1 on I .
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Solution Since we want a power series in x � 1, we rewrite the coefficient of y00 in (7.1.19) as 1C x D
2C .x � 1/, so (7.1.19) becomes

2y00 C .x � 1/y00 C 2.x � 1/2y0 C 3y:

From (7.1.6) and (7.1.7) with x0 D 1,

y0 D
1
X

nD1

nan.x � 1/n�1 and y00 D
1
X

nD2

n.n � 1/an.x � 1/n�2:

Therefore

2y00 D
1
X

nD2

2n.n� 1/an.x � 1/n�2;

.x � 1/y00 D
1
X

nD2

n.n � 1/an.x � 1/n�1;

2.x � 1/2y0 D
1
X

nD1

2nan.x � 1/nC1 ;

3y D
1
X

nD0

3an.x � 1/n:

Before adding these four series we shift indices in the first three so that their general terms become

constant multiples of .x � 1/n. This yields

2y00 D
1
X

nD0

2.nC 2/.nC 1/anC2.x � 1/n; (7.1.20)

.x � 1/y00 D
1
X

nD0

.nC 1/nanC1.x � 1/n; (7.1.21)

2.x � 1/2y0 D
1
X

nD1

2.n� 1/an�1.x � 1/n; (7.1.22)

3y D
1
X

nD0

3an.x � 1/n; (7.1.23)

where we added initial zero terms to the series in (7.1.21) and (7.1.22). Adding (7.1.20)–(7.1.23) yields

.1C x/y00 C 2.x � 1/2y0 C 3y D 2y00 C .x � 1/y00 C 2.x � 1/2y0 C 3y

D
1
X

nD0

bn.x � 1/n;

where

b0 D 4a2 C 3a0; (7.1.24)

bn D 2.nC 2/.nC 1/anC2 C .nC 1/nanC1 C 2.n� 1/an�1 C 3an; n � 1: (7.1.25)

The formula (7.1.24) for b0 can’t be obtained by setting n D 0 in (7.1.25), since the summation in (7.1.22)
begins with n D 1, while those in (7.1.20), (7.1.21), and (7.1.23) begin with n D 0.
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7.1 Exercises

1. For each power series use Theorem 7.1.3 to find the radius of convergence R. If R > 0, find the
open interval of convergence.

(a)

1
X

nD0

.�1/n
2nn

.x � 1/n (b)

1
X

nD0

2nn.x � 2/n

(c)

1
X

nD0

nŠ

9n
xn (d)

1
X

nD0

n.nC 1/

16n
.x � 2/n

(e)

1
X

nD0

.�1/n 7
n

nŠ
xn (f)

1
X

nD0

3n

4nC1.nC 1/2
.x C 7/n

2. Suppose there’s an integer M such that bm ¤ 0 for m � M , and

lim
m!1

ˇ

ˇ

ˇ

ˇ

bmC1

bm

ˇ

ˇ

ˇ

ˇ

D L;

where 0 � L � 1. Show that the radius of convergence of

1
X

mD0

bm.x � x0/
2m

is R D 1=
p
L, which is interpreted to mean that R D 0 if L D 1 or R D 1 if L D 0. HINT:

Apply Theorem 7.1.3 to the series
P1

mD0 bm´
m and then let ´ D .x � x0/

2.

3. For each power series, use the result of Exercise 2 to find the radius of convergence R. If R > 0,

find the open interval of convergence.

(a)

1
X

mD0

.�1/m.3mC 1/.x � 1/2mC1 (b)

1
X

mD0

.�1/mm.2mC 1/

2m
.x C 2/2m

(c)

1
X

mD0

mŠ

.2m/Š
.x � 1/2m (d)

1
X

mD0

.�1/mmŠ
9m
.x C 8/2m

(e)

1
X

mD0

.�1/m .2m� 1/
3m

x2mC1 (f)

1
X

mD0

.x � 1/2m

4. Suppose there’s an integer M such that bm ¤ 0 for m � M , and

lim
m!1

ˇ

ˇ

ˇ

ˇ

bmC1

bm

ˇ

ˇ

ˇ

ˇ

D L;

where 0 � L � 1. Let k be a positive integer. Show that the radius of convergence of

1
X

mD0

bm.x � x0/
km

is R D 1=
k
p
L, which is interpreted to mean that R D 0 if L D 1 or R D 1 if L D 0. HINT:

Apply Theorem 7.1.3 to the series
P1

mD0 bm´
m and then let ´ D .x � x0/

k .



318 Chapter 7 Series Solutions of Linear Second Equations

5. For each power series use the result of Exercise 4 to find the radius of convergence R. If R > 0,

find the open interval of convergence.

(a)

1
X

mD0

.�1/m
.27/m

.x � 3/3mC2 (b)

1
X

mD0

x7mC6

m

(c)

1
X

mD0

9m.mC 1/

.mC 2/
.x � 3/4mC2 (d)

1
X

mD0

.�1/m 2
m

mŠ
x4mC3

(e)

1
X

mD0

mŠ

.26/m
.x C 1/4mC3 (f)

1
X

mD0

.�1/m
8mm.mC 1/

.x � 1/3mC1

6. L Graph y D sinx and the Taylor polynomial

T2MC1.x/ D
M
X

nD0

.�1/nx2nC1

.2nC 1/Š

on the interval .�2�; 2�/ for M D 1, 2, 3, . . . , until you find a value of M for which there’s no

perceptible difference between the two graphs.

7. L Graph y D cos x and the Taylor polynomial

T2M .x/ D
M
X

nD0

.�1/nx2n

.2n/Š

on the interval .�2�; 2�/ for M D 1, 2, 3, . . . , until you find a value of M for which there’s no

perceptible difference between the two graphs.

8. L Graph y D 1=.1 � x/ and the Taylor polynomial

TN .x/ D
N
X

nD0

xn

on the interval Œ0; :95� for N D 1, 2, 3, . . . , until you find a value of N for which there’s no
perceptible difference between the two graphs. Choose the scale on the y-axis so that 0 � y � 20.

9. L Graph y D cosh x and the Taylor polynomial

T2M .x/ D
M
X

nD0

x2n

.2n/Š

on the interval .�5; 5/ for M D 1, 2, 3, . . . , until you find a value of M for which there’s no

perceptible difference between the two graphs. Choose the scale on the y-axis so that 0 � y � 75.

10. L Graph y D sinhx and the Taylor polynomial

T2MC1.x/ D
M
X

nD0

x2nC1

.2nC 1/Š

on the interval .�5; 5/ for M D 0, 1, 2, . . . , until you find a value of M for which there’s no per-

ceptible difference between the two graphs. Choose the scale on the y-axis so that �75 � y � 75.
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In Exercises 11–15 find a power series solution y.x/ D
P1

nD0 anx
n.

11. .2C x/y00 C xy0 C 3y 12. .1C 3x2/y00 C 3x2y0 � 2y

13. .1C 2x2/y00 C .2 � 3x/y0 C 4y 14. .1C x2/y00 C .2 � x/y0 C 3y

15. .1C 3x2/y00 � 2xy0 C 4y

16. Suppose y.x/ D
P1

nD0 an.x C 1/n on an open interval that contains x0 D � 1. Find a power

series in x C 1 for

xy00 C .4 C 2x/y0 C .2 C x/y:

17. Suppose y.x/ D
P1

nD0 an.x�2/n on an open interval that contains x0 D 2. Find a power series
in x � 2 for

x2y00 C 2xy0 � 3xy:

18. L Do the following experiment for various choices of real numbers a0 and a1.

(a) Use differential equations software to solve the initial value problem

.2 � x/y00 C 2y D 0; y.0/ D a0; y0.0/ D a1;

numerically on .�1:95; 1:95/. Choose the most accurate method your software package

provides. (See Section 10.1 for a brief discussion of one such method.)

(b) For N D 2, 3, 4, . . . , compute a2, . . . , aN from Eqn.(7.1.18) and graph

TN .x/ D
N
X

nD0

anx
n

and the solution obtained in (a) on the same axes. Continue increasing N until it’s obvious

that there’s no point in continuing. (This sounds vague, but you’ll know when to stop.)

19. L Follow the directions of Exercise 18 for the initial value problem

.1 C x/y00 C 2.x � 1/2y0 C 3y D 0; y.1/ D a0; y0.1/ D a1;

on the interval .0; 2/. Use Eqns. (7.1.24) and (7.1.25) to compute fang.

20. Suppose the series
P1

nD0 anx
n converges on an open interval .�R;R/, let r be an arbitrary real

number, and define

y.x/ D xr

1
X

nD0

anx
n D

1
X

nD0

anx
nCr

on .0; R/. Use Theorem 7.1.4 and the rule for differentiating the product of two functions to show

that

y0.x/ D
1
X

nD0

.nC r/anx
nCr�1;

y00.x/ D
1
X

nD0

.nC r/.nC r � 1/anx
nCr�2;

:::

y.k/.x/ D
1
X

nD0

.nC r/.nC r � 1/ � � � .nC r � k/anx
nCr�k

on .0; R/
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In Exercises 21–26 let y be as defined in Exercise 20, and write the given expression in the form

xr
P1

nD0 bnx
n.

21. x2.1 � x/y00 C x.4C x/y0 C .2 � x/y
22. x2.1 C x/y00 C x.1C 2x/y0 � .4 C 6x/y

23. x2.1 C x/y00 � x.1 � 6x � x2/y0 C .1C 6x C x2/y

24. x2.1 C 3x/y00 C x.2C 12x C x2/y0 C 2x.3C x/y

25. x2.1 C 2x2/y00 C x.4C 2x2/y0 C 2.1 � x2/y

26. x2.2 C x2/y00 C 2x.5C x2/y0 C 2.3 � x2/y

7.2 SERIES SOLUTIONS NEAR AN ORDINARY POINT I

Many physical applications give rise to second order homogeneous linear differential equations of the

form

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0; (7.2.1)

where P0, P1, and P2 are polynomials. Usually the solutions of these equations can’t be expressed in

terms of familiar elementary functions. Therefore we’ll consider the problem of representing solutions of

(7.2.1) with series.

We assume throughout that P0, P1 and P2 have no common factors. Then we say that x0 is an ordinary

point of (7.2.1) if P0.x0/ ¤ 0, or a singular point if P0.x0/ D 0. For Legendre’s equation,

.1 � x2/y00 � 2xy0 C ˛.˛ C 1/y D 0; (7.2.2)

x0 D 1 and x0 D �1 are singular points and all other points are ordinary points. For Bessel’s equation,

x2y00 C xy0 C .x2 � �2/y D 0;

x0 D 0 is a singular point and all other points are ordinary points. If P0 is a nonzero constant as in Airy’s

equation,

y00 � xy D 0; (7.2.3)

then every point is an ordinary point.

Since polynomials are continuous everywhere, P1=P0 and P2=P0 are continuous at any point x0 that

isn’t a zero ofP0. Therefore, if x0 is an ordinary point of (7.2.1) and a0 and a1 are arbitrary real numbers,

then the initial value problem

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0; y.x0/ D a0; y0.x0/ D a1 (7.2.4)

has a unique solution on the largest open interval that contains x0 and does not contain any zeros of P0.

To see this, we rewrite the differential equation in (7.2.4) as

y00 C P1.x/

P0.x/
y0 C P2.x/

P0.x/
y D 0

and apply Theorem 5.1.1 with p D P1=P0 and q D P2=P0. In this section and the next we consider

the problem of representing solutions of (7.2.1) by power series that converge for values of x near an

ordinary point x0.
We state the next theorem without proof.
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Theorem 7.2.1 Suppose P0, P1, and P2 are polynomials with no common factor and P0 isn’t identically

zero: Let x0 be a point such that P0.x0/ ¤ 0; and let � be the distance from x0 to the nearest zero of P0

in the complex plane. .If P0 is constant, then � D 1./ Then every solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0 (7.2.5)

can be represented by a power series

y D
1
X

nD0

an.x � x0/
n (7.2.6)

that converges at least on the open interval .x0 ��; x0C�/. . If P0 is nonconstant; so that � is necessarily

finite; then the open interval of convergence of (7.2.6) may be larger than .x0��; x0C�/: If P0 is constant

then � D 1 and .x0 � �; x0 C �/ D .�1;1/./

We call (7.2.6) a power series solution in x � x0 of (7.2.5). We’ll now develop a method for finding
power series solutions of (7.2.5). For this purpose we write (7.2.5) as Ly D 0, where

Ly D P0y
00 C P1y

0 C P2y: (7.2.7)

Theorem 7.2.1 implies that every solution of Ly D 0 on .x0 � �; x0 C �/ can be written as

y D
1
X

nD0

an.x � x0/
n:

Setting x D x0 in this series and in the series

y0 D
1
X

nD1

nan.x � x0/
n�1

shows that y.x0/ D a0 and y0.x0/ D a1. Since every initial value problem (7.2.4) has a unique solution,

this means that a0 and a1 can be chosen arbitrarily, and a2, a3, . . . are uniquely determined by them.

To find a2, a3, . . . , we write P0, P1, and P2 in powers of x � x0, substitute

y D
1
X

nD0

an.x � x0/
n;

y0 D
1
X

nD1

nan.x � x0/
n�1;

y00 D
1
X

nD2

n.n � 1/an.x � x0/
n�2

into (7.2.7), and collect the coefficients of like powers of x � x0. This yields

Ly D
1
X

nD0

bn.x � x0/
n; (7.2.8)

where fb0; b1; : : : ; bn; : : : g are expressed in terms of fa0; a1; : : : ; an; : : : g and the coefficients of P0, P1,

and P2, written in powers of x � x0. Since (7.2.8) and (a) of Theorem 7.1.6 imply that Ly D 0 if and

only if bn D 0 for n � 0, all power series solutions in x � x0 of Ly D 0 can be obtained by choosing

a0 and a1 arbitrarily and computing a2, a3, . . . , successively so that bn D 0 for n � 0. For simplicity,

we call the power series obtained this way the power series in x � x0 for the general solution of Ly D 0,
without explicitly identifying the open interval of convergence of the series.
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Example 7.2.1 Let x0 be an arbitrary real number. Find the power series in x�x0 for the general solution

of

y00 C y D 0: (7.2.9)

Solution Here
Ly D y00 C y:

If

y D
1
X

nD0

an.x � x0/
n;

then

y00 D
1
X

nD2

n.n � 1/an.x � x0/
n�2;

so

Ly D
1
X

nD2

n.n � 1/an.x � x0/
n�2 C

1
X

nD0

an.x � x0/
n:

To collect coefficients of like powers of x�x0, we shift the summation index in the first sum. This yields

Ly D
1
X

nD0

.nC 2/.nC 1/anC2.x � x0/
n C

1
X

nD0

an.x � x0/
n D

1
X

nD0

bn.x � x0/
n;

with

bn D .nC 2/.nC 1/anC2 C an:

Therefore Ly D 0 if and only if

anC2 D �an

.nC 2/.nC 1/
; n � 0; (7.2.10)

where a0 and a1 are arbitrary. Since the indices on the left and right sides of (7.2.10) differ by two, we
write (7.2.10) separately for n even .n D 2m/ and n odd .n D 2mC 1/. This yields

a2mC2 D �a2m

.2mC 2/.2mC 1/
; m � 0; (7.2.11)

and

a2mC3 D �a2mC1

.2mC 3/.2mC 2/
; m � 0: (7.2.12)

Computing the coefficients of the even powers of x � x0 from (7.2.11) yields

a2 D � a0

2 � 1

a4 D � a2

4 � 3 D � 1

4 � 3
�

� a0

2 � 1
�

D a0

4 � 3 � 2 � 1;

a6 D � a4

6 � 5 D � 1

6 � 5
� a0

4 � 3 � 2 � 1
�

D � a0

6 � 5 � 4 � 3 � 2 � 1;

and, in general,

a2m D .�1/m a0

.2m/Š
; m � 0: (7.2.13)
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Computing the coefficients of the odd powers of x � x0 from (7.2.12) yields

a3 D � a1

3 � 2

a5 D � a3

5 � 4 D � 1

5 � 4
�

� a1

3 � 2
�

D a1

5 � 4 � 3 � 2;

a7 D � a5

7 � 6 D � 1

7 � 6
� a1

5 � 4 � 3 � 2
�

D � a1

7 � 6 � 5 � 4 � 3 � 2;

and, in general,

a2mC1 D .�1/ma1

.2mC 1/Š
m � 0: (7.2.14)

Thus, the general solution of (7.2.9) can be written as

y D
1
X

mD0

a2m.x � x0/
2m C

1
X

mD0

a2mC1.x � x0/
2mC1;

or, from (7.2.13) and (7.2.14), as

y D a0

1
X

mD0

.�1/m .x � x0/
2m

.2m/Š
C a1

1
X

mD0

.�1/m .x � x0/
2mC1

.2mC 1/Š
: (7.2.15)

If we recall from calculus that

1
X

mD0

.�1/m .x � x0/
2m

.2m/Š
D cos.x � x0/ and

1
X

mD0

.�1/m .x � x0/
2mC1

.2mC 1/Š
D sin.x � x0/;

then (7.2.15) becomes

y D a0 cos.x � x0/C a1 sin.x � x0/;

which should look familiar.
Equations like (7.2.10), (7.2.11), and (7.2.12), which define a given coefficient in the sequence fang

in terms of one or more coefficients with lesser indices are called recurrence relations. When we use a

recurrence relation to compute terms of a sequence we’re computing recursively.

In the remainder of this section we consider the problem of finding power series solutions in x�x0 for

equations of the form
�

1C ˛.x � x0/
2
�

y00 C ˇ.x � x0/y
0 C 
y D 0: (7.2.16)

Many important equations that arise in applications are of this form with x0 D 0, including Legendre’s

equation (7.2.2), Airy’s equation (7.2.3), Chebyshev’s equation,

.1 � x2/y00 � xy0 C ˛2y D 0;

and Hermite’s equation,
y00 � 2xy0 C 2˛y D 0:

Since

P0.x/ D 1C ˛.x � x0/
2

in (7.2.16), the point x0 is an ordinary point of (7.2.16), and Theorem 7.2.1 implies that the solutions of

(7.2.16) can be written as power series in x�x0 that converge on the interval .x0 �1=
p

j˛j; x0C1=
p

j˛j/

http://www-history.mcs.st-and.ac.uk/Mathematicians/Chebyshev.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Hermite.html
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if ˛ ¤ 0, or on .�1;1/ if ˛ D 0. We’ll see that the coefficients in these power series can be obtained

by methods similar to the one used in Example 7.2.1.

To simplify finding the coefficients, we introduce some notation for products:

s
Y

j Dr

bj D brbrC1 � � �bs if s � r:

Thus,
7
Y

j D2

bj D b2b3b4b5b6b7;

4
Y

j D0

.2j C 1/ D .1/.3/.5/.7/.9/ D 945;

and
2
Y

j D2

j 2 D 22 D 4:

We define
s
Y

j Dr

bj D 1 if s < r;

no matter what the form of bj .

Example 7.2.2 Find the power series in x for the general solution of

.1C 2x2/y00 C 6xy0 C 2y D 0: (7.2.17)

Solution Here

Ly D .1 C 2x2/y00 C 6xy0 C 2y:

If

y D
1
X

nD0

anx
n

then

y0 D
1
X

nD1

nanx
n�1 and y00 D

1
X

nD2

n.n � 1/anx
n�2;

so

Ly D .1 C 2x2/

1
X

nD2

n.n � 1/anx
n�2 C 6x

1
X

nD1

nanx
n�1 C 2

1
X

nD0

anx
n

D
1
X

nD2

n.n � 1/anx
n�2 C

1
X

nD0

Œ2n.n� 1/C 6nC 2� anx
n

D
1
X

nD2

n.n � 1/anx
n�2 C 2

1
X

nD0

.nC 1/2anx
n:
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To collect coefficients of xn, we shift the summation index in the first sum. This yields

Ly D
1
X

nD0

.nC 2/.nC 1/anC2x
n C 2

1
X

nD0

.nC 1/2anx
n D

1
X

nD0

bnx
n;

with

bn D .nC 2/.nC 1/anC2 C 2.nC 1/2an; n � 0:

To obtain solutions of (7.2.17), we set bn D 0 for n � 0. This is equivalent to the recurrence relation

anC2 D �2nC 1

nC 2
an; n � 0: (7.2.18)

Since the indices on the left and right differ by two, we write (7.2.18) separately for n D 2m and

n D 2mC 1, as in Example 7.2.1. This yields

a2mC2 D �22mC 1

2mC 2
a2m D �2mC 1

mC 1
a2m; m � 0; (7.2.19)

and

a2mC3 D �22mC 2

2mC 3
a2mC1 D �4 mC 1

2mC 3
a2mC1; m � 0: (7.2.20)

Computing the coefficients of even powers of x from (7.2.19) yields

a2 D �1
1
a0;

a4 D �3
2
a2 D

�

�3
2

��

�1
1

�

a0 D 1 � 3
1 � 2a0;

a6 D �5
3
a4 D �5

3

�

1 � 3
1 � 2

�

a0 D �1 � 3 � 5
1 � 2 � 3a0;

a8 D �7
4
a6 D �7

4

�

�1 � 3 � 5
1 � 2 � 3

�

a0 D 1 � 3 � 5 � 7
1 � 2 � 3 � 4a0:

In general,

a2m D .�1/m
Qm

j D1.2j � 1/
mŠ

a0; m � 0: (7.2.21)

(Note that (7.2.21) is correct for m D 0 because we defined
Q0

j D1 bj D 1 for any bj .)
Computing the coefficients of odd powers of x from (7.2.20) yields

a3 D �4 1
3
a1;

a5 D �4 2
5
a3 D �4 2

5

�

�41
3

�

a1 D 42 1 � 2
3 � 5a1;

a7 D �4 3
7
a5 D �4 3

7

�

42 1 � 2
3 � 5

�

a1 D �43 1 � 2 � 3
3 � 5 � 7a1;

a9 D �4 4
9
a7 D �4 4

9

�

43 1 � 2 � 3
3 � 5 � 7

�

a1 D 44 1 � 2 � 3 � 4
3 � 5 � 7 � 9a1:
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In general,

a2mC1 D .�1/m4mmŠ
Qm

j D1.2j C 1/
a1; m � 0: (7.2.22)

From (7.2.21) and (7.2.22),

y D a0

1
X

mD0

.�1/m
Qm

j D1.2j � 1/

mŠ
x2m C a1

1
X

mD0

.�1/m 4mmŠ
Qm

j D1.2j C 1/
x2mC1:

is the power series in x for the general solution of (7.2.17). Since P0.x/ D 1 C 2x2 has no real ze-
ros, Theorem 5.1.1 implies that every solution of (7.2.17) is defined on .�1;1/. However, since

P0.˙i=
p
2/ D 0, Theorem 7.2.1 implies only that the power series converges in .�1=

p
2; 1=

p
2/ for

any choice of a0 and a1.

The results in Examples 7.2.1 and 7.2.2 are consequences of the following general theorem.

Theorem 7.2.2 The coefficients fang in any solution y D
P1

nD0 an.x � x0/
n of

�

1C ˛.x � x0/
2
�

y00 C ˇ.x � x0/y
0 C 
y D 0 (7.2.23)

satisfy the recurrence relation

anC2 D � p.n/

.nC 2/.nC 1/
an; n � 0; (7.2.24)

where

p.n/ D ˛n.n � 1/C ˇnC 
: (7.2.25)

Moreover; the coefficients of the even and odd powers of x � x0 can be computed separately as

a2mC2 D � p.2m/

.2mC 2/.2mC 1/
a2m; m � 0 (7.2.26)

and

a2mC3 D � p.2mC 1/

.2mC 3/.2mC 2/
a2mC1; m � 0; (7.2.27)

where a0 and a1 are arbitrary.

Proof Here

Ly D .1C ˛.x � x0/
2/y00 C ˇ.x � x0/y

0 C 
y:

If

y D
1
X

nD0

an.x � x0/
n;

then

y0 D
1
X

nD1

nan.x � x0/
n�1 and y00 D

1
X

nD2

n.n � 1/an.x � x0/
n�2:

Hence,

Ly D
1
X

nD2

n.n � 1/an.x � x0/
n�2 C

1
X

nD0

Œ˛n.n � 1/C ˇnC 
� an.x � x0/
n

D
1
X

nD2

n.n � 1/an.x � x0/
n�2 C

1
X

nD0

p.n/an.x � x0/
n;
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from (7.2.25). To collect coefficients of powers of x � x0, we shift the summation index in the first sum.

This yields

Ly D
1
X

nD0

Œ.nC 2/.nC 1/anC2 C p.n/an � .x � x0/
n:

Thus, Ly D 0 if and only if

.nC 2/.nC 1/anC2 C p.n/an D 0; n � 0;

which is equivalent to (7.2.24). Writing (7.2.24) separately for the cases where n D 2m and n D 2mC 1

yields (7.2.26) and (7.2.27).

Example 7.2.3 Find the power series in x � 1 for the general solution of

.2C 4x � 2x2/y00 � 12.x � 1/y0 � 12y D 0: (7.2.28)

Solution We must first write the coefficient P0.x/ D 2 C 4x � x2 in powers of x � 1. To do this, we
write x D .x � 1/C 1 in P0.x/ and then expand the terms, collecting powers of x � 1; thus,

2C 4x � 2x2 D 2C 4Œ.x � 1/C 1�� 2Œ.x � 1/C 1�2

D 4 � 2.x � 1/2:

Therefore we can rewrite (7.2.28) as

�

4 � 2.x � 1/2
�

y00 � 12.x � 1/y0 � 12y D 0;

or, equivalently,
�

1 � 1

2
.x � 1/2

�

y00 � 3.x � 1/y0 � 3y D 0:

This is of the form (7.2.23) with ˛ D �1=2, ˇ D �3, and 
 D �3. Therefore, from (7.2.25)

p.n/ D �n.n � 1/
2

� 3n� 3 D � .nC 2/.nC 3/

2
:

Hence, Theorem 7.2.2 implies that

a2mC2 D � p.2m/

.2mC 2/.2mC 1/
a2m

D .2mC 2/.2mC 3/

2.2mC 2/.2mC 1/
a2m D 2mC 3

2.2mC 1/
a2m; m � 0

and

a2mC3 D � p.2mC 1/

.2mC 3/.2mC 2/
a2mC1

D .2mC 3/.2mC 4/

2.2mC 3/.2mC 2/
a2mC1 D mC 2

2.mC 1/
a2mC1; m � 0:

We leave it to you to show that

a2m D 2mC 1

2m
a0 and a2mC1 D mC 1

2m
a1; m � 0;
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which implies that the power series in x � 1 for the general solution of (7.2.28) is

y D a0

1
X

mD0

2mC 1

2m
.x � 1/2m C a1

1
X

mD0

mC 1

2m
.x � 1/2mC1:

In the examples considered so far we were able to obtain closed formulas for coefficients in the power

series solutions. In some cases this is impossible, and we must settle for computing a finite number of

terms in the series. The next example illustrates this with an initial value problem.

Example 7.2.4 Compute a0, a1, . . . , a7 in the series solution y D
P1

nD0 anx
n of the initial value

problem

.1C 2x2/y00 C 10xy0 C 8y D 0; y.0/ D 2; y0.0/ D �3: (7.2.29)

Solution Since ˛ D 2, ˇ D 10, and 
 D 8 in (7.2.29),

p.n/ D 2n.n � 1/C 10nC 8 D 2.nC 2/2:

Therefore

anC2 D �2 .nC 2/2

.nC 2/.nC 1/
an D �2nC 2

nC 1
an; n � 0:

Writing this equation separately for n D 2m and n D 2mC 1 yields

a2mC2 D �2.2mC 2/

2mC 1
a2m D �4 mC 1

2mC 1
a2m; m � 0 (7.2.30)

and

a2mC3 D �22mC 3

2mC 2
a2mC1 D �2mC 3

mC 1
a2mC1; m � 0: (7.2.31)

Starting with a0 D y.0/ D 2, we compute a2; a4, and a6 from (7.2.30):

a2 D �4 1
1
2 D �8;

a4 D �4 2
3
.�8/ D 64

3
;

a6 D �4 3
5

�

64

3

�

D �256
5
:

Starting with a1 D y0.0/ D �3, we compute a3; a5 and a7 from (7.2.31):

a3 D �3
1
.�3/ D 9;

a5 D �5
2
9 D �45

2
;

a7 D �7
3

�

�45
2

�

D 105

2
:

Therefore the solution of (7.2.29) is

y D 2 � 3x � 8x2 C 9x3 C 64

3
x4 � 45

2
x5 � 256

5
x6 C 105

2
x7 C � � � :
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USING TECHNOLOGY

Computing coefficients recursively as in Example 7.2.4 is tedious. We recommend that you do this

kind of computation by writing a short program to implement the appropriate recurrence relation on a

calculator or computer. You may wish to do this in verifying examples and doing exercises (identified by

the symbol C ) in this chapter that call for numerical computation of the coefficients in series solutions.

We obtained the answers to these exercises by using software that can produce answers in the form of

rational numbers. However, it’s perfectly acceptable - and more practical - to get your answers in decimal
form. You can always check them by converting our fractions to decimals.

If you’re interested in actually using series to compute numerical approximations to solutions of a

differential equation, then whether or not there’s a simple closed form for the coefficents is essentially

irrelevant. For computational purposes it’s usually more efficient to start with the given coefficients

a0 D y.x0/ and a1 D y0.x0/, compute a2, . . . , aN recursively, and then compute approximate values of
the solution from the Taylor polynomial

TN .x/ D
N
X

nD0

an.x � x0/
n:

The trick is to decide how to choose N so the approximation y.x/ � TN .x/ is sufficiently accurate on

the subinterval of the interval of convergence that you’re interested in. In the computational exercises

in this and the next two sections, you will often be asked to obtain the solution of a given problem by
numerical integration with software of your choice (see Section 10.1 for a brief discussion of one such

method), and to compare the solution obtained in this way with the approximations obtained with TN for

various values of N . This is a typical textbook kind of exercise, designed to give you insight into how

the accuracy of the approximation y.x/ � TN .x/ behaves as a function of N and the interval that you’re

working on. In real life, you would choose one or the other of the two methods (numerical integration or
series solution). If you choose the method of series solution, then a practical procedure for determining

a suitable value of N is to continue increasing N until the maximum of jTN � TN�1j on the interval of

interest is within the margin of error that you’re willing to accept.

In doing computational problems that call for numerical solution of differential equations you should

choose the most accurate numerical integration procedure your software supports, and experiment with
the step size until you’re confident that the numerical results are sufficiently accurate for the problem at

hand.

7.2 Exercises

In Exercises 1 –8 find the power series in x for the general solution.

1. .1C x2/y00 C 6xy0 C 6y D 0 2. .1C x2/y00 C 2xy0 � 2y D 0

3. .1C x2/y00 � 8xy0 C 20y D 0 4. .1 � x2/y00 � 8xy0 � 12y D 0

5. .1C 2x2/y00 C 7xy0 C 2y D 0
6. .1C x2/y00 C 2xy0 C 1

4
y D 0

7. .1 � x2/y00 � 5xy0 � 4y D 0 8. .1C x2/y00 � 10xy0 C 28y D 0
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9. L

(a) Find the power series in x for the general solution of y00 C xy0 C 2y D 0.

(b) For several choices of a0 and a1, use differential equations software to solve the initial value

problem

y00 C xy0 C 2y D 0; y.0/ D a0; y0.0/ D a1; .A/

numerically on .�5; 5/.
(c) For fixed r in f1; 2; 3; 4; 5g graph

TN .x/ D
N
X

nD0

anx
n

and the solution obtained in (a) on .�r; r/. Continue increasingN until there’s no perceptible

difference between the two graphs.

10. L Follow the directions of Exercise 9 for the differential equation

y00 C 2xy0 C 3y D 0:

In Exercises 11 –13 find a0, . . . , aN forN at least 7 in the power series solution y D
P1

nD0 anx
n of the

initial value problem.

11. C .1C x2/y00 C xy0 C y D 0; y.0/ D 2; y0.0/ D �1

12. C .1C 2x2/y00 � 9xy0 � 6y D 0; y.0/ D 1; y0.0/ D �1

13. C .1C 8x2/y00 C 2y D 0; y.0/ D 2; y0.0/ D �1

14. L Do the next experiment for various choices of real numbers a0, a1, and r , with 0 < r < 1=
p
2.

(a) Use differential equations software to solve the initial value problem

.1 � 2x2/y00 � xy0 C 3y D 0; y.0/ D a0; y0.0/ D a1; .A/

numerically on .�r; r/.
(b) For N D 2, 3, 4, . . . , compute a2, . . . , aN in the power series solution y D

P1
nD0 anx

n of

(A), and graph

TN .x/ D
N
X

nD0

anx
n

and the solution obtained in (a) on .�r; r/. Continue increasingN until there’s no perceptible

difference between the two graphs.

15. L Do (a) and (b) for several values of r in .0; 1/:

(a) Use differential equations software to solve the initial value problem

.1C x2/y00 C 10xy0 C 14y D 0; y.0/ D 5; y0.0/ D 1; .A/

numerically on .�r; r/.
(b) For N D 2, 3, 4, . . . , compute a2, . . . , aN in the power series solution y D

P1
nD0 anx

n of

(A) , and graph

TN .x/ D
N
X

nD0

anx
n

and the solution obtained in (a) on .�r; r/. Continue increasing N until there’s no percepti-

ble difference between the two graphs. What happens to the required N as r ! 1?

(c) Try (a) and (b) with r D 1:2. Explain your results.
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In Exercises 16 –20 find the power series in x � x0 for the general solution.

16. y00 � y D 0I x0 D 3 17. y00�.x�3/y0 �y D 0I x0 D 3

18. .1 � 4x C 2x2/y00 C 10.x � 1/y0 C 6y D 0I x0 D 1

19. .11 � 8x C 2x2/y00 � 16.x � 2/y0 C 36y D 0I x0 D 2

20. .5C 6x C 3x2/y00 C 9.x C 1/y0 C 3y D 0I x0 D �1

In Exercises 21 –26 find a0, . . . , aN for N at least 7 in the power series y D
P1

nD0 an.x � x0/
n for the

solution of the initial value problem. Take x0 to be the point where the initial conditions are imposed.

21. C .x2 � 4/y00 � xy0 � 3y D 0; y.0/ D �1; y0.0/ D 2

22. C y00 C .x � 3/y0 C 3y D 0; y.3/ D �2; y0.3/ D 3

23. C .5 � 6x C 3x2/y00 C .x � 1/y0 C 12y D 0; y.1/ D �1; y0.1/ D 1

24. C .4x2 � 24x C 37/y00 C y D 0; y.3/ D 4; y0.3/ D �6

25. C .x2 � 8x C 14/y00 � 8.x � 4/y0 C 20y D 0; y.4/ D 3; y0.4/ D �4

26. C .2x2 C 4x C 5/y00 � 20.x C 1/y0 C 60y D 0; y.�1/ D 3; y0.�1/ D �3
27. (a) Find a power series in x for the general solution of

.1C x2/y00 C 4xy0 C 2y D 0: .A/

(b) Use (a) and the formula

1

1 � r
D 1C r C r2 C � � � C rn C � � � .�1 < r < 1/

for the sum of a geometric series to find a closed form expression for the general solution of

(A) on .�1; 1/.
(c) Show that the expression obtained in (b) is actually the general solution of of (A) on .�1;1/.

28. Use Theorem 7.2.2 to show that the power series in x for the general solution of

.1 C ˛x2/y00 C ˇxy0 C 
y D 0

is

y D a0

1
X

mD0

.�1/m
2

4

m�1
Y

j D0

p.2j /

3

5

x2m

.2m/Š
C a1

1
X

mD0

.�1/m
2

4

m�1
Y

j D0

p.2j C 1/

3

5

x2mC1

.2mC 1/Š
:

29. Use Exercise 28 to show that all solutions of

.1 C ˛x2/y00 C ˇxy0 C 
y D 0

are polynomials if and only if

˛n.n � 1/C ˇnC 
 D ˛.n� 2r/.n� 2s � 1/;

where r and s are nonnegative integers.
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30. (a) Use Exercise 28 to show that the power series in x for the general solution of

.1 � x2/y00 � 2bxy0 C ˛.˛ C 2b � 1/y D 0

is y D a0y1 C a1y2, where

y1 D
1
X

mD0

2

4

m�1
Y

j D0

.2j � ˛/.2j C ˛ C 2b � 1/

3

5

x2m

.2m/Š

and

y2 D
1
X

mD0

2

4

m�1
Y

j D0

.2j C 1 � ˛/.2j C ˛ C 2b/

3

5

x2mC1

.2mC 1/Š
:

(b) Suppose 2b isn’t a negative odd integer and k is a nonnegative integer. Show that y1 is a
polynomial of degree 2k such that y1.�x/ D y1.x/ if ˛ D 2k, while y2 is a polynomial of

degree 2k C 1 such that y2.�x/ D �y2.�x/ if ˛ D 2k C 1. Conclude that if n is a non-

negative integer, then there’s a polynomial Pn of degree n such that Pn.�x/ D .�1/nPn.x/

and

.1 � x2/P 00
n � 2bxP 0

n C n.nC 2b � 1/Pn D 0: .A/

(c) Show that (A) implies that

Œ.1 � x2/bP 0
n�

0 D �n.nC 2b � 1/.1 � x2/b�1Pn;

and use this to show that ifm and n are nonnegative integers, then

Œ.1 � x2/bP 0
n�

0Pm � Œ.1 � x2/bP 0
m�

0Pn D

Œm.m C 2b � 1/ � n.nC 2b � 1/� .1 � x2/b�1PmPn:
.B/

(d) Now suppose b > 0. Use (B) and integration by parts to show that if m ¤ n, then

Z 1

�1

.1 � x2/b�1Pm.x/Pn.x/ dx D 0:

(We say that Pm and Pn are orthogonal on .�1; 1/ with respect to the weighting function

.1 � x2/b�1.)

31. (a) Use Exercise 28 to show that the power series in x for the general solution of Hermite’s

equation

y00 � 2xy0 C 2˛y D 0

is y D a0y1 C a1y1, where

y1 D
1
X

mD0

2

4

m�1
Y

j D0

.2j � ˛/

3

5

2mx2m

.2m/Š

and

y2 D
1
X

mD0

2

4

m�1
Y

j D0

.2j C 1 � ˛/

3

5

2mx2mC1

.2mC 1/Š
:
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(b) Suppose k is a nonnegative integer. Show that y1 is a polynomial of degree 2k such that

y1.�x/ D y1.x/ if ˛ D 2k, while y2 is a polynomial of degree 2k C 1 such that y2.�x/ D
�y2.�x/ if ˛ D 2kC1. Conclude that if n is a nonnegative integer then there’s a polynomial

Pn of degree n such that Pn.�x/ D .�1/nPn.x/ and

P 00
n � 2xP 0

n C 2nPn D 0: .A/

(c) Show that (A) implies that

Œe�x2

P 0
n�

0 D �2ne�x2

Pn;

and use this to show that ifm and n are nonnegative integers, then

Œe�x2

P 0
n�

0Pm � Œe�x2

P 0
m�

0Pn D 2.m� n/e�x2

PmPn: .B/

(d) Use (B) and integration by parts to show that ifm ¤ n, then
Z 1

�1
e�x2

Pm.x/Pn.x/ dx D 0:

(We say that Pm and Pn are orthogonal on .�1;1/ with respect to the weighting function

e�x2

.)

32. Consider the equation
�

1C ˛x3
�

y00 C ˇx2y0 C 
xy D 0; .A/

and let p.n/ D ˛n.n � 1/C ˇnC 
 . (The special case y00 � xy D 0 of (A) is Airy’s equation.)

(a) Modify the argument used to prove Theorem 7.2.2 to show that

y D
1
X

nD0

anx
n

is a solution of (A) if and only if a2 D 0 and

anC3 D � p.n/

.nC 3/.nC 2/
an; n � 0:

(b) Show from (a) that an D 0 unless n D 3m or n D 3mC 1 for some nonnegative integer m,

and that

a3mC3 D � p.3m/

.3mC 3/.3mC 2/
a3m; m � 0;

and

a3mC4 D � p.3mC 1/

.3mC 4/.3mC 3/
a3mC1; m � 0;

where a0 and a1 may be specified arbitrarily.

(c) Conclude from (b) that the power series in x for the general solution of (A) is

y D a0

1
X

mD0

.�1/m
2

4

m�1
Y

j D0

p.3j /

3j C 2

3

5

x3m

3mmŠ

Ca1

1
X

mD0

.�1/m
2

4

m�1
Y

j D0

p.3j C 1/

3j C 4

3

5

x3mC1

3mmŠ
:
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In Exercises 33 –37 use the method of Exercise 32 to find the power series in x for the general solution.

33. y00 � xy D 0 34. .1 � 2x3/y00 � 10x2y0 � 8xy D 0

35. .1C x3/y00 C 7x2y0 C 9xy D 0 36. .1 � 2x3/y00 C 6x2y0 C 24xy D 0

37. .1 � x3/y00 C 15x2y0 � 63xy D 0

38. Consider the equation

�

1C ˛xkC2
�

y00 C ˇxkC1y0 C 
xky D 0; .A/

where k is a positive integer, and let p.n/ D ˛n.n � 1/C ˇnC 
 .

(a) Modify the argument used to prove Theorem 7.2.2 to show that

y D
1
X

nD0

anx
n

is a solution of (A) if and only if an D 0 for 2 � n � k C 1 and

anCkC2 D � p.n/

.nC k C 2/.nC k C 1/
an; n � 0:

(b) Show from (a) that an D 0 unless n D .kC 2/m or n D .kC 2/mC 1 for some nonnegative

integer m, and that

a.kC2/.mC1/ D � p ..k C 2/m/

.k C 2/.mC 1/Œ.k C 2/.mC 1/� 1�a.kC2/m; m � 0;

and

a.kC2/.mC1/C1 D � p ..k C 2/mC 1/

Œ.k C 2/.m C 1/C 1�.k C 2/.mC 1/
a.kC2/mC1; m � 0;

where a0 and a1 may be specified arbitrarily.

(c) Conclude from (b) that the power series in x for the general solution of (A) is

y D a0

1
X

mD0

.�1/m
2

4

m�1
Y

j D0

p ..k C 2/j /

.k C 2/.j C 1/ � 1

3

5

x.kC2/m

.k C 2/mmŠ

Ca1

1
X

mD0

.�1/m
2

4

m�1
Y

j D0

p ..k C 2/j C 1/

.k C 2/.j C 1/C 1

3

5

x.kC2/mC1

.k C 2/mmŠ
:

In Exercises 39 –44 use the method of Exercise 38 to find the power series in x for the general solution.

39. .1C 2x5/y00 C 14x4y0 C 10x3y D 0

40. y00 C x2y D 0 41. y00 C x6y0 C 7x5y D 0

42. .1C x8/y00 � 16x7y0 C 72x6y D 0

43. .1 � x6/y00 � 12x5y0 � 30x4y D 0

44. y00 C x5y0 C 6x4y D 0
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7.3 SERIES SOLUTIONS NEAR AN ORDINARY POINT II

In this section we continue to find series solutions

y D
1
X

nD0

an.x � x0/
n

of initial value problems

P0.x/y
00 CP1.x/y

0 C P2.x/y D 0; y.x0/ D a0; y0.x0/ D a1; (7.3.1)

where P0; P1, and P2 are polynomials and P0.x0/ ¤ 0, so x0 is an ordinary point of (7.3.1). However,

here we consider cases where the differential equation in (7.3.1) is not of the form

�

1C ˛.x � x0/
2
�

y00 C ˇ.x � x0/y
0 C 
y D 0;

so Theorem 7.2.2 does not apply, and the computation of the coefficients fang is more complicated. For

the equations considered here it’s difficult or impossible to obtain an explicit formula for an in terms of n.

Nevertheless, we can calculate as many coefficients as we wish. The next three examples illustrate this.

Example 7.3.1 Find the coefficients a0, . . . , a7 in the series solution y D
P1

nD0 anx
n of the initial value

problem

.1C x C 2x2/y00 C .1 C 7x/y0 C 2y D 0; y.0/ D �1; y0.0/ D �2: (7.3.2)

Solution Here

Ly D .1C x C 2x2/y00 C .1 C 7x/y0 C 2y:

The zeros .�1˙ i
p
7/=4 of P0.x/ D 1C x C 2x2 have absolute value 1=

p
2, so Theorem 7.2.2 implies

that the series solution converges to the solution of (7.3.2) on .�1=
p
2; 1=

p
2/. Since

y D
1
X

nD0

anx
n; y0 D

1
X

nD1

nanx
n�1 and y00 D

1
X

nD2

n.n � 1/anx
n�2;

Ly D
1
X

nD2

n.n � 1/anx
n�2 C

1
X

nD2

n.n � 1/anx
n�1 C 2

1
X

nD2

n.n � 1/anx
n

C
1
X

nD1

nanx
n�1 C 7

1
X

nD1

nanx
n C 2

1
X

nD0

anx
n:

Shifting indices so the general term in each series is a constant multiple of xn yields

Ly D
1
X

nD0

.nC 2/.nC 1/anC2x
n C

1
X

nD0

.nC 1/nanC1x
n C 2

1
X

nD0

n.n � 1/anx
n

C
1
X

nD0

.nC 1/anC1x
n C 7

1
X

nD0

nanx
n C 2

1
X

nD0

anx
n D

1
X

nD0

bnx
n;

where
bn D .nC 2/.nC 1/anC2 C .nC 1/2anC1 C .nC 2/.2nC 1/an:
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Therefore y D
P1

nD0 anx
n is a solution of Ly D 0 if and only if

anC2 D �nC 1

nC 2
anC1 � 2nC 1

nC 1
an; n � 0: (7.3.3)

From the initial conditions in (7.3.2), a0 D y.0/ D �1 and a1 D y0.0/ D �2. Setting n D 0 in (7.3.3)
yields

a2 D �1
2
a1 � a0 D �1

2
.�2/ � .�1/ D 2:

Setting n D 1 in (7.3.3) yields

a3 D �2
3
a2 � 3

2
a1 D �2

3
.2/ � 3

2
.�2/ D 5

3
:

We leave it to you to compute a4; a5; a6; a7 from (7.3.3) and show that

y D �1 � 2x C 2x2 C 5

3
x3 � 55

12
x4 C 3

4
x5 C 61

8
x6 � 443

56
x7 C � � � :

We also leave it to you (Exercise 13) to verify numerically that the Taylor polynomials TN .x/ D
PN

nD0 anx
n converge to the solution of (7.3.2) on .�1=

p
2; 1=

p
2/.

Example 7.3.2 Find the coefficients a0, . . . , a5 in the series solution

y D
1
X

nD0

an.x C 1/n

of the initial value problem

.3C x/y00 C .1 C 2x/y0 � .2 � x/y D 0; y.�1/ D 2; y0.�1/ D �3: (7.3.4)

Solution Since the desired series is in powers of x C 1 we rewrite the differential equation in (7.3.4) as

Ly D 0, with
Ly D .2C .x C 1// y00 � .1 � 2.x C 1// y0 � .3 � .x C 1// y:

Since

y D
1
X

nD0

an.x C 1/n; y0 D
1
X

nD1

nan.x C 1/n�1 and y00 D
1
X

nD2

n.n � 1/an.x C 1/n�2;

Ly D 2

1
X

nD2

n.n � 1/an.x C 1/n�2 C
1
X

nD2

n.n � 1/an.x C 1/n�1

�
1
X

nD1

nan.x C 1/n�1 C 2

1
X

nD1

nan.x C 1/n

�3
1
X

nD0

an.x C 1/n C
1
X

nD0

an.x C 1/nC1 :
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Shifting indices so that the general term in each series is a constant multiple of .x C 1/n yields

Ly D 2

1
X

nD0

.nC 2/.n C 1/anC2.x C 1/n C
1
X

nD0

.nC 1/nanC1.x C 1/n

�
1
X

nD0

.nC 1/anC1.x C 1/n C
1
X

nD0

.2n � 3/an.x C 1/n C
1
X

nD1

an�1.x C 1/n

D
1
X

nD0

bn.x C 1/n;

where
b0 D 4a2 � a1 � 3a0

and

bn D 2.nC 2/.nC 1/anC2 C .n2 � 1/anC1 C .2n � 3/an C an�1; n � 1:

Therefore y D
P1

nD0 an.x C 1/n is a solution of Ly D 0 if and only if

a2 D 1

4
.a1 C 3a0/ (7.3.5)

and

anC2 D � 1

2.nC 2/.nC 1/

�

.n2 � 1/anC1 C .2n� 3/an C an�1

�

; n � 1: (7.3.6)

From the initial conditions in (7.3.4), a0 D y.�1/ D 2 and a1 D y0.�1/ D �3. We leave it to you to

compute a2, . . . , a5 with (7.3.5) and (7.3.6) and show that the solution of (7.3.4) is

y D �2 � 3.x C 1/C 3

4
.x C 1/2 � 5

12
.x C 1/3 C 7

48
.x C 1/4 � 1

60
.x C 1/5 C � � � :

We also leave it to you (Exercise 14) to verify numerically that the Taylor polynomials TN .x/ D
PN

nD0 anx
n converge to the solution of (7.3.4) on the interval of convergence of the power series so-

lution.

Example 7.3.3 Find the coefficients a0, . . . , a5 in the series solution y D
P1

nD0 anx
n of the initial value

problem

y00 C 3xy0 C .4C 2x2/y D 0; y.0/ D 2; y0.0/ D �3: (7.3.7)

Solution Here

Ly D y00 C 3xy0 C .4C 2x2/y:

Since

y D
1
X

nD0

anx
n; y0 D

1
X

nD1

nanx
n�1; and y00 D

1
X

nD2

n.n � 1/anx
n�2;

Ly D
1
X

nD2

n.n � 1/anx
n�2 C 3

1
X

nD1

nanx
n C 4

1
X

nD0

anx
n C 2

1
X

nD0

anx
nC2:
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Shifting indices so that the general term in each series is a constant multiple of xn yields

Ly D
1
X

nD0

.nC 2/.nC 1/anC2x
n C

1
X

nD0

.3nC 4/anx
n C 2

1
X

nD2

an�2x
n D

1
X

nD0

bnx
n

where

b0 D 2a2 C 4a0; b1 D 6a3 C 7a1;

and
bn D .nC 2/.n C 1/anC2 C .3nC 4/an C 2an�2; n � 2:

Therefore y D
P1

nD0 anx
n is a solution of Ly D 0 if and only if

a2 D �2a0; a3 D �7
6
a1; (7.3.8)

and

anC2 D � 1

.nC 2/.nC 1/
Œ.3nC 4/an C 2an�2� ; n � 2: (7.3.9)

From the initial conditions in (7.3.7), a0 D y.0/ D 2 and a1 D y0.0/ D �3. We leave it to you to

compute a2, . . . , a5 with (7.3.8) and (7.3.9) and show that the solution of (7.3.7) is

y D 2 � 3x � 4x2 C 7

2
x3 C 3x4 � 79

40
x5 C � � � :

We also leave it to you (Exercise 15) to verify numerically that the Taylor polynomials TN .x/ D
PN

nD0 anx
n converge to the solution of (7.3.9) on the interval of convergence of the power series so-

lution.

7.3 Exercises

In Exercises 1–12 find the coefficients a0,. . . , aN for N at least 7 in the series solution y D
P1

nD0 anx
n

of the initial value problem.

1. C .1C 3x/y00 C xy0 C 2y D 0; y.0/ D 2; y0.0/ D �3

2. C .1C x C 2x2/y00 C .2 C 8x/y0 C 4y D 0; y.0/ D �1; y0.0/ D 2

3. C .1 � 2x2/y00 C .2 � 6x/y0 � 2y D 0; y.0/ D 1; y0.0/ D 0

4. C .1C x C 3x2/y00 C .2 C 15x/y0 C 12y D 0; y.0/ D 0; y0.0/ D 1

5. C .2C x/y00 C .1C x/y0 C 3y D 0; y.0/ D 4; y0.0/ D 3

6. C .3C 3x C x2/y00 C .6 C 4x/y0 C 2y D 0; y.0/ D 7; y0.0/ D 3

7. C .4C x/y00 C .2C x/y0 C 2y D 0; y.0/ D 2; y0.0/ D 5

8. C .2 � 3x C 2x2/y00 � .4 � 6x/y0 C 2y D 0; y.1/ D 1; y0.1/ D �1

9. C .3x C 2x2/y00 C 10.1C x/y0 C 8y D 0; y.�1/ D 1; y0.�1/ D �1

10. C .1 � x C x2/y00 � .1 � 4x/y0 C 2y D 0; y.1/ D 2; y0.1/ D �1

11. C .2C x/y00 C .2C x/y0 C y D 0; y.�1/ D �2; y0.�1/ D 3
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12. C x2y00 � .6 � 7x/y0 C 8y D 0; y.1/ D 1; y0.1/ D �2

13. L Do the following experiment for various choices of real numbers a0, a1, and r , with 0 < r <

1=
p
2.

(a) Use differential equations software to solve the initial value problem

.1 C x C 2x2/y00 C .1C 7x/y0 C 2y D 0; y.0/ D a0; y0.0/ D a1; .A/

numerically on .�r; r/. (See Example 7.3.1.)

(b) For N D 2, 3, 4, . . . , compute a2, . . . , aN in the power series solution y D
P1

nD0 anx
n of

(A), and graph

TN .x/ D
N
X

nD0

anx
n

and the solution obtained in (a) on .�r; r/. Continue increasingN until there’s no perceptible

difference between the two graphs.

14. L Do the following experiment for various choices of real numbers a0, a1, and r , with 0 < r < 2.

(a) Use differential equations software to solve the initial value problem

.3 C x/y00 C .1 C 2x/y0 � .2 � x/y D 0; y.�1/ D a0; y0.�1/ D a1; .A/

numerically on .�1 � r;�1C r/. (See Example 7.3.2. Why this interval?)

(b) For N D 2, 3, 4, . . . , compute a2; : : : ; aN in the power series solution

y D
1
X

nD0

an.x C 1/n

of (A), and graph

TN .x/ D
N
X

nD0

an.x C 1/n

and the solution obtained in (a) on .�1 � r;�1C r/. Continue increasing N until there’s no

perceptible difference between the two graphs.

15. L Do the following experiment for several choices of a0, a1, and r , with r > 0.

(a) Use differential equations software to solve the initial value problem

y00 C 3xy0 C .4 C 2x2/y D 0; y.0/ D a0; y0.0/ D a1; .A/

numerically on .�r; r/. (See Example 7.3.3.)

(b) Find the coefficients a0, a1, . . . , aN in the power series solution y D
P1

nD0 anx
n of (A),

and graph

TN .x/ D
N
X

nD0

anx
n

and the solution obtained in (a) on .�r; r/. Continue increasingN until there’s no perceptible

difference between the two graphs.
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16. L Do the following experiment for several choices of a0 and a1.

(a) Use differential equations software to solve the initial value problem

.1 � x/y00 � .2 � x/y0 C y D 0; y.0/ D a0; y0.0/ D a1; .A/

numerically on .�r; r/.
(b) Find the coefficients a0, a1, . . . , aN in the power series solution y D

PN
nD0 anx

n of (A),

and graph

TN .x/ D
N
X

nD0

anx
n

and the solution obtained in (a) on .�r; r/. Continue increasingN until there’s no perceptible

difference between the two graphs. What happens as you let r ! 1?

17. L Follow the directions of Exercise 16 for the initial value problem

.1C x/y00 C 3y0 C 32y D 0; y.0/ D a0; y0.0/ D a1:

18. L Follow the directions of Exercise 16 for the initial value problem

.1 C x2/y00 C y0 C 2y D 0; y.0/ D a0; y0.0/ D a1:

In Exercises 19–28 find the coefficients a0, . . . , aN for N at least 7 in the series solution

y D
1
X

nD0

an.x � x0/
n

of the initial value problem. Take x0 to be the point where the initial conditions are imposed.

19. C .2C 4x/y00 � 4y0 � .6 C 4x/y D 0; y.0/ D 2; y0.0/ D �7
20. C .1C 2x/y00 � .1 � 2x/y0 � .3 � 2x/y D 0; y.1/ D 1; y0.1/ D �2
21. C .5C 2x/y00 � y0 C .5 C x/y D 0; y.�2/ D 2; y0.�2/ D �1
22. C .4C x/y00 � .4C 2x/y0 C .6C x/y D 0; y.�3/ D 2; y0.�3/ D �2
23. C .2C 3x/y00 � xy0 C 2xy D 0; y.0/ D �1; y0.0/ D 2

24. C .3C 2x/y00 C 3y0 � xy D 0; y.�1/ D 2; y0.�1/ D �3
25. C .3C 2x/y00 � 3y0 � .2C x/y D 0; y.�2/ D �2; y0.�2/ D 3

26. C .10 � 2x/y00 C .1 C x/y D 0; y.2/ D 2; y0.2/ D �4
27. C .7C x/y00 C .8C 2x/y0 C .5 C x/y D 0; y.�4/ D 1; y0.�4/ D 2

28. C .6C 4x/y00 C .1 C 2x/y D 0; y.�1/ D �1; y0.�1/ D 2

29. Show that the coefficients in the power series in x for the general solution of

.1 C ˛x C ˇx2/y00 C .
 C ıx/y0 C �y D 0

satisfy the recurrrence relation

anC2 D �
 C ˛n

nC 2
anC1 � ˇn.n � 1/C ınC �

.nC 2/.nC 1/
an:
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30. (a) Let ˛ and ˇ be constants, with ˇ ¤ 0. Show that y D
P1

nD0 anx
n is a solution of

.1 C ˛x C ˇx2/y00 C .2˛ C 4ˇx/y0 C 2ˇy D 0 .A/

if and only if

anC2 C ˛anC1 C ˇan D 0; n � 0: .B/

An equation of this form is called a second order homogeneous linear difference equation.
The polynomial p.r/ D r2 C˛rCˇ is called the characteristic polynomial of (B). If r1 and

r2 are the zeros of p, then 1=r1 and 1=r2 are the zeros of

P0.x/ D 1C ˛x C ˇx2:

(b) Suppose p.r/ D .r � r1/.r � r2/ where r1 and r2 are real and distinct, and let � be the

smaller of the two numbers f1=jr1j; 1=jr2jg. Show that if c1 and c2 are constants then the

sequence

an D c1r
n
1 C c2r

n
2 ; n � 0

satisfies (B). Conclude from this that any function of the form

y D
1
X

nD0

.c1r
n
1 C c2r

n
2 /x

n

is a solution of (A) on .��; �/.
(c) Use (b) and the formula for the sum of a geometric series to show that the functions

y1 D 1

1 � r1x
and y2 D 1

1 � r2x

form a fundamental set of solutions of (A) on .��; �/.
(d) Show that fy1; y2g is a fundamental set of solutions of (A) on any interval that does’nt contain

either 1=r1 or 1=r2.

(e) Suppose p.r/ D .r � r1/
2, and let � D 1=jr1j. Show that if c1 and c2 are constants then the

sequence

an D .c1 C c2n/r
n
1 ; n � 0

satisfies (B). Conclude from this that any function of the form

y D
1
X

nD0

.c1 C c2n/r
n
1 x

n

is a solution of (A) on .��; �/.
(f) Use (e) and the formula for the sum of a geometric series to show that the functions

y1 D 1

1 � r1x
and y2 D x

.1 � r1x/2

form a fundamental set of solutions of (A) on .��; �/.
(g) Show that fy1; y2g is a fundamental set of solutions of (A) on any interval that does not

contain 1=r1.
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31. Use the results of Exercise 30 to find the general solution of the given equation on any interval on

which polynomial multiplying y00 has no zeros.

(a) .1 C 3x C 2x2/y00 C .6C 8x/y0 C 4y D 0

(b) .1 � 5x C 6x2/y00 � .10 � 24x/y0 C 12y D 0

(c) .1 � 4x C 4x2/y00 � .8 � 16x/y0 C 8y D 0

(d) .4C 4x C x2/y00 C .8 C 4x/y0 C 2y D 0

(e) .4C 8x C 3x2/y00 C .16 C 12x/y0 C 6y D 0

In Exercises 32–38 find the coefficients a0, . . . , aN forN at least 7 in the series solution y D
P1

nD0 anx
n

of the initial value problem.

32. C y00 C 2xy0 C .3 C 2x2/y D 0; y.0/ D 1; y0.0/ D �2

33. C y00 � 3xy0 C .5C 2x2/y D 0; y.0/ D 1; y0.0/ D �2

34. C y00 C 5xy0 � .3 � x2/y D 0; y.0/ D 6; y0.0/ D �2

35. C y00 � 2xy0 � .2C 3x2/y D 0; y.0/ D 2; y0.0/ D �5

36. C y00 � 3xy0 C .2C 4x2/y D 0; y.0/ D 3; y0.0/ D 6

37. C 2y00 C 5xy0 C .4C 2x2/y D 0; y.0/ D 3; y0.0/ D �2

38. C 3y00 C 2xy0 C .4 � x2/y D 0; y.0/ D �2; y0.0/ D 3

39. Find power series in x for the solutions y1 and y2 of

y00 C 4xy0 C .2 C 4x2/y D 0

such that y1.0/ D 1, y0
1.0/ D 0, y2.0/ D 0, y0

2.0/ D 1, and identify y1 and y2 in terms of

familiar elementary functions.

In Exercises 40–49 find the coefficients a0, . . . , aN for N at least 7 in the series solution

y D
1
X

nD0

an.x � x0/
n

of the initial value problem. Take x0 to be the point where the initial conditions are imposed.

40. C .1C x/y00 C x2y0 C .1C 2x/y D 0; y.0/ � 2; y0.0/ D 3

41. C y00 C .1C 2x C x2/y0 C 2y D 0; y.0/ D 2; y0.0/ D 3

42. C .1C x2/y00 C .2C x2/y0 C xy D 0; y.0/ D �3; y0.0/ D 5

43. C .1C x/y00 C .1 � 3x C 2x2/y0 � .x � 4/y D 0; y.1/ D �2; y0.1/ D 3

44. C y00 C .13C 12x C 3x2/y0 C .5 C 2x/; y.�2/ D 2; y0.�2/ D �3

45. C .1C 2x C 3x2/y00 C .2 � x2/y0 C .1C x/y D 0; y.0/ D 1; y0.0/ D �2

46. C .3C 4x C x2/y00 � .5C 4x � x2/y0 � .2C x/y D 0; y.�2/ D 2; y0.�2/ D �1

47. C .1C 2x C x2/y00 C .1 � x/y D 0; y.0/ D 2; y0.0/ D �1

48. C .x � 2x2/y00 C .1C 3x � x2/y0 C .2 C x/y D 0; y.1/ D 1; y0.1/ D 0

49. C .16 � 11x C 2x2/y00 C .10 � 6x C x2/y0 � .2 � x/y; y.3/ D 1; y0.3/ D �2
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7.4 REGULAR SINGULAR POINTS EULER EQUATIONS

This section sets the stage for Sections 1.5, 1.6, and 1.7. If you’re not interested in those sections, but wish

to learn about Euler equations, omit the introductory paragraphs and start reading at Definition 7.4.2.

In the next three sections we’ll continue to study equations of the form

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0 (7.4.1)

where P0, P1, and P2 are polynomials, but the emphasis will be different from that of Sections 7.2 and

7.3, where we obtained solutions of (7.4.1) near an ordinary point x0 in the form of power series in

x � x0. If x0 is a singular point of (7.4.1) (that is, if P.x0/ D 0), the solutions can’t in general be

represented by power series in x � x0. Nevertheless, it’s often necessary in physical applications to study

the behavior of solutions of (7.4.1) near a singular point. Although this can be difficult in the absence of

some sort of assumption on the nature of the singular point, equations that satisfy the requirements of the
next definition can be solved by series methods discussed in the next three sections. Fortunately, many

equations arising in applications satisfy these requirements.

Definition 7.4.1 Let P0, P1, and P2 be polynomials with no common factor and suppose P0.x0/ D 0.

Then x0 is a regular singular point of the equation

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0 (7.4.2)

if (7.4.2) can be written as

.x � x0/
2A.x/y00 C .x � x0/B.x/y

0 C C.x/y D 0 (7.4.3)

where A, B , and C are polynomials and A.x0/ ¤ 0; otherwise, x0 is an irregular singular point of

(7.4.2).

Example 7.4.1 Bessel’s equation,

x2y00 C xy0 C .x2 � �2/y D 0; (7.4.4)

has the singular point x0 D 0. Since this equation is of the form (7.4.3) with x0 D 0, A.x/ D 1,

B.x/ D 1, and C.x/ D x2 � �2, it follows that x0 D 0 is a regular singular point of (7.4.4).

Example 7.4.2 Legendre’s equation,

.1 � x2/y00 � 2xy0 C ˛.˛ C 1/y D 0; (7.4.5)

has the singular points x0 D ˙1. Mutiplying through by 1 � x yields

.x � 1/2.x C 1/y00 C 2x.x � 1/y0 � ˛.˛ C 1/.x � 1/y D 0;

which is of the form (7.4.3) with x0 D 1, A.x/ D x C 1, B.x/ D 2x, and C.x/ D �˛.˛ C 1/.x � 1/.

Therefore x0 D 1 is a regular singular point of (7.4.5). We leave it to you to show that x0 D �1 is also a

regular singular point of (7.4.5).
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Example 7.4.3 The equation

x3y00 C xy0 C y D 0

has an irregular singular point at x0 D 0. (Verify.)

For convenience we restrict our attention to the case where x0 D 0 is a regular singular point of (7.4.2).

This isn’t really a restriction, since if x0 ¤ 0 is a regular singular point of (7.4.2) then introducing the

new independent variable t D x � x0 and the new unknown Y.t/ D y.t C x0/ leads to a differential

equation with polynomial coefficients that has a regular singular point at t0 D 0. This is illustrated in

Exercise 22 for Legendre’s equation, and in Exercise 23 for the general case.

Euler Equations

The simplest kind of equation with a regular singular point at x0 D 0 is the Euler equation, defined as

follows.

Definition 7.4.2 An Euler equation is an equation that can be written in the form

ax2y00 C bxy0 C cy D 0; (7.4.6)

where a; b, and c are real constants and a ¤ 0.

Theorem 5.1.1 implies that (7.4.6) has solutions defined on .0;1/ and .�1; 0/, since (7.4.6) can be

rewritten as

ay00 C b

x
y0 C c

x2
y D 0:

For convenience we’ll restrict our attention to the interval .0;1/. (Exercise 19 deals with solutions of
(7.4.6) on .�1; 0/.) The key to finding solutions on .0;1/ is that if x > 0 then xr is defined as a

real-valued function on .0;1/ for all values of r , and substituting y D xr into (7.4.6) produces

ax2.xr /00 C bx.xr/0 C cxr D ax2r.r � 1/xr�2 C bxrxr�1 C cxr

D Œar.r � 1/C br C c�xr :
(7.4.7)

The polynomial

p.r/ D ar.r � 1/C br C c

is called the indicial polynomial of (7.4.6), and p.r/ D 0 is its indicial equation. From (7.4.7) we can see

that y D xr is a solution of (7.4.6) on .0;1/ if and only if p.r/ D 0. Therefore, if the indicial equation
has distinct real roots r1 and r2 then y1 D xr1 and y2 D xr2 form a fundamental set of solutions of

(7.4.6) on .0;1/, since y2=y1 D xr2�r1 is nonconstant. In this case

y D c1x
r1 C c2x

r2

is the general solution of (7.4.6) on .0;1/.

Example 7.4.4 Find the general solution of

x2y00 � xy0 � 8y D 0 (7.4.8)

on .0;1/.

Solution The indicial polynomial of (7.4.8) is

p.r/ D r.r � 1/� r � 8 D .r � 4/.r C 2/:

Therefore y1 D x4 and y2 D x�2 are solutions of (7.4.8) on .0;1/, and its general solution on .0;1/ is

y D c1x
4 C c2

x2
:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Euler.html
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Example 7.4.5 Find the general solution of

6x2y00 C 5xy0 � y D 0 (7.4.9)

on .0;1/.

Solution The indicial polynomial of (7.4.9) is

p.r/ D 6r.r � 1/C 5r � 1 D .2r � 1/.3r C 1/:

Therefore the general solution of (7.4.9) on .0;1/ is

y D c1x
1=2 C c2x

�1=3:

If the indicial equation has a repeated root r1, then y1 D xr1 is a solution of

ax2y00 C bxy0 C cy D 0; (7.4.10)

on .0;1/, but (7.4.10) has no other solution of the form y D xr . If the indicial equation has complex

conjugate zeros then (7.4.10) has no real–valued solutions of the form y D xr . Fortunately we can use

the results of Section 5.2 for constant coefficient equations to solve (7.4.10) in any case.

Theorem 7.4.3 Suppose the roots of the indicial equation

ar.r � 1/C br C c D 0 (7.4.11)

are r1 and r2. Then the general solution of the Euler equation

ax2y00 C bxy0 C cy D 0 (7.4.12)

on .0;1/ is

y D c1x
r1 C c2x

r2 if r1 and r2 are distinct real numbers I
y D xr1.c1 C c2 lnx/ if r1 D r2 I
y D x� Œc1 cos .! ln x/C c2 sin .! lnx/� if r1; r2 D �˙ i! with ! > 0:

Proof We first show that y D y.x/ satisfies (7.4.12) on .0;1/ if and only if Y.t/ D y.et / satisfies the

constant coefficient equation

a
d 2Y

dt2
C .b � a/dY

dt
C cY D 0 (7.4.13)

on .�1;1/. To do this, it’s convenient to write x D et , or, equivalently, t D lnx; thus, Y.t/ D y.x/,

where x D et . From the chain rule,
dY

dt
D dy

dx

dx

dt

and, since
dx

dt
D et D x;

it follows that
dY

dt
D x

dy

dx
: (7.4.14)
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Differentiating this with respect to t and using the chain rule again yields

d 2Y

dt2
D d

dt

�

dY

dt

�

D d

dt

�

x
dy

dx

�

D dx

dt

dy

dx
C x

d 2y

dx2

dx

dt

D x
dy

dx
C x2 d

2y

dx2

�

since
dx

dt
D x

�

:

From this and (7.4.14),

x2 d
2y

dx2
D d 2Y

dt2
� dY

dt
:

Substituting this and (7.4.14) into (7.4.12) yields (7.4.13). Since (7.4.11) is the characteristic equation of

(7.4.13), Theorem 5.2.1 implies that the general solution of (7.4.13) on .�1;1/ is

Y.t/ D c1e
r1t C c2e

r2t if r1 and r2 are distinct real numbers;

Y.t/ D er1t .c1 C c2t/ if r1 D r2;

Y.t/ D e�t .c1 cos!t C c2 sin!t/ if r1; r2 D �˙ i! with ! ¤ 0:

Since Y.t/ D y.et /, substituting t D lnx in the last three equations shows that the general solution of

(7.4.12) on .0;1/ has the form stated in the theorem.

Example 7.4.6 Find the general solution of

x2y00 � 5xy0 C 9y D 0 (7.4.15)

on .0;1/.

Solution The indicial polynomial of (7.4.15) is

p.r/ D r.r � 1/� 5r C 9 D .r � 3/2:

Therefore the general solution of (7.4.15) on .0;1/ is

y D x3.c1 C c2 lnx/:

Example 7.4.7 Find the general solution of

x2y00 C 3xy0 C 2y D 0 (7.4.16)

on .0;1/.

Solution The indicial polynomial of (7.4.16) is

p.r/ D r.r � 1/C 3r C 2 D .r C 1/2 C 1:

The roots of the indicial equation are r D �1˙ i and the general solution of (7.4.16) on .0;1/ is

y D 1

x
Œc1 cos.lnx/C c2 sin.ln x/� :
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7.4 Exercises

In Exercises 1–18 find the general solution of the given Euler equation on .0;1/.

1. x2y00 C 7xy0 C 8y D 0 2. x2y00 � 7xy0 C 7y D 0

3. x2y00 � xy0 C y D 0 4. x2y00 C 5xy0 C 4y D 0

5. x2y00 C xy0 C y D 0 6. x2y00 � 3xy0 C 13y D 0

7. x2y00 C 3xy0 � 3y D 0 8. 12x2y00 � 5xy00 C 6y D 0

9. 4x2y00 C 8xy0 C y D 0 10. 3x2y00 � xy0 C y D 0

11. 2x2y00 � 3xy0 C 2y D 0 12. x2y00 C 3xy0 C 5y D 0

13. 9x2y00 C 15xy0 C y D 0 14. x2y00 � xy0 C 10y D 0

15. x2y00 � 6y D 0 16. 2x2y00 C 3xy0 � y D 0

17. x2y00 � 3xy0 C 4y D 0 18. 2x2y00 C 10xy0 C 9y D 0

19. (a) Adapt the proof of Theorem 7.4.3 to show that y D y.x/ satisfies the Euler equation

ax2y00 C bxy0 C cy D 0 (7.4.1)

on .�1; 0/ if and only if Y.t/ D y.�et /

a
d 2Y

dt2
C .b � a/dY

dt
C cY D 0:

on .�1;1/.

(b) Use (a) to show that the general solution of (7.4.1) on .�1; 0/ is

y D c1jxjr1 C c2jxjr2 if r1 and r2 are distinct real numbers;

y D jxjr1.c1 C c2 ln jxj/ if r1 D r2;

y D jxj� Œc1 cos .! ln jxj/C c2 sin .! ln jxj/� if r1; r2 D �˙ i! with ! > 0:

20. Use reduction of order to show that if

ar.r � 1/C br C c D 0

has a repeated root r1 then y D xr1.c1 C c2 ln x/ is the general solution of

ax2y00 C bxy0 C cy D 0

on .0;1/.
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21. A nontrivial solution of

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0

is said to be oscillatory on an interval .a; b/ if it has infinitely many zeros on .a; b/. Otherwise y

is said to be nonoscillatory on .a; b/. Show that the equation

x2y00 C ky D 0 .k D constant/

has oscillatory solutions on .0;1/ if and only if k > 1=4.

22. In Example 7.4.2 we saw that x0 D 1 and x0 D �1 are regular singular points of Legendre’s

equation
.1 � x2/y00 � 2xy0 C ˛.˛ C 1/y D 0: .A/

(a) Introduce the new variables t D x � 1 and Y.t/ D y.t C 1/, and show that y is a solution of

(A) if and only if Y is a solution of

t.2 C t/
d 2Y

dt2
C 2.1 C t/

dY

dt
� ˛.˛ C 1/Y D 0;

which has a regular singular point at t0 D 0.

(b) Introduce the new variables t D xC 1 and Y.t/ D y.t � 1/, and show that y is a solution of

(A) if and only if Y is a solution of

t.2 � t/d
2Y

dt2
C 2.1 � t/dY

dt
C ˛.˛ C 1/Y D 0;

which has a regular singular point at t0 D 0.

23. Let P0; P1, and P2 be polynomials with no common factor, and suppose x0 ¤ 0 is a singular point

of

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0: .A/

Let t D x � x0 and Y.t/ D y.t C x0/.

(a) Show that y is a solution of (A) if and only if Y is a solution of

R0.t/
d 2Y

dt2
CR1.t/

dY

dt
CR2.t/Y D 0: .B/

where

Ri .t/ D Pi.t C x0/; i D 0; 1; 2:

(b) Show that R0, R1, and R2 are polynomials in t with no common factors, and R0.0/ D 0;
thus, t0 D 0 is a singular point of (B).

7.5 THE METHOD OF FROBENIUS I

In this section we begin to study series solutions of a homogeneous linear second order differential equa-

tion with a regular singular point at x0 D 0, so it can be written as

x2A.x/y00 C xB.x/y0 CC.x/y D 0; (7.5.1)

where A, B , C are polynomials and A.0/ ¤ 0.
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We’ll see that (7.5.1) always has at least one solution of the form

y D xr

1
X

nD0

anx
n

where a0 ¤ 0 and r is a suitably chosen number. The method we will use to find solutions of this form

and other forms that we’ll encounter in the next two sections is called the method of Frobenius, and we’ll

call them Frobenius solutions.

It can be shown that the power series
P1

nD0 anx
n in a Frobenius solution of (7.5.1) converges on some

open interval .��; �/, where 0 < � � 1. However, since xr may be complex for negative x or undefined

if x D 0, we’ll consider solutions defined for positive values of x. Easy modifications of our results yield

solutions defined for negative values of x. (Exercise 54).

We’ll restrict our attention to the case where A, B , and C are polynomials of degree not greater than

two, so (7.5.1) becomes

x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y D 0; (7.5.2)

where ˛i , ˇi , and 
i are real constants and ˛0 ¤ 0. Most equations that arise in applications can be

written this way. Some examples are

˛x2y00 C ˇxy0 C 
y D 0 (Euler’s equation);

x2y00 C xy0 C .x2 � �2/y D 0 (Bessel’s equation);

and

xy00 C .1 � x/y0 C �y D 0; (Laguerre’s equation);

where we would multiply the last equation through by x to put it in the form (7.5.2). However, the

method of Frobenius can be extended to the case where A,B , and C are functions that can be represented

by power series in x on some interval that contains zero, and A0.0/ ¤ 0 (Exercises 57 and 58).

The next two theorems will enable us to develop systematic methods for finding Frobenius solutions

of (7.5.2).

Theorem 7.5.1 Let

Ly D x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y;

and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0;

p1.r/ D ˛1r.r � 1/C ˇ1r C 
1;

p2.r/ D ˛2r.r � 1/C ˇ2r C 
2:

Suppose the series

y D
1
X

nD0

anx
nCr (7.5.3)

converges on .0; �/. Then

Ly D
1
X

nD0

bnx
nCr (7.5.4)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Frobenius.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Frobenius.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Laguerre.html
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on .0; �/; where

b0 D p0.r/a0;

b1 D p0.r C 1/a1 C p1.r/a0;

bn D p0.nC r/an C p1.nC r � 1/an�1 C p2.nC r � 2/an�2; n � 2:

(7.5.5)

Proof We begin by showing that if y is given by (7.5.3) and ˛, ˇ, and 
 are constants, then

˛x2y00 C ˇxy0 C 
y D
1
X

nD0

p.nC r/anx
nCr ; (7.5.6)

where

p.r/ D ˛r.r � 1/C ˇr C 
:

Differentiating (3) twice yields

y0 D
1
X

nD0

.nC r/anx
nCr�1 (7.5.7)

and

y00 D
1
X

nD0

.nC r/.nC r � 1/anx
nCr�2: (7.5.8)

Multiplying (7.5.7) by x and (7.5.8) by x2 yields

xy0 D
1
X

nD0

.nC r/anx
nCr

and

x2y00 D
1
X

nD0

.nC r/.nC r � 1/anx
nCr :

Therefore

˛x2y00 C ˇxy0 C 
y D
1
X

nD0

Œ˛.nC r/.nC r � 1/C ˇ.nC r/C 
� anx
nCr

D
1
X

nD0

p.nC r/anx
nCr ;

which proves (7.5.6).

Multiplying (7.5.6) by x yields

x.˛x2y00 C ˇxy0 C 
y/ D
1
X

nD0

p.nC r/anx
nCrC1 D

1
X

nD1

p.nC r � 1/an�1x
nCr : (7.5.9)

Multiplying (7.5.6) by x2 yields

x2.˛x2y00 C ˇxy0 C 
y/ D
1
X

nD0

p.nC r/anx
nCrC2 D

1
X

nD2

p.nC r � 2/an�2x
nCr : (7.5.10)
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To use these results, we rewrite

Ly D x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y

as
Ly D

�

˛0x
2y00 C ˇ0xy

0 C 
0y
�

C x
�

˛1x
2y00 C ˇ1xy

0 C 
1y
�

C x2
�

˛2x
2y00 C ˇ2xy

0 C 
2y
�

:
(7.5.11)

From (7.5.6) with p D p0,

˛0x
2y00 C ˇ0xy

0 C 
0y D
1
X

nD0

p0.nC r/anx
nCr :

From (7.5.9) with p D p1,

x
�

˛1x
2y00 C ˇ1xy

0 C 
1y
�

D
1
X

nD1

p1.nC r � 1/an�1x
nCr :

From (7.5.10) with p D p2,

x2
�

˛2x
2y00 C ˇ2xy

0 C 
2y
�

D
1
X

nD2

p2.nC r � 2/an�2x
nCr :

Therefore we can rewrite (7.5.11) as

Ly D
1
X

nD0

p0.nC r/anx
nCr C

1
X

nD1

p1.nC r � 1/an�1x
nCr

C
1
X

nD2

p2.nC r � 2/an�2x
nCr ;

or

Ly D p0.r/a0x
r C Œp0.r C 1/a1 C p1.r/a2� x

rC1

C
1
X

nD2

Œp0.nC r/an C p1.nC r � 1/an�1 C p2.nC r � 2/an�2� x
nCr ;

which implies (7.5.4) with fbng defined as in (7.5.5).

Theorem 7.5.2 Let

Ly D x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y;

where ˛0 ¤ 0; and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0;

p1.r/ D ˛1r.r � 1/C ˇ1r C 
1;

p2.r/ D ˛2r.r � 1/C ˇ2r C 
2:
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Suppose r is a real number such that p0.nC r/ is nonzero for all positive integers n: Define

a0.r/ D 1;

a1.r/ D � p1.r/

p0.r C 1/
;

an.r/ D �p1.nC r � 1/an�1.r/C p2.nC r � 2/an�2.r/

p0.nC r/
; n � 2:

(7.5.12)

Then the Frobenius series

y.x; r/ D xr

1
X

nD0

an.r/x
n (7.5.13)

converges and satisfies

Ly.x; r/ D p0.r/x
r (7.5.14)

on the interval .0; �/; where � is the distance from the origin to the nearest zero of A.x/ D ˛0 C ˛1x C
˛2x

2 in the complex plane: .If A is constant, then � D 1./

If fan.r/g is determined by the recurrence relation (7.5.12) then substituting an D an.r/ into (7.5.5)

yields b0 D p0.r/ and bn D 0 for n � 1, so (7.5.4) reduces to (7.5.14). We omit the proof that the series

(7.5.13) converges on .0; �/.

If ˛i D ˇi D 
i D 0 for i D 1, 2; then Ly D 0 reduces to the Euler equation

˛0x
2y00 C ˇ0xy

0 C 
0y D 0:

Theorem 7.4.3 shows that the solutions of this equation are determined by the zeros of the indicial poly-

nomial

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0:

Since (7.5.14) implies that this is also true for the solutions of Ly D 0, we’ll also say that p0 is the
indicial polynomial of (7.5.2), and that p0.r/ D 0 is the indicial equation of Ly D 0. We’ll consider

only cases where the indicial equation has real roots r1 and r2, with r1 � r2.

Theorem 7.5.3 Let L and fan.r/g be as in Theorem 7.5.2; and suppose the indicial equation p0.r/ D 0

of Ly D 0 has real roots r1 and r2; where r1 � r2: Then

y1.x/ D y.x; r1/ D xr1

1
X

nD0

an.r1/x
n

is a Frobenius solution of Ly D 0. Moreover; if r1 � r2 isn’t an integer then

y2.x/ D y.x; r2/ D xr2

1
X

nD0

an.r2/x
n

is also a Frobenius solution of Ly D 0; and fy1; y2g is a fundamental set of solutions.

Proof Since r1 and r2 are roots of p0.r/ D 0, the indicial polynomial can be factored as

p0.r/ D ˛0.r � r1/.r � r2/: (7.5.15)

Therefore

p0.nC r1/ D n˛0.nC r1 � r2/;
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which is nonzero if n > 0, since r1 � r2 � 0. Therefore the assumptions of Theorem 7.5.2 hold with

r D r1, and (7.5.14) implies that Ly1 D p0.r1/x
r1 D 0.

Now suppose r1 � r2 isn’t an integer. From (7.5.15),

p0.nC r2/ D n˛0.n � r1 C r2/ ¤ 0 if n D 1; 2; � � � :

Hence, the assumptions of Theorem 7.5.2 hold with r D r2, and (7.5.14) implies thatLy2 D p0.r2/x
r2 D

0. We leave the proof that fy1; y2g is a fundamental set of solutions as an exercise (Exercise 52).

It isn’t always possible to obtain explicit formulas for the coefficients in Frobenius solutions. However,

we can always set up the recurrence relations and use them to compute as many coefficients as we want.
The next example illustrates this.

Example 7.5.1 Find a fundamental set of Frobenius solutions of

2x2.1 C x C x2/y00 C x.9C 11x C 11x2/y0 C .6C 10x C 7x2/y D 0: (7.5.16)

Compute just the first six coefficients a0,. . . , a5 in each solution.

Solution For the given equation, the polynomials defined in Theorem 7.5.2 are

p0.r/ D 2r.r � 1/C 9r C 6 D .2r C 3/.r C 2/;

p1.r/ D 2r.r � 1/C 11r C 10 D .2r C 5/.r C 2/;

p2.r/ D 2r.r � 1/C 11r C 7 D .2r C 7/.r C 1/:

The zeros of the indicial polynomial p0 are r1 D �3=2 and r2 D �2, so r1 � r2 D 1=2. Therefore
Theorem 7.5.3 implies that

y1 D x�3=2

1
X

nD0

an.�3=2/xn and y2 D x�2

1
X

nD0

an.�2/xn (7.5.17)

form a fundamental set of Frobenius solutions of (7.5.16). To find the coefficients in these series, we use

the recurrence relation of Theorem 7.5.2; thus,

a0.r/ D 1;

a1.r/ D � p1.r/

p0.r C 1/
D � .2r C 5/.r C 2/

.2r C 5/.r C 3/
D �r C 2

r C 3
;

an.r/ D �p1.nC r � 1/an�1 C p2.nC r � 2/an�2

p0.nC r/

D � .nC r C 1/.2nC 2r C 3/an�1.r/C .nC r � 1/.2nC 2r C 3/an�2.r/

.nC r C 2/.2nC 2r C 3/

D � .nC r C 1/an�1.r/C .nC r � 1/an�2.r/

nC r C 2
; n � 2:

Setting r D �3=2 in these equations yields

a0.�3=2/ D 1;

a1.�3=2/ D �1=3;

an.�3=2/ D � .2n� 1/an�1.�3=2/C .2n� 5/an�2.�3=2/
2nC 1

; n � 2;

(7.5.18)
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and setting r D �2 yields

a0.�2/ D 1;

a1.�2/ D 0;

an.�2/ D � .n � 1/an�1.�2/C .n� 3/an�2.�2/
n

; n � 2:

(7.5.19)

Calculating with (7.5.18) and (7.5.19) and substituting the results into (7.5.17) yields the fundamental set
of Frobenius solutions

y1 D x�3=2

�

1 � 1

3
x C 2

5
x2 � 5

21
x3 C 7

135
x4 C 76

1155
x5 C � � �

�

;

y2 D x�2

�

1C 1

2
x2 � 1

3
x3 C 1

8
x4 C 1

30
x5 C � � �

�

:

Special Cases With Two Term Recurrence Relations

For n � 2, the recurrence relation (7.5.12) of Theorem 7.5.2 involves the three coefficients an.r/,

an�1.r/, and an�2.r/. We’ll now consider some special cases where (7.5.12) reduces to a two term
recurrence relation; that is, a relation involving only an.r/ and an�1.r/ or only an.r/ and an�2.r/. This

simplification often makes it possible to obtain explicit formulas for the coefficents of Frobenius solu-

tions.

We first consider equations of the form

x2.˛0 C ˛1x/y
00 C x.ˇ0 C ˇ1x/y

0 C .
0 C 
1x/y D 0

with ˛0 ¤ 0. For this equation, ˛2 D ˇ2 D 
2 D 0, so p2 � 0 and the recurrence relations in

Theorem 7.5.2 simplify to

a0.r/ D 1;

an.r/ D �p1.nC r � 1/
p0.nC r/

an�1.r/; n � 1:
(7.5.20)

Example 7.5.2 Find a fundamental set of Frobenius solutions of

x2.3 C x/y00 C 5x.1C x/y0 � .1 � 4x/y D 0: (7.5.21)

Give explicit formulas for the coefficients in the solutions.

Solution For this equation, the polynomials defined in Theorem 7.5.2 are

p0.r/ D 3r.r � 1/C 5r � 1 D .3r � 1/.r C 1/;

p1.r/ D r.r � 1/C 5r C 4 D .r C 2/2;

p2.r/ D 0:

The zeros of the indicial polynomial p0 are r1 D 1=3 and r2 D �1, so r1 � r2 D 4=3. Therefore

Theorem 7.5.3 implies that

y1 D x1=3

1
X

nD0

an.1=3/x
n and y2 D x�1

1
X

nD0

an.�1/xn
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form a fundamental set of Frobenius solutions of (7.5.21). To find the coefficients in these series, we use

the recurrence relationss (7.5.20); thus,

a0.r/ D 1;

an.r/ D �p1.nC r � 1/
p0.nC r/

an�1.r/

D � .nC r C 1/2

.3nC 3r � 1/.n C r C 1/
an�1.r/

D � nC r C 1

3nC 3r � 1an�1.r/; n � 1:

(7.5.22)

Setting r D 1=3 in (7.5.22) yields

a0.1=3/ D 1;

an.1=3/ D �3nC 4

9n
an�1.1=3/; n � 1:

By using the product notation introduced in Section 7.2 and proceeding as we did in the examples in that

section yields

an.1=3/ D
.�1/n

Qn
j D1.3j C 4/

9nnŠ
; n � 0:

Therefore

y1 D x1=3

1
X

nD0

.�1/n
Qn

j D1.3j C 4/

9nnŠ
xn

is a Frobenius solution of (7.5.21).

Setting r D �1 in (7.5.22) yields

a0.�1/ D 1;

an.�1/ D � n

3n� 4an�1.�1/; n � 1;

so

an.�1/ D .�1/nnŠ
Qn

j D1.3j � 4/
:

Therefore

y2 D x�1

1
X

nD0

.�1/nnŠ
Qn

j D1.3j � 4/x
n

is a Frobenius solution of (7.5.21), and fy1; y2g is a fundamental set of solutions.

We now consider equations of the form

x2.˛0 C ˛2x
2/y00 C x.ˇ0 C ˇ2x

2/y0 C .
0 C 
2x
2/y D 0 (7.5.23)

with ˛0 ¤ 0. For this equation, ˛1 D ˇ1 D 
1 D 0, so p1 � 0 and the recurrence relations in
Theorem 7.5.2 simplify to

a0.r/ D 1;

a1.r/ D 0;

an.r/ D �p2.nC r � 2/
p0.nC r/

an�2.r/; n � 2:
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Since a1.r/ D 0, the last equation implies that an.r/ D 0 if n is odd, so the Frobenius solutions are of

the form

y.x; r/ D xr

1
X

mD0

a2m.r/x
2m;

where
a0.r/ D 1;

a2m.r/ D �p2.2mC r � 2/

p0.2mC r/
a2m�2.r/; m � 1:

(7.5.24)

Example 7.5.3 Find a fundamental set of Frobenius solutions of

x2.2 � x2/y00 � x.3C 4x2/y0 C .2 � 2x2/y D 0: (7.5.25)

Give explicit formulas for the coefficients in the solutions.

Solution For this equation, the polynomials defined in Theorem 7.5.2 are

p0.r/ D 2r.r � 1/� 3r C 2 D .r � 2/.2r � 1/;
p1.r/ D 0

p2.r/ D � Œr.r � 1/C 4r C 2� D �.r C 1/.r C 2/:

The zeros of the indicial polynomial p0 are r1 D 2 and r2 D 1=2, so r1 � r2 D 3=2. Therefore

Theorem 7.5.3 implies that

y1 D x2

1
X

mD0

a2m.1=3/x
2m and y2 D x1=2

1
X

mD0

a2m.1=2/x
2m

form a fundamental set of Frobenius solutions of (7.5.25). To find the coefficients in these series, we use

the recurrence relation (7.5.24); thus,

a0.r/ D 1;

a2m.r/ D �p2.2mC r � 2/
p0.2mC r/

a2m�2.r/

D .2mC r/.2mC r � 1/
.2mC r � 2/.4mC 2r � 1/

a2m�2.r/; m � 1:

(7.5.26)

Setting r D 2 in (7.5.26) yields

a0.2/ D 1;

a2m.2/ D .mC 1/.2mC 1/

m.4mC 3/
a2m�2.2/; m � 1;

so

a2m.2/ D .mC 1/

m
Y

j D1

2j C 1

4j C 3
:

Therefore

y1 D x2

1
X

mD0

.mC 1/

0

@

m
Y

j D1

2j C 1

4j C 3

1

A x2m

is a Frobenius solution of (7.5.25).
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Setting r D 1=2 in (7.5.26) yields

a0.1=2/ D 1;

a2m.1=2/ D .4m� 1/.4mC 1/

8m.4m� 3/
a2m�2.1=2/; m � 1;

so

a2m.1=2/ D 1

8mmŠ

m
Y

j D1

.4j � 1/.4j C 1/

4j � 3 :

Therefore

y2 D x1=2

1
X

mD0

1

8mmŠ

0

@

m
Y

j D1

.4j � 1/.4j C 1/

4j � 3

1

Ax2m

is a Frobenius solution of (7.5.25) and fy1; y2g is a fundamental set of solutions.

REMARK: Thus far, we considered only the case where the indicial equation has real roots that don’t

differ by an integer, which allows us to apply Theorem 7.5.3. However, for equations of the form (7.5.23),

the sequence fa2m.r/g in (7.5.24) is defined for r D r2 if r1 � r2 isn’t an even integer. It can be shown

(Exercise 56) that in this case

y1 D xr1

1
X

mD0

a2m.r1/x
2m and y2 D xr2

1
X

mD0

a2m.r2/x
2m

form a fundamental set Frobenius solutions of (7.5.23).

USING TECHNOLOGY

As we said at the end of Section 7.2, if you’re interested in actually using series to compute numerical

approximations to solutions of a differential equation, then whether or not there’s a simple closed form

for the coefficents is essentially irrelevant; recursive computation is usually more efficient. Since it’s also

laborious, we encourage you to write short programs to implement recurrence relations on a calculator or
computer, even in exercises where this is not specifically required.

In practical use of the method of Frobenius when x0 D 0 is a regular singular point, we’re interested

in how well the functions

yN .x; ri/ D xri

N
X

nD0

an.ri /x
n; i D 1; 2;

approximate solutions to a given equation when ri is a zero of the indicial polynomial. In dealing with

the corresponding problem for the case where x0 D 0 is an ordinary point, we used numerical integration

to solve the differential equation subject to initial conditions y.0/ D a0; y0.0/ D a1, and compared

the result with values of the Taylor polynomial

TN .x/ D
N
X

nD0

anx
n:

We can’t do that here, since in general we can’t prescribe arbitrary initial values for solutions of a dif-

ferential equation at a singular point. Therefore, motivated by Theorem 7.5.2 (specifically, (7.5.14)), we

suggest the following procedure.
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Verification Procedure

Let L and Yn.xI ri/ be defined by

Ly D x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y

and

yN .xI ri/ D xri

N
X

nD0

an.ri /x
n;

where the coefficients fan.ri /gN
nD0 are computed as in (7.5.12), Theorem 7.5.2. Compute the error

EN .xI ri / D x�riLyN .xI ri/=˛0 (7.5.27)

for various values of N and various values of x in the interval .0; �/, with � as defined in Theorem 7.5.2.

The multiplier x�ri =˛0 on the right of (7.5.27) eliminates the effects of small or large values of xri

near x D 0, and of multiplication by an arbitrary constant. In some exercises you will be asked to

estimate the maximum value ofEN .xI ri/ on an interval .0; ı� by computingEN .xmI ri/ at theM points

xm D mı=M; m D 1, 2, . . . , M , and finding the maximum of the absolute values:

�N .ı/ D maxfjEN .xmI ri /j; m D 1; 2; : : : ;M g: (7.5.28)

(For simplicity, this notation ignores the dependence of the right side of the equation on i and M .)
To implement this procedure, you’ll have to write a computer program to calculate fan.ri /g from the

applicable recurrence relation, and to evaluate EN .xI ri /.
The next exercise set contains five exercises specifically identified by L that ask you to implement the

verification procedure. These particular exercises were chosen arbitrarily you can just as well formulate

such laboratory problems for any of the equations in any of the Exercises 1–10, 14-25, and 28–51

7.5 Exercises

This set contains exercises specifically identified by L that ask you to implement the verification pro-

cedure. These particular exercises were chosen arbitrarily you can just as well formulate such laboratory

problems for any of the equations in Exercises 1–10, 14-25, and 28–51.

In Exercises 1–10 find a fundamental set of Frobenius solutions. Compute a0, a1 . . . , aN for N at least

7 in each solution.

1. C 2x2.1 C x C x2/y00 C x.3C 3x C 5x2/y0 � y D 0

2. C 3x2y00 C 2x.1C x � 2x2/y0 C .2x � 8x2/y D 0

3. C x2.3C 3x C x2/y00 C x.5C 8x C 7x2/y0 � .1 � 2x � 9x2/y D 0

4. C 4x2y00 C x.7C 2x C 4x2/y0 � .1 � 4x � 7x2/y D 0

5. C 12x2.1 C x/y00 C x.11C 35x C 3x2/y0 � .1 � 10x � 5x2/y D 0

6. C x2.5C x C 10x2/y00 C x.4C 3x C 48x2/y0 C .x C 36x2/y D 0

7. C 8x2y00 � 2x.3 � 4x � x2/y0 C .3C 6x C x2/y D 0

8. C 18x2.1 C x/y00 C 3x.5C 11x C x2/y0 � .1 � 2x � 5x2/y D 0

9. C x.3C x C x2/y00 C .4 C x � x2/y0 C xy D 0
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10. C 10x2.1 C x C 2x2/y00 C x.13C 13x C 66x2/y0 � .1C 4x C 10x2/y D 0

11. L The Frobenius solutions of

2x2.1C x C x2/y00 C x.9C 11x C 11x2/y0 C .6 C 10x C 7x2/y D 0

obtained in Example 7.5.1 are defined on .0; �/, where � is defined in Theorem 7.5.2. Find �.

Then do the following experiments for each Frobenius solution, with M D 20 and ı D :5�, :7�,

and :9� in the verification procedure described at the end of this section.

(a) Compute �N .ı/ (see Eqn. (7.5.28)) forN D 5, 10, 15,. . . , 50.

(b) FindN such that �N .ı/ < 10
�5.

(c) FindN such that �N .ı/ < 10
�10.

12. L By Theorem 7.5.2 the Frobenius solutions of the equation in Exercise 4 are defined on .0;1/.
Do experiments (a), (b), and (c) of Exercise 11 for each Frobenius solution, with M D 20 and

ı D 1, 2, and 3 in the verification procedure described at the end of this section.

13. L The Frobenius solutions of the equation in Exercise 6 are defined on .0; �/, where � is defined

in Theorem 7.5.2. Find � and do experiments (a), (b), and (c) of Exercise 11 for each Frobenius

solution, with M D 20 and ı D :3�, :4�, and :5�, in the verification procedure described at the
end of this section.

In Exercises 14–25 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-

cients in each solution.

14. 2x2y00 C x.3C 2x/y0 � .1 � x/y D 0

15. x2.3 C x/y00 C x.5C 4x/y0 � .1 � 2x/y D 0

16. 2x2y00 C x.5C x/y0 � .2 � 3x/y D 0

17. 3x2y00 C x.1C x/y0 � y D 0

18. 2x2y00 � xy0 C .1 � 2x/y D 0

19. 9x2y00 C 9xy0 � .1C 3x/y D 0

20. 3x2y00 C x.1C x/y0 � .1 C 3x/y D 0

21. 2x2.3 C x/y00 C x.1C 5x/y0 C .1 C x/y D 0

22. x2.4 C x/y00 � x.1 � 3x/y0 C y D 0

23. 2x2y00 C 5xy0 C .1C x/y D 0

24. x2.3 C 4x/y00 C x.5C 18x/y0 � .1 � 12x/y D 0

25. 6x2y00 C x.10 � x/y0 � .2C x/y D 0

26. L By Theorem 7.5.2 the Frobenius solutions of the equation in Exercise 17 are defined on .0;1/.

Do experiments (a), (b), and (c) of Exercise 11 for each Frobenius solution, with M D 20 and

ı D 3, 6, 9, and 12 in the verification procedure described at the end of this section.

27. L The Frobenius solutions of the equation in Exercise 22 are defined on .0; �/, where � is defined

in Theorem 7.5.2. Find � and do experiments (a), (b), and (c) of Exercise 11 for each Frobenius
solution, with M D 20 and ı D :25�, :5�, and :75� in the verification procedure described at the

end of this section.
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In Exercises 28–32 find a fundamental set of Frobenius solutions. Compute coefficients a0, . . . , aN forN

at least 7 in each solution.

28. C x2.8C x/y00 C x.2 C 3x/y0 C .1C x/y D 0

29. C x2.3C 4x/y00 C x.11C 4x/y0 � .3 C 4x/y D 0

30. C 2x2.2 C 3x/y00 C x.4C 11x/y0 � .1 � x/y D 0

31. C x2.2C x/y00 C 5x.1 � x/y0 � .2 � 8x/y

32. C x2.6C x/y00 C x.11C 4x/y0 C .1C 2x/y D 0

In Exercises 33–46 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-

cients in each solution.

33. 8x2y00 C x.2C x2/y0 C y D 0

34. 8x2.1 � x2/y00 C 2x.1 � 13x2/y0 C .1 � 9x2/y D 0

35. x2.1 C x2/y00 � 2x.2 � x2/y0 C 4y D 0

36. x.3C x2/y00 C .2 � x2/y0 � 8xy D 0

37. 4x2.1 � x2/y00 C x.7 � 19x2/y0 � .1 C 14x2/y D 0

38. 3x2.2 � x2/y00 C x.1 � 11x2/y0 C .1 � 5x2/y D 0

39. 2x2.2 C x2/y00 � x.12 � 7x2/y0 C .7 C 3x2/y D 0

40. 2x2.2 C x2/y00 C x.4C 7x2/y0 � .1 � 3x2/y D 0

41. 2x2.1 C 2x2/y00 C 5x.1C 6x2/y0 � .2 � 40x2/y D 0

42. 3x2.1 C x2/y00 C 5x.1C x2/y0 � .1C 5x2/y D 0

43. x.1C x2/y00 C .4 C 7x2/y0 C 8xy D 0

44. x2.2 C x2/y00 C x.3C x2/y0 � y D 0

45. 2x2.1 C x2/y00 C x.3C 8x2/y0 � .3 � 4x2/y D 0

46. 9x2y00 C 3x.3C x2/y0 � .1 � 5x2/y D 0

In Exercises 47–51 find a fundamental set of Frobenius solutions. Compute the coefficients a0, . . . , a2M

forM at least 7 in each solution.

47. C 6x2y00 C x.1C 6x2/y0 C .1 C 9x2/y D 0

48. C x2.8C x2/y00 C 7x.2C x2/y0 � .2 � 9x2/y D 0

49. C 9x2.1 C x2/y00 C 3x.3C 13x2/y0 � .1 � 25x2/y D 0

50. C 4x2.1 C x2/y00 C 4x.1C 6x2/y0 � .1 � 25x2/y D 0

51. C 8x2.1 C 2x2/y00 C 2x.5C 34x2/y0 � .1 � 30x2/y D 0

52. Suppose r1 > r2, a0 D b0 D 1, and the Frobenius series

y1 D xr1

1
X

nD0

anx
n and y2 D xr2

1
X

nD0

bnx
n

both converge on an interval .0; �/.
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(a) Show that y1 and y2 are linearly independent on .0; �/. HINT: Show that if c1 and c2 are

constants such that c1y1 C c2y2 � 0 on .0; �/, then

c1x
r1�r2

1
X

nD0

anx
n C c2

1
X

nD0

bnx
n D 0; 0 < x < �:

Then let x ! 0C to conclude that c2 D 0.

(b) Use the result of (b) to complete the proof of Theorem 7.5.3.

53. The equation

x2y00 C xy0 C .x2 � �2/y D 0 (7.5.1)

is Bessel’s equation of order �. (Here � is a parameter, and this use of “order” should not be con-

fused with its usual use as in “the order of the equation.”) The solutions of (7.5.1) are Bessel functions of order

�.

(a) Assuming that � isn’t an integer, find a fundamental set of Frobenius solutions of (7.5.1).

(b) If � D 1=2, the solutions of (7.5.1) reduce to familiar elementary functions. Identify these

functions.

54. (a) Verify that

d

dx
.jxjrxn/ D .nC r/jxjrxn�1 and

d 2

dx2
.jxjrxn/ D .nC r/.nC r � 1/jxjrxn�2

if x ¤ 0.

(b) Let

Ly D x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y D 0:

Show that if xr
P1

nD0 anx
n is a solution of Ly D 0 on .0; �/ then jxjr

P1
nD0 anx

n is a

solution on .��; 0/ and .0; �/.

55. (a) Deduce from Eqn. (7.5.20) that

an.r/ D .�1/n
n
Y

j D1

p1.j C r � 1/
p0.j C r/

:

(b) Conclude that if p0.r/ D ˛0.r � r1/.r � r2/ where r1 � r2 is not an integer, then

y1 D xr1

1
X

nD0

an.r1/x
n and y2 D xr2

1
X

nD0

an.r2/x
n

form a fundamental set of Frobenius solutions of

x2.˛0 C ˛1x/y
00 C x.ˇ0 C ˇ1x/y

0 C .
0 C 
1x/y D 0:

(c) Show that if p0 satisfies the hypotheses of (b) then

y1 D xr1

1
X

nD0

.�1/n
nŠ
Qn

j D1.j C r1 � r2/

�


1

˛0

�n

xn

http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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and

y2 D xr2

1
X

nD0

.�1/n
nŠ
Qn

j D1.j C r2 � r1/

�


1

˛0

�n

xn

form a fundamental set of Frobenius solutions of

˛0x
2y00 C ˇ0xy

0 C .
0 C 
1x/y D 0:

56. Let

Ly D x2.˛0 C ˛2x
2/y00 C x.ˇ0 C ˇ2x

2/y0 C .
0 C 
2x
2/y D 0

and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0 and p2.r/ D ˛2r.r � 1/C ˇ2r C 
2:

(a) Use Theorem 7.5.2 to show that if

a0.r/ D 1;

p0.2mC r/a2m.r/C p2.2mC r � 2/a2m�2.r/ D 0; m � 1;
(7.5.1)

then the Frobenius series y.x; r/ D xr
P1

mD0 a2mx
2m satisfies Ly.x; r/ D p0.r/x

r .

(b) Deduce from (7.5.1) that if p0.2mC r/ is nonzero for every positive integer m then

a2m.r/ D .�1/m
m
Y

j D1

p2.2j C r � 2/
p0.2j C r/

:

(c) Conclude that if p0.r/ D ˛0.r � r1/.r � r2/ where r1 � r2 is not an even integer, then

y1 D xr1

1
X

mD0

a2m.r1/x
2m and y2 D xr2

1
X

mD0

a2m.r2/x
2m

form a fundamental set of Frobenius solutions of Ly D 0.

(d) Show that if p0 satisfies the hypotheses of (c) then

y1 D xr1

1
X

mD0

.�1/m
2mmŠ

Qm
j D1.2j C r1 � r2/

�


2

˛0

�m

x2m

and

y2 D xr2

1
X

mD0

.�1/m
2mmŠ

Qm
j D1.2j C r2 � r1/

�


2

˛0

�m

x2m

form a fundamental set of Frobenius solutions of

˛0x
2y00 C ˇ0xy

0 C .
0 C 
2x
2/y D 0:

57. Let

Ly D x2q0.x/y
00 C xq1.x/y

0 C q2.x/y;

where

q0.x/ D
1
X

j D0

˛jx
j ; q1.x/ D

1
X

j D0

ˇjx
j ; q2.x/ D

1
X

j D0


jx
j ;
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and define

pj .r/ D ˛j r.r � 1/C ˇj r C 
j ; j D 0; 1; : : : :

Let y D xr
P1

nD0 anx
n. Show that

Ly D xr

1
X

nD0

bnx
n;

where

bn D
n
X

j D0

pj .nC r � j /an�j :

58. (a) Let L be as in Exercise 57. Show that if

y.x; r/ D xr

1
X

nD0

an.r/x
n

where

a0.r/ D 1;

an.r/ D � 1

p0.nC r/

n
X

j D1

pj .nC r � j /an�j .r/; n � 1;

then

Ly.x; r/ D p0.r/x
r :

(b) Conclude that if

p0.r/ D ˛0.r � r1/.r � r2/
where r1 �r2 isn’t an integer then y1 D y.x; r1/ and y2 D y.x; r2/ are solutions ofLy D 0.

59. Let
Ly D x2.˛0 C ˛qx

q/y00 C x.ˇ0 C ˇqx
q/y0 C .
0 C 
qx

q/y

where q is a positive integer, and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0 and pq.r/ D ˛qr.r � 1/C ˇqr C 
q:

(a) Show that if

y.x; r/ D xr

1
X

mD0

aqm.r/x
qm

where
a0.r/ D 1;

aqm.r/ D �pq .q.m � 1/C r/

p0.qmC r/
aq.m�1/.r/; m � 1;

(7.5.1)

then

Ly.x; r/ D p0.r/x
r :

(b) Deduce from (7.5.1) that

aqm.r/ D .�1/m
m
Y

j D1

pq .q.j � 1/C r/

p0.qj C r/
:
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(c) Conclude that if p0.r/ D ˛0.r � r1/.r � r2/ where r1 � r2 is not an integer multiple of q,

then

y1 D xr1

1
X

mD0

aqm.r1/x
qm and y2 D xr2

1
X

mD0

aqm.r2/x
qm

form a fundamental set of Frobenius solutions of Ly D 0.

(d) Show that if p0 satisfies the hypotheses of (c) then

y1 D xr1

1
X

mD0

.�1/m
qmmŠ

Qm
j D1.qj C r1 � r2/

�


q

˛0

�m

xqm

and

y2 D xr2

1
X

mD0

.�1/m
qmmŠ

Qm
j D1.qj C r2 � r1/

�


q

˛0

�m

xqm

form a fundamental set of Frobenius solutions of

˛0x
2y00 C ˇ0xy

0 C .
0 C 
qx
q/y D 0:

60. (a) Suppose ˛0; ˛1, and ˛2 are real numbers with ˛0 ¤ 0, and fang1
nD0 is defined by

˛0a1 C ˛1a0 D 0

and
˛0an C ˛1an�1 C ˛2an�2 D 0; n � 2:

Show that

.˛0 C ˛1x C ˛2x
2/

1
X

nD0

anx
n D ˛0a0;

and infer that
1
X

nD0

anx
n D ˛0a0

˛0 C ˛1x C ˛2x2
:

(b) With ˛0; ˛1, and ˛2 as in (a), consider the equation

x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y D 0; (7.5.1)

and define
pj .r/ D ˛j r.r � 1/C ˇj r C 
j ; j D 0; 1; 2:

Suppose
p1.r � 1/
p0.r/

D ˛1

˛0

;
p2.r � 2/

p0.r/
D ˛2

˛0

;

and

p0.r/ D ˛0.r � r1/.r � r2/;

where r1 > r2. Show that

y1 D xr1

˛0 C ˛1x C ˛2x2
and y2 D xr2

˛0 C ˛1x C ˛2x2

form a fundamental set of Frobenius solutions of (7.5.1) on any interval .0; �/ on which
˛0 C ˛1x C ˛2x

2 has no zeros.
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In Exercises 61–68 use the method suggested by Exercise 60 to find the general solution on some interval

.0; �/.

61. 2x2.1 C x/y00 � x.1 � 3x/y0 C y D 0

62. 6x2.1 C 2x2/y00 C x.1C 50x2/y0 C .1 C 30x2/y D 0

63. 28x2.1 � 3x/y00 � 7x.5C 9x/y0 C 7.2 C 9x/y D 0

64. 9x2.5 C x/y00 C 9x.5C 3x/y0 � .5 � 8x/y D 0

65. 8x2.2 � x2/y00 C 2x.10 � 21x2/y0 � .2C 35x2/y D 0

66. 4x2.1 C 3x C x2/y00 � 4x.1 � 3x � 3x2/y0 C 3.1 � x C x2/y D 0

67. 3x2.1 C x/2y00 � x.1 � 10x � 11x2/y0 C .1C 5x2/y D 0

68. 4x2.3 C 2x C x2/y00 � x.3 � 14x � 15x2/y0 C .3 C 7x2/y D 0

7.6 THE METHOD OF FROBENIUS II

In this section we discuss a method for finding two linearly independent Frobenius solutions of a homo-
geneous linear second order equation near a regular singular point in the case where the indicial equation

has a repeated real root. As in the preceding section, we consider equations that can be written as

x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y D 0 (7.6.1)

where ˛0 ¤ 0. We assume that the indicial equation p0.r/ D 0 has a repeated real root r1. In this case

Theorem 7.5.3 implies that (7.6.1) has one solution of the form

y1 D xr1

1
X

nD0

anx
n;

but does not provide a second solution y2 such that fy1; y2g is a fundamental set of solutions. The

following extension of Theorem 7.5.2 provides a way to find a second solution.

Theorem 7.6.1 Let

Ly D x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y; (7.6.2)

where ˛0 ¤ 0 and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0;

p1.r/ D ˛1r.r � 1/C ˇ1r C 
1;

p2.r/ D ˛2r.r � 1/C ˇ2r C 
2:

Suppose r is a real number such that p0.nC r/ is nonzero for all positive integers n, and define

a0.r/ D 1;

a1.r/ D � p1.r/

p0.r C 1/
;

an.r/ D �p1.nC r � 1/an�1.r/C p2.nC r � 2/an�2.r/

p0.nC r/
; n � 2:
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Then the Frobenius series

y.x; r/ D xr

1
X

nD0

an.r/x
n (7.6.3)

satisfies

Ly.x; r/ D p0.r/x
r : (7.6.4)

Moreover;

@y

@r
.x; r/ D y.x; r/ lnx C xr

1
X

nD1

a0
n.r/x

n; (7.6.5)

and

L

�

@y

@r
.x; r/

�

D p0
0.r/x

r C xrp0.r/ ln x: (7.6.6)

Proof Theorem 7.5.2 implies (7.6.4). Differentiating formally with respect to r in (7.6.3) yields

@y

@r
.x; r/ D @

@r
.xr/

1
X

nD0

an.r/x
n C xr

1
X

nD1

a0
n.r/x

n

D xr lnx

1
X

nD0

an.r/x
n C xr

1
X

nD1

a0
n.r/x

n

D y.x; r/ lnx C xr

1
X

nD1

a0
n.r/x

n;

which proves (7.6.5).
To prove that @y.x; r/=@r satisfies (7.6.6), we view y in (7.6.2) as a function y D y.x; r/ of two

variables, where the prime indicates partial differentiation with respect to x; thus,

y0 D y0.x; r/ D @y

@x
.x; r/ and y00 D y00.x; r/ D @2y

@x2
.x; r/:

With this notation we can use (7.6.2) to rewrite (7.6.4) as

x2q0.x/
@2y

@x2
.x; r/C xq1.x/

@y

@x
.x; r/C q2.x/y.x; r/ D p0.r/x

r ; (7.6.7)

where

q0.x/ D ˛0 C ˛1x C ˛2x
2;

q1.x/ D ˇ0 C ˇ1x C ˇ2x
2;

q2.x/ D 
0 C 
1x C 
2x
2:

Differentiating both sides of (7.6.7) with respect to r yields

x2q0.x/
@3y

@r@x2
.x; r/C xq1.x/

@2y

@r@x
.x; r/C q2.x/

@y

@r
.x; r/ D p0

0.r/x
r C p0.r/x

r lnx:
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By changing the order of differentiation in the first two terms on the left we can rewrite this as

x2q0.x/
@3y

@x2@r
.x; r/C xq1.x/

@2y

@x@r
.x; r/C q2.x/

@y

@r
.x; r/ D p0

0.r/x
r C p0.r/x

r lnx;

or

x2q0.x/
@2

@x2

�

@y

@r
.x; r/

�

C xq1.x/
@

@r

�

@y

@x
.x; r/

�

C q2.x/
@y

@r
.x; r/ D p0

0.r/x
r C p0.r/x

r lnx;

which is equivalent to (7.6.6).

Theorem 7.6.2 Let L be as in Theorem 7.6.1 and suppose the indicial equationp0.r/ D 0 has a repeated

real root r1: Then

y1.x/ D y.x; r1/ D xr1

1
X

nD0

an.r1/x
n

and

y2.x/ D @y

@r
.x; r1/ D y1.x/ ln x C xr1

1
X

nD1

a0
n.r1/x

n (7.6.8)

form a fundamental set of solutions of Ly D 0:

Proof Since r1 is a repeated root of p0.r/ D 0, the indicial polynomial can be factored as

p0.r/ D ˛0.r � r1/2;

so

p0.nC r1/ D ˛0n
2;

which is nonzero if n > 0. Therefore the assumptions of Theorem 7.6.1 hold with r D r1, and (7.6.4)

implies that Ly1 D p0.r1/x
r1 D 0. Since

p0
0.r/ D 2˛.r � r1/

it follows that p0
0.r1/ D 0, so (7.6.6) implies that

Ly2 D p0
0.r1/x

r1 C xr1p0.r1/ ln x D 0:

This proves that y1 and y2 are both solutions ofLy D 0. We leave the proof that fy1; y2g is a fundamental

set as an exercise (Exercise 53).

Example 7.6.1 Find a fundamental set of solutions of

x2.1 � 2x C x2/y00 � x.3C x/y0 C .4 C x/y D 0: (7.6.9)

Compute just the terms involving xnCr1 , where 0 � n � 4 and r1 is the root of the indicial equation.

Solution For the given equation, the polynomials defined in Theorem 7.6.1 are

p0.r/ D r.r � 1/ � 3r C 4 D .r � 2/2;
p1.r/ D �2r.r � 1/� r C 1 D �.r � 1/.2r C 1/;

p2.r/ D r.r � 1/:
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Since r1 D 2 is a repeated root of the indicial polynomial p0, Theorem 7.6.2 implies that

y1 D x2

1
X

nD0

an.2/x
n and y2 D y1 ln x C x2

1
X

nD1

a0
n.2/x

n (7.6.10)

form a fundamental set of Frobenius solutions of (7.6.9). To find the coefficients in these series, we use
the recurrence formulas from Theorem 7.6.1:

a0.r/ D 1;

a1.r/ D � p1.r/

p0.r C 1/
D � .r � 1/.2r C 1/

.r � 1/2 D 2r C 1

r � 1 ;

an.r/ D �p1.nC r � 1/an�1.r/C p2.nC r � 2/an�2.r/

p0.nC r/

D .nC r � 2/ Œ.2nC 2r � 1/an�1.r/ � .nC r � 3/an�2.r/�

.nC r � 2/2

D .2nC 2r � 1/
.nC r � 2/ an�1.r/ � .nC r � 3/

.nC r � 2/an�2.r/; n � 2:

(7.6.11)

Differentiating yields

a0
1.r/ D � 3

.r � 1/2
;

a0
n.r/ D 2nC 2r � 1

nC r � 2
a0

n�1.r/ � nC r � 3

nC r � 2
a0

n�2.r/

� 3

.nC r � 2/2 an�1.r/ � 1

.nC r � 2/2 an�2.r/; n � 2:

(7.6.12)

Setting r D 2 in (7.6.11) and (7.6.12) yields

a0.2/ D 1;

a1.2/ D 5;

an.2/ D .2nC 3/

n
an�1.2/ � .n � 1/

n
an�2.2/; n � 2

(7.6.13)

and

a0
1.2/ D �3;

a0
n.2/ D 2nC 3

n
a0

n�1.2/ � n � 1
n

a0
n�2.2/ � 3

n2
an�1.2/ � 1

n2
an�2.2/; n � 2:

(7.6.14)

Computing recursively with (7.6.13) and (7.6.14) yields

a0.2/ D 1; a1.2/ D 5; a2.2/ D 17; a3.2/ D 143

3
; a4.2/ D 355

3
;

and

a0
1.2/ D �3; a0

2.2/ D �29
2
; a0

3.2/ D �859
18
; a0

4.2/ D �4693
36

:

Substituting these coefficients into (7.6.10) yields

y1 D x2

�

1C 5x C 17x2 C 143

3
x3 C 355

3
x4 C � � �

�
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and

y2 D y1 lnx � x3

�

3C 29

2
x C 859

18
x2 C 4693

36
x3 C � � �

�

:

Since the recurrence formula (7.6.11) involves three terms, it’s not possible to obtain a simple explicit

formula for the coefficients in the Frobenius solutions of (7.6.9). However, as we saw in the preceding
sections, the recurrrence formula for fan.r/g involves only two terms if either ˛1 D ˇ1 D 
1 D 0 or

˛2 D ˇ2 D 
2 D 0 in (7.6.1). In this case, it’s often possible to find explicit formulas for the coefficients.

The next two examples illustrate this.

Example 7.6.2 Find a fundamental set of Frobenius solutions of

2x2.2 C x/y00 C 5x2y0 C .1 C x/y D 0: (7.6.15)

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.6.1 are

p0.r/ D 4r.r � 1/C 1 D .2r � 1/2;
p1.r/ D 2r.r � 1/C 5r C 1 D .r C 1/.2r C 1/;

p2.r/ D 0:

Since r1 D 1=2 is a repeated zero of the indicial polynomial p0, Theorem 7.6.2 implies that

y1 D x1=2

1
X

nD0

an.1=2/x
n (7.6.16)

and

y2 D y1 ln x C x1=2

1
X

nD1

a0
n.1=2/x

n (7.6.17)

form a fundamental set of Frobenius solutions of (7.6.15). Since p2 � 0, the recurrence formulas in

Theorem 7.6.1 reduce to

a0.r/ D 1;

an.r/ D �p1.nC r � 1/
p0.nC r/

an�1.r/;

D � .nC r/.2nC 2r � 1/

.2nC 2r � 1/2 an�1.r/;

D � nC r

2nC 2r � 1an�1.r/; n � 0:

We leave it to you to show that

an.r/ D .�1/n
n
Y

j D1

j C r

2j C 2r � 1 ; n � 0: (7.6.18)

Setting r D 1=2 yields

an.1=2/ D .�1/n
n
Y

j D1

j C 1=2

2j
D .�1/n

n
Y

j D1

2j C 1

4j
;

D
.�1/n

Qn
j D1.2j C 1/

4nnŠ
; n � 0:

(7.6.19)
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Substituting this into (7.6.16) yields

y1 D x1=2

1
X

nD0

.�1/n
Qn

j D1.2j C 1/

4nnŠ
xn:

To obtain y2 in (7.6.17), we must compute a0
n.1=2/ for n D 1, 2,. . . . We’ll do this by logarithmic

differentiation. From (7.6.18),

jan.r/j D
n
Y

j D1

jj C r j
j2j C 2r � 1j ; n � 1:

Therefore

ln jan.r/j D
n
X

j D1

.ln jj C r j � ln j2j C 2r � 1j/ :

Differentiating with respect to r yields

a0
n.r/

an.r/
D

n
X

j D1

�

1

j C r
� 2

2j C 2r � 1

�

:

Therefore

a0
n.r/ D an.r/

n
X

j D1

�

1

j C r
� 2

2j C 2r � 1

�

:

Setting r D 1=2 here and recalling (7.6.19) yields

a0
n.1=2/ D

.�1/n
Qn

j D1.2j C 1/

4nnŠ

0

@

n
X

j D1

1

j C 1=2
�

n
X

j D1

1

j

1

A : (7.6.20)

Since
1

j C 1=2
� 1

j
D j � j � 1=2

j.j C 1=2/
D � 1

j.2j C 1/
;

(7.6.20) can be rewritten as

a0
n.1=2/ D �

.�1/n
Qn

j D1.2j C 1/

4nnŠ

n
X

j D1

1

j.2j C 1/
:

Therefore, from (7.6.17),

y2 D y1 lnx � x1=2

1
X

nD1

.�1/n
Qn

j D1.2j C 1/

4nnŠ

0

@

n
X

j D1

1

j.2j C 1/

1

A xn:

Example 7.6.3 Find a fundamental set of Frobenius solutions of

x2.2 � x2/y00 � 2x.1C 2x2/y0 C .2 � 2x2/y D 0: (7.6.21)

Give explicit formulas for the coefficients in the solutions.
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Solution For (7.6.21), the polynomials defined in Theorem 7.6.1 are

p0.r/ D 2r.r � 1/� 2r C 2 D 2.r � 1/2;

p1.r/ D 0;

p2.r/ D �r.r � 1/ � 4r � 2 D �.r C 1/.r C 2/:

As in Section 7.5, since p1 � 0, the recurrence formulas of Theorem 7.6.1 imply that an.r/ D 0 if n is

odd, and
a0.r/ D 1;

a2m.r/ D �p2.2mC r � 2/
p0.2mC r/

a2m�2.r/

D .2mC r � 1/.2mC r/

2.2mC r � 1/2
a2m�2.r/

D 2mC r

2.2mC r � 1/
a2m�2.r/; m � 1:

Since r1 D 1 is a repeated root of the indicial polynomial p0, Theorem 7.6.2 implies that

y1 D x

1
X

mD0

a2m.1/x
2m (7.6.22)

and

y2 D y1 lnx C x

1
X

mD1

a0
2m.1/x

2m (7.6.23)

form a fundamental set of Frobenius solutions of (7.6.21). We leave it to you to show that

a2m.r/ D 1

2m

m
Y

j D1

2j C r

2j C r � 1
: (7.6.24)

Setting r D 1 yields

a2m.1/ D 1

2m

m
Y

j D1

2j C 1

2j
D
Qm

j D1.2j C 1/

4mmŠ
; (7.6.25)

and substituting this into (7.6.22) yields

y1 D x

1
X

mD0

Qm
j D1.2j C 1/

4mmŠ
x2m:

To obtain y2 in (7.6.23), we must compute a0
2m.1/ for m D 1, 2, . . . . Again we use logarithmic

differentiation. From (7.6.24),

ja2m.r/j D 1

2m

m
Y

j D1

j2j C r j
j2j C r � 1j :

Taking logarithms yields

ln ja2m.r/j D �m ln 2C
m
X

j D1

.ln j2j C r j � ln j2j C r � 1j/ :



372 Chapter 7 Series Solutions of Linear Second Order Equations

Differentiating with respect to r yields

a0
2m.r/

a2m.r/
D

m
X

j D1

�

1

2j C r
� 1

2j C r � 1

�

:

Therefore

a0
2m.r/ D a2m.r/

m
X

j D1

�

1

2j C r
� 1

2j C r � 1

�

:

Setting r D 1 and recalling (7.6.25) yields

a0
2m.1/ D

Qm
j D1.2j C 1/

4mmŠ

m
X

j D1

�

1

2j C 1
� 1

2j

�

: (7.6.26)

Since
1

2j C 1
� 1

2j
D � 1

2j.2j C 1/
;

(7.6.26) can be rewritten as

a0
2m.1/ D �

Qm
j D1.2j C 1/

2 � 4mmŠ

m
X

j D1

1

j.2j C 1/
:

Substituting this into (7.6.23) yields

y2 D y1 ln x � x

2

1
X

mD1

Qm
j D1.2j C 1/

4mmŠ

0

@

m
X

j D1

1

j.2j C 1/

1

A x2m:

If the solution y1 D y.x; r1/ of Ly D 0 reduces to a finite sum, then there’s a difficulty in using

logarithmic differentiation to obtain the coefficients fa0
n.r1/g in the second solution. The next example

illustrates this difficulty and shows how to overcome it.

Example 7.6.4 Find a fundamental set of Frobenius solutions of

x2y00 � x.5 � x/y0 C .9 � 4x/y D 0: (7.6.27)

Give explicit formulas for the coefficients in the solutions.

Solution For (7.6.27) the polynomials defined in Theorem 7.6.1 are

p0.r/ D r.r � 1/ � 5r C 9 D .r � 3/2;
p1.r/ D r � 4;
p2.r/ D 0:

Since r1 D 3 is a repeated zero of the indicial polynomial p0, Theorem 7.6.2 implies that

y1 D x3

1
X

nD0

an.3/x
n (7.6.28)
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and

y2 D y1 lnx C x3

1
X

nD1

a0
n.3/x

n (7.6.29)

are linearly independent Frobenius solutions of (7.6.27). To find the coefficients in (7.6.28) we use the

recurrence formulas
a0.r/ D 1;

an.r/ D �p1.nC r � 1/
p0.nC r/

an�1.r/

D � nC r � 5

.nC r � 3/2 an�1.r/; n � 1:

We leave it to you to show that

an.r/ D .�1/n
n
Y

j D1

j C r � 5
.j C r � 3/2 : (7.6.30)

Setting r D 3 here yields

an.3/ D .�1/n
n
Y

j D1

j � 2
j 2

;

so a1.3/ D 1 and an.3/ D 0 if n � 2. Substituting these coefficients into (7.6.28) yields

y1 D x3.1C x/:

To obtain y2 in (7.6.29) we must compute a0
n.3/ for n D 1, 2, . . . . Let’s first try logarithmic differen-

tiation. From (7.6.30),

jan.r/j D
n
Y

j D1

jj C r � 5j
jj C r � 3j2 ; n � 1;

so

ln jan.r/j D
n
X

j D1

.ln jj C r � 5j � 2 ln jj C r � 3j/ :

Differentiating with respect to r yields

a0
n.r/

an.r/
D

n
X

j D1

�

1

j C r � 5 � 2

j C r � 3

�

:

Therefore

a0
n.r/ D an.r/

n
X

j D1

�

1

j C r � 5
� 2

j C r � 3

�

: (7.6.31)

However, we can’t simply set r D 3 here if n � 2, since the bracketed expression in the sum correspond-

ing to j D 2 contains the term 1=.r � 3/. In fact, since an.3/ D 0 for n � 2, the formula (7.6.31) for

a0
n.r/ is actually an indeterminate form at r D 3.

We overcome this difficulty as follows. From (7.6.30) with n D 1,

a1.r/ D � r � 4
.r � 2/2

:
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Therefore

a0
1.r/ D r � 6

.r � 2/3
;

so
a0

1.3/ D �3: (7.6.32)

From (7.6.30) with n � 2,

an.r/ D .�1/n.r � 4/.r � 3/
Qn

j D3.j C r � 5/
Qn

j D1.j C r � 3/2 D .r � 3/cn.r/;

where

cn.r/ D .�1/n.r � 4/

Qn
j D3.j C r � 5/

Qn
j D1.j C r � 3/2 ; n � 2:

Therefore
a0

n.r/ D cn.r/C .r � 3/c0
n.r/; n � 2;

which implies that a0
n.3/ D cn.3/ if n � 3. We leave it to you to verify that

a0
n.3/ D cn.3/ D .�1/nC1

n.n � 1/nŠ ; n � 2:

Substituting this and (7.6.32) into (7.6.29) yields

y2 D x3.1 C x/ lnx � 3x4 � x3

1
X

nD2

.�1/n
n.n � 1/nŠ

xn:

7.6 Exercises

In Exercises 1–11 find a fundamental set of Frobenius solutions. Compute the terms involving xnCr1 ,

where 0 � n � N (N at least 7) and r1 is the root of the indicial equation. Optionally, write a computer

program to implement the applicable recurrence formulas and take N > 7.

1. C x2y00 � x.1 � x/y0 C .1 � x2/y D 0

2. C x2.1C x C 2x2/y0 C x.3C 6x C 7x2/y0 C .1C 6x � 3x2/y D 0

3. C x2.1C 2x C x2/y00 C x.1C 3x C 4x2/y0 � x.1 � 2x/y D 0

4. C 4x2.1 C x C x2/y00 C 12x2.1 C x/y0 C .1C 3x C 3x2/y D 0

5. C x2.1C x C x2/y00 � x.1 � 4x � 2x2/y0 C y D 0

6. C 9x2y00 C 3x.5C 3x � 2x2/y0 C .1C 12x � 14x2/y D 0

7. C x2y00 C x.1C x C x2/y0 C x.2 � x/y D 0

8. C x2.1C 2x/y00 C x.5C 14x C 3x2/y0 C .4 C 18x C 12x2/y D 0

9. C 4x2y00 C 2x.4C x C x2/y0 C .1C 5x C 3x2/y D 0

10. C 16x2y00 C 4x.6C x C 2x2/y0 C .1 C 5x C 18x2/y D 0



Section 7.6 The Method of Frobenius II 375

11. C 9x2.1 C x/y00 C 3x.5C 11x � x2/y0 C .1C 16x � 7x2/y D 0

In Exercises 12–22 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-

cients.

12. 4x2y00 C .1 C 4x/y D 0

13. 36x2.1 � 2x/y00 C 24x.1� 9x/y0 C .1 � 70x/y D 0

14. x2.1 C x/y00 � x.3 � x/y0 C 4y D 0

15. x2.1 � 2x/y00 � x.5 � 4x/y0 C .9 � 4x/y D 0

16. 25x2y00 C x.15C x/y0 C .1C x/y D 0

17. 2x2.2 C x/y00 C x2y0 C .1 � x/y D 0

18. x2.9 C 4x/y00 C 3xy0 C .1 C x/y D 0

19. x2y00 � x.3 � 2x/y0 C .4C 3x/y D 0

20. x2.1 � 4x/y00 C 3x.1 � 6x/y0 C .1 � 12x/y D 0

21. x2.1 C 2x/y00 C x.3C 5x/y0 C .1 � 2x/y D 0

22. 2x2.1 C x/y00 � x.6 � x/y0 C .8 � x/y D 0

In Exercises 23–27 find a fundamental set of Frobenius solutions. Compute the terms involving xnCr1 ,

where 0 � n � N (N at least 7) and r1 is the root of the indicial equation. Optionally, write a computer

program to implement the applicable recurrence formulas and take N > 7.

23. C x2.1C 2x/y00 C x.5C 9x/y0 C .4C 3x/y D 0

24. C x2.1 � 2x/y00 � x.5C 4x/y0 C .9 C 4x/y D 0

25. C x2.1C 4x/y00 � x.1 � 4x/y0 C .1 C x/y D 0

26. C x2.1C x/y00 C x.1 C 2x/y0 C xy D 0

27. C x2.1 � x/y00 C x.7C x/y0 C .9 � x/y D 0

In Exercises 28–38 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-

cients.

28. x2y00 � x.1 � x2/y0 C .1 C x2/y D 0

29. x2.1 C x2/y00 � 3x.1 � x2/y0 C 4y D 0

30. 4x2y00 C 2x3y0 C .1 C 3x2/y D 0

31. x2.1 C x2/y00 � x.1 � 2x2/y0 C y D 0

32. 2x2.2 C x2/y00 C 7x3y0 C .1 C 3x2/y D 0

33. x2.1 C x2/y00 � x.1 � 4x2/y0 C .1 C 2x2/y D 0

34. 4x2.4 C x2/y00 C 3x.8C 3x2/y0 C .1 � 9x2/y D 0

35. 3x2.3 C x2/y00 C x.3C 11x2/y0 C .1 C 5x2/y D 0

36. 4x2.1 C 4x2/y00 C 32x3y0 C y D 0

37. 9x2y00 � 3x.7� 2x2/y0 C .25 C 2x2/y D 0

38. x2.1 C 2x2/y00 C x.3C 7x2/y0 C .1 � 3x2/y D 0
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In Exercises 39–43 find a fundamental set of Frobenius solutions. Compute the terms involving x2mCr1 ,

where 0 � m � M (M at least 3) and r1 is the root of the indicial equation. Optionally, write a computer

program to implement the applicable recurrence formulas and takeM > 3.

39. C x2.1C x2/y00 C x.3C 8x2/y0 C .1 C 12x2/y

40. C x2y00 � x.1 � x2/y0 C .1 C x2/y D 0

41. C x2.1 � 2x2/y00 C x.5 � 9x2/y0 C .4 � 3x2/y D 0

42. C x2.2C x2/y00 C x.14� x2/y0 C 2.9 C x2/y D 0

43. C x2.1C x2/y00 C x.3C 7x2/y0 C .1 C 8x2/y D 0

In Exercises 44–52 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-

cients.

44. x2.1 � 2x/y00 C 3xy0 C .1C 4x/y D 0

45. x.1C x/y00 C .1 � x/y0 C y D 0

46. x2.1 � x/y00 C x.3 � 2x/y0 C .1 C 2x/y D 0

47. 4x2.1 C x/y00 � 4x2y0 C .1 � 5x/y D 0

48. x2.1 � x/y00 � x.3 � 5x/y0 C .4 � 5x/y D 0

49. x2.1 C x2/y00 � x.1C 9x2/y0 C .1 C 25x2/y D 0

50. 9x2y00 C 3x.1 � x2/y0 C .1 C 7x2/y D 0

51. x.1C x2/y00 C .1 � x2/y0 � 8xy D 0

52. 4x2y00 C 2x.4 � x2/y0 C .1 C 7x2/y D 0

53. Under the assumptions of Theorem 7.6.2, suppose the power series

1
X

nD0

an.r1/x
n and

1
X

nD1

a0
n.r1/x

n

converge on .��; �/.
(a) Show that

y1 D xr1

1
X

nD0

an.r1/x
n and y2 D y1 lnx C xr1

1
X

nD1

a0
n.r1/x

n

are linearly independent on .0; �/. HINT: Show that if c1 and c2 are constants such that

c1y1 C c2y2 � 0 on .0; �/, then

.c1 C c2 lnx/

1
X

nD0

an.r1/x
n C c2

1
X

nD1

a0
n.r1/x

n D 0; 0 < x < �:

Then let x ! 0C to conclude that c2 D 0.

(b) Use the result of (a) to complete the proof of Theorem 7.6.2.
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54. Let

Ly D x2.˛0 C ˛1x/y
00 C x.ˇ0 C ˇ1x/y

0 C .
0 C 
1x/y

and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0 and p1.r/ D ˛1r.r � 1/C ˇ1r C 
1:

Theorem 7.6.1 and Exercise 7.5.55(a) imply that if

y.x; r/ D xr

1
X

nD0

an.r/x
n

where

an.r/ D .�1/n
n
Y

j D1

p1.j C r � 1/
p0.j C r/

;

then
Ly.x; r/ D p0.r/x

r :

Now suppose p0.r/ D ˛0.r � r1/2 and p1.k C r1/ ¤ 0 if k is a nonnegative integer.

(a) Show that Ly D 0 has the solution

y1 D xr1

1
X

nD0

an.r1/x
n;

where

an.r1/ D .�1/n
˛n

0 .nŠ/
2

n
Y

j D1

p1.j C r1 � 1/:

(b) Show that Ly D 0 has the second solution

y2 D y1 lnx C xr1

1
X

nD1

an.r1/Jnx
n;

where

Jn D
n
X

j D1

p0
1.j C r1 � 1/
p1.j C r1 � 1/ � 2

n
X

j D1

1

j
:

(c) Conclude from (a) and (b) that if 
1 ¤ 0 then

y1 D xr1

1
X

nD0

.�1/n
.nŠ/2

�


1

˛0

�n

xn

and

y2 D y1 ln x � 2xr1

1
X

nD1

.�1/n
.nŠ/2

�


1

˛0

�n
0

@

n
X

j D1

1

j

1

A xn

are solutions of

˛0x
2y00 C ˇ0xy

0 C .
0 C 
1x/y D 0:

(The conclusion is also valid if 
1 D 0. Why?)
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55. Let

Ly D x2.˛0 C ˛qx
q/y00 C x.ˇ0 C ˇqx

q/y0 C .
0 C 
qx
q/y

where q is a positive integer, and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0 and pq.r/ D ˛qr.r � 1/C ˇqr C 
q:

Suppose

p0.r/ D ˛0.r � r1/
2 and pq.r/ 6� 0:

(a) Recall from Exercise 7.5.59 that Ly D 0 has the solution

y1 D xr1

1
X

mD0

aqm.r1/x
qm;

where

aqm.r1/ D .�1/m
.q2˛0/m.mŠ/2

m
Y

j D1

pq .q.j � 1/C r1/ :

(b) Show that Ly D 0 has the second solution

y2 D y1 lnx C xr1

1
X

mD1

a0
qm.r1/Jmx

qm;

where

Jm D
m
X

j D1

p0
q .q.j � 1/C r1/

pq .q.j � 1/C r1/
� 2

q

m
X

j D1

1

j
:

(c) Conclude from (a) and (b) that if 
q ¤ 0 then

y1 D xr1

1
X

mD0

.�1/m
.mŠ/2

�


q

q2˛0

�m

xqm

and

y2 D y1 lnx � 2

q
xr1

1
X

mD1

.�1/m
.mŠ/2

�


q

q2˛0

�m
0

@

m
X

j D1

1

j

1

A xqm

are solutions of

˛0x
2y00 C ˇ0xy

0 C .
0 C 
qx
q/y D 0:

56. The equation

xy00 C y0 C xy D 0

is Bessel’s equation of order zero. (See Exercise 53.) Find two linearly independent Frobenius
solutions of this equation.

57. Suppose the assumptions of Exercise 7.5.53 hold, except that

p0.r/ D ˛0.r � r1/
2:

Show that

y1 D xr1

˛0 C ˛1x C ˛2x2
and y2 D xr1 ln x

˛0 C ˛1x C ˛2x2

http://www-history.mcs.st-and.ac.uk/Mathematicians/Bessel.html
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are linearly independent Frobenius solutions of

x2.˛0 C ˛1x C ˛2x
2/y00 C x.ˇ0 C ˇ1x C ˇ2x

2/y0 C .
0 C 
1x C 
2x
2/y D 0

on any interval .0; �/ on which ˛0 C ˛1x C ˛2x
2 has no zeros.

In Exercises 58–65 use the method suggested by Exercise 57 to find the general solution on some interval

.0; �/.

58. 4x2.1 C x/y00 C 8x2y0 C .1C x/y D 0

59. 9x2.3 C x/y00 C 3x.3C 7x/y0 C .3 C 4x/y D 0

60. x2.2 � x2/y00 � x.2C 3x2/y0 C .2 � x2/y D 0

61. 16x2.1C x2/y00 C 8x.1C 9x2/y0 C .1 C 49x2/y D 0

62. x2.4 C 3x/y00 � x.4 � 3x/y0 C 4y D 0

63. 4x2.1 C 3x C x2/y00 C 8x2.3 C 2x/y0 C .1 C 3x C 9x2/y D 0

64. x2.1 � x/2y00 � x.1C 2x � 3x2/y0 C .1C x2/y D 0

65. 9x2.1 C x C x2/y00 C 3x.1C 7x C 13x2/y0 C .1C 4x C 25x2/y D 0

66. (a) Let L and y.x; r/ be as in Exercises 57 and 58. Extend Theorem 7.6.1 by showing that

L

�

@y

@r
.x; r/

�

D p0
0.r/x

r C xrp0.r/ ln x:

(b) Show that if

p0.r/ D ˛0.r � r1/2

then

y1 D y.x; r1/ and y2 D @y

@r
.x; r1/

are solutions of Ly D 0.

7.7 THE METHOD OF FROBENIUS III

In Sections 7.5 and 7.6 we discussed methods for finding Frobenius solutions of a homogeneous linear

second order equation near a regular singular point in the case where the indicial equation has a repeated

root or distinct real roots that don’t differ by an integer. In this section we consider the case where the

indicial equation has distinct real roots that differ by an integer. We’ll limit our discussion to equations

that can be written as

x2.˛0 C ˛1x/y
00 C x.ˇ0 C ˇ1x/y

0 C .
0 C 
1x/y D 0 (7.7.1)

or

x2.˛0 C ˛2x
2/y00 C x.ˇ0 C ˇ2x

2/y0 C .
0 C 
2x
2/y D 0;

where the roots of the indicial equation differ by a positive integer.

We begin with a theorem that provides a fundamental set of solutions of equations of the form (7.7.1).
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Theorem 7.7.1 Let

Ly D x2.˛0 C ˛1x/y
00 C x.ˇ0 C ˇ1x/y

0 C .
0 C 
1x/y;

where ˛0 ¤ 0; and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0;

p1.r/ D ˛1r.r � 1/C ˇ1r C 
1:

Suppose r is a real number such that p0.nC r/ is nonzero for all positive integers n; and define

a0.r/ D 1;

an.r/ D �p1.nC r � 1/
p0.nC r/

an�1.r/; n � 1:
(7.7.2)

Let r1 and r2 be the roots of the indicial equation p0.r/ D 0; and suppose r1 D r2 C k; where k is a

positive integer: Then

y1 D xr1

1
X

nD0

an.r1/x
n

is a Frobenius solution of Ly D 0. Moreover; if we define

a0.r2/ D 1;

an.r2/ D �p1.nC r2 � 1/
p0.nC r2/

an�1.r2/; 1 � n � k � 1; (7.7.3)

and

C D �p1.r1 � 1/
k˛0

ak�1.r2/; (7.7.4)

then

y2 D xr2

k�1
X

nD0

an.r2/x
n CC

 

y1 lnx C xr1

1
X

nD1

a0
n.r1/x

n

!

(7.7.5)

is also a solution of Ly D 0; and fy1; y2g is a fundamental set of solutions.

Proof Theorem 7.5.3 implies thatLy1 D 0. We’ll now show that Ly2 D 0. SinceL is a linear operator,
this is equivalent to showing that

L

 

xr2

k�1
X

nD0

an.r2/x
n

!

CCL

 

y1 lnx C xr1

1
X

nD1

a0
n.r1/x

n

!

D 0: (7.7.6)

To verify this, we’ll show that

L

 

xr2

k�1
X

nD0

an.r2/x
n

!

D p1.r1 � 1/ak�1.r2/x
r1 (7.7.7)

and

L

 

y1 lnx C xr1

1
X

nD1

a0
n.r1/x

n

!

D k˛0x
r1: (7.7.8)
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This will imply that Ly2 D 0, since substituting (7.7.7) and (7.7.8) into (7.7.6) and using (7.7.4) yields

Ly2 D Œp1.r1 � 1/ak�1.r2/C Ck˛0� x
r1

D Œp1.r1 � 1/ak�1.r2/ � p1.r1 � 1/ak�1.r2/� x
r1 D 0:

We’ll prove (7.7.8) first. From Theorem 7.6.1,

L

 

y.x; r/ ln x C xr

1
X

nD1

a0
n.r/x

n

!

D p0
0.r/x

r C xrp0.r/ lnx:

Setting r D r1 and recalling that p0.r1/ D 0 and y1 D y.x; r1/ yields

L

 

y1 lnx C xr1

1
X

nD1

a0
n.r1/x

n

!

D p0
0.r1/x

r1 : (7.7.9)

Since r1 and r2 are the roots of the indicial equation, the indicial polynomial can be written as

p0.r/ D ˛0.r � r1/.r � r2/ D ˛0

�

r2 � .r1 C r2/r C r1r2
�

:

Differentiating this yields

p0
0.r/ D ˛0.2r � r1 � r2/:

Therefore p0
0.r1/ D ˛0.r1 � r2/ D k˛0, so (7.7.9) implies (7.7.8).

Before proving (7.7.7), we first note an.r2/ is well defined by (7.7.3) for 1 � n � k � 1, since

p0.n C r2/ ¤ 0 for these values of n. However, we can’t define an.r2/ for n � k with (7.7.3), since

p0.kCr2/ D p0.r1/ D 0. For convenience, we define an.r2/ D 0 for n � k. Then, from Theorem 7.5.1,

L

 

xr2

k�1
X

nD0

an.r2/x
n

!

D L

 

xr2

1
X

nD0

an.r2/x
n

!

D xr2

1
X

nD0

bnx
n; (7.7.10)

where b0 D p0.r2/ D 0 and

bn D p0.nC r2/an.r2/C p1.nC r2 � 1/an�1.r2/; n � 1:

If 1 � n � k � 1, then (7.7.3) implies that bn D 0. If n � k C 1, then bn D 0 because an�1.r2/ D
an.r2/ D 0. Therefore (7.7.10) reduces to

L

 

xr2

k�1
X

nD0

an.r2/x
n

!

D Œp0.k C r2/ak.r2/C p1.k C r2 � 1/ak�1.r2/� x
kCr2 :

Since ak.r2/ D 0 and k C r2 D r1, this implies (7.7.7).

We leave the proof that fy1; y2g is a fundamental set as an exercise (Exercise 41).

Example 7.7.1 Find a fundamental set of Frobenius solutions of

2x2.2C x/y00 � x.4 � 7x/y0 � .5 � 3x/y D 0:

Give explicit formulas for the coefficients in the solutions.
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Solution For the given equation, the polynomials defined in Theorem 7.7.1 are

p0.r/ D 4r.r � 1/� 4r � 5 D .2r C 1/.2r � 5/;

p1.r/ D 2r.r � 1/C 7r C 3 D .r C 1/.2r C 3/:

The roots of the indicial equation are r1 D 5=2 and r2 D �1=2, so k D r1 � r2 D 3. Therefore

Theorem 7.7.1 implies that

y1 D x5=2

1
X

nD0

an.5=2/x
n (7.7.11)

and

y2 D x�1=2

2
X

nD0

an.�1=2/CC

 

y1 lnx C x5=2

1
X

nD1

a0
n.5=2/x

n

!

(7.7.12)

(with C as in (7.7.4)) form a fundamental set of solutions of Ly D 0. The recurrence formula (7.7.2) is

a0.r/ D 1;

an.r/ D �p1.nC r � 1/
p0.nC r/

an�1.r/

D � .nC r/.2nC 2r C 1/

.2nC 2r C 1/.2nC 2r � 5/
an�1.r/;

D � nC r

2nC 2r � 5an�1.r/; n � 1;

(7.7.13)

which implies that

an.r/ D .�1/n
n
Y

j D1

j C r

2j C 2r � 5 ; n � 0: (7.7.14)

Therefore

an.5=2/ D
.�1/n

Qn
j D1.2j C 5/

4nnŠ
: (7.7.15)

Substituting this into (7.7.11) yields

y1 D x5=2

1
X

nD0

.�1/n
Qn

j D1.2j C 5/

4nnŠ
xn:

To compute the coefficients a0.�1=2/; a1.�1=2/ and a2.�1=2/ in y2, we set r D �1=2 in (7.7.13)

and apply the resulting recurrence formula for n D 1, 2; thus,

a0.�1=2/ D 1;

an.�1=2/ D � 2n� 1
4.n � 3/an�1.�1=2/; n D 1; 2:

The last formula yields

a1.�1=2/ D 1=8 and a2.�1=2/ D 3=32:

Substituting r1 D 5=2; r2 D �1=2; k D 3, and ˛0 D 4 into (7.7.4) yields C D �15=128. Therefore,

from (7.7.12),

y2 D x�1=2

�

1C 1

8
x C 3

32
x2

�

� 15

128

 

y1 lnx C x5=2

1
X

nD1

a0
n.5=2/x

n

!

: (7.7.16)
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We use logarithmic differentiation to obtain obtain a0
n.r/. From (7.7.14),

jan.r/j D
n
Y

j D1

jj C r j
j2j C 2r � 5j ; n � 1:

Therefore

ln jan.r/j D
n
X

j D1

.ln jj C r j � ln j2j C 2r � 5j/ :

Differentiating with respect to r yields

a0
n.r/

an.r/
D

n
X

j D1

�

1

j C r
� 2

2j C 2r � 5

�

:

Therefore

a0
n.r/ D an.r/

n
X

j D1

�

1

j C r
� 2

2j C 2r � 5

�

:

Setting r D 5=2 here and recalling (7.7.15) yields

a0
n.5=2/ D

.�1/n
Qn

j D1.2j C 5/

4nnŠ

n
X

j D1

�

1

j C 5=2
� 1

j

�

: (7.7.17)

Since
1

j C 5=2
� 1

j
D � 5

j.2j C 5/
;

we can rewrite (7.7.17) as

a0
n.5=2/ D �5

.�1/n
Qn

j D1.2j C 5/

4nnŠ

0

@

n
X

j D1

1

j.2j C 5/

1

A :

Substituting this into (7.7.16) yields

y2 D x�1=2

�

1C 1

8
x C 3

32
x2

�

� 15

128
y1 lnx

C 75

128
x5=2

1
X

nD1

.�1/n
Qn

j D1.2j C 5/

4nnŠ

0

@

n
X

j D1

1

j.2j C 5/

1

A xn:

If C D 0 in (7.7.4), there’s no need to compute

y1 ln x C xr1

1
X

nD1

a0
n.r1/x

n

in the formula (7.7.5) for y2. Therefore it’s best to compute C before computing fa0
n.r1/g1

nD1. This is

illustrated in the next example. (See also Exercises 44 and 45.)
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Example 7.7.2 Find a fundamental set of Frobenius solutions of

x2.1 � 2x/y00 C x.8 � 9x/y0 C .6 � 3x/y D 0:

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.7.1 are

p0.r/ D r.r � 1/C 8r C 6 D .r C 1/.r C 6/

p1.r/ D �2r.r � 1/� 9r � 3 D �.r C 3/.2r C 1/:

The roots of the indicial equation are r1 D �1 and r2 D �6, so k D r1�r2 D 5. Therefore Theorem 7.7.1

implies that

y1 D x�1

1
X

nD0

an.�1/xn (7.7.18)

and

y2 D x�6

4
X

nD0

an.�6/C C

 

y1 lnx C x�1

1
X

nD1

a0
n.�1/xn

!

(7.7.19)

(with C as in (7.7.4)) form a fundamental set of solutions of Ly D 0. The recurrence formula (7.7.2) is

a0.r/ D 1;

an.r/ D �p1.nC r � 1/
p0.nC r/

an�1.r/

D .nC r C 2/.2nC 2r � 1/

.nC r C 1/.nC r C 6/
an�1.r/; n � 1;

(7.7.20)

which implies that

an.r/ D
n
Y

j D1

.j C r C 2/.2j C 2r � 1/
.j C r C 1/.j C r C 6/

D

0

@

n
Y

j D1

j C r C 2

j C r C 1

1

A

0

@

n
Y

j D1

2j C 2r � 1
j C r C 6

1

A:

(7.7.21)

Since
n
Y

j D1

j C r C 2

j C r C 1
D .r C 3/.r C 4/ � � � .nC r C 2/

.r C 2/.r C 3/ � � � .nC r C 1/
D nC r C 2

r C 2

because of cancellations, (7.7.21) simplifies to

an.r/ D nC r C 2

r C 2

n
Y

j D1

2j C 2r � 1
j C r C 6

:

Therefore

an.�1/ D .nC 1/

n
Y

j D1

2j � 3

j C 5
:
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Substituting this into (7.7.18) yields

y1 D x�1

1
X

nD0

.nC 1/

0

@

n
Y

j D1

2j � 3
j C 5

1

A xn:

To compute the coefficients a0.�6/; : : : ; a4.�6/ in y2, we set r D �6 in (7.7.20) and apply the

resulting recurrence formula for n D 1, 2, 3, 4; thus,

a0.�6/ D 1;

an.�6/ D .n � 4/.2n� 13/
n.n � 5/

an�1.�6/; n D 1; 2; 3; 4:

The last formula yields

a1.�6/ D �33
4
; a2.�6/ D 99

4
; a3.�6/ D �231

8
; a4.�6/ D 0:

Since a4.�6/ D 0, (7.7.4) implies that the constant C in (7.7.19) is zero. Therefore (7.7.19) reduces to

y2 D x�6

�

1 � 33

4
x C 99

4
x2 � 231

8
x3

�

:

We now consider equations of the form

x2.˛0 C ˛2x
2/y00 C x.ˇ0 C ˇ2x

2/y0 C .
0 C 
2x
2/y D 0;

where the roots of the indicial equation are real and differ by an even integer. The case where the roots

are real and differ by an odd integer can be handled by the method discussed in 56.

The proof of the next theorem is similar to the proof of Theorem 7.7.1 (Exercise 43).

Theorem 7.7.2 Let

Ly D x2.˛0 C ˛2x
2/y00 C x.ˇ0 C ˇ2x

2/y0 C .
0 C 
2x
2/y;

where ˛0 ¤ 0; and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0;

p2.r/ D ˛2r.r � 1/C ˇ2r C 
2:

Suppose r is a real number such that p0.2mC r/ is nonzero for all positive integersm; and define

a0.r/ D 1;

a2m.r/ D �p2.2mC r � 2/

p0.2mC r/
a2m�2.r/; m � 1:

(7.7.22)

Let r1 and r2 be the roots of the indicial equation p0.r/ D 0; and suppose r1 D r2 C 2k; where k is a

positive integer: Then

y1 D xr1

1
X

mD0

a2m.r1/x
2m

is a Frobenius solution of Ly D 0. Moreover; if we define

a0.r2/ D 1;

a2m.r2/ D �p2.2mC r2 � 2/
p0.2mC r2/

a2m�2.r2/; 1 � m � k � 1
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and

C D �p2.r1 � 2/
2k˛0

a2k�2.r2/; (7.7.23)

then

y2 D xr2

k�1
X

mD0

a2m.r2/x
2m CC

 

y1 lnx C xr1

1
X

mD1

a0
2m.r1/x

2m

!

(7.7.24)

is also a solution of Ly D 0; and fy1; y2g is a fundamental set of solutions.

Example 7.7.3 Find a fundamental set of Frobenius solutions of

x2.1 C x2/y00 C x.3C 10x2/y0 � .15 � 14x2/y D 0:

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.7.2 are

p0.r/ D r.r � 1/C 3r � 15 D .r � 3/.r C 5/

p2.r/ D r.r � 1/C 10r C 14 D .r C 2/.r C 7/:

The roots of the indicial equation are r1 D 3 and r2 D �5, so k D .r1 � r2/=2 D 4. Therefore

Theorem 7.7.2 implies that

y1 D x3

1
X

mD0

a2m.3/x
2m (7.7.25)

and

y2 D x�5

3
X

mD0

a2m.�5/x2m C C

 

y1 lnx C x3

1
X

mD1

a0
2m.3/x

2m

!

(with C as in (7.7.23)) form a fundamental set of solutions of Ly D 0. The recurrence formula (7.7.22)
is

a0.r/ D 1;

a2m.r/ D �p2.2mC r � 2/

p0.2mC r/
a2m�2.r/

D � .2mC r/.2mC r C 5/

.2mC r � 3/.2mC r C 5/
a2m�2.r/

D � 2mC r

2mC r � 3a2m�2.r/; m � 1;

(7.7.26)

which implies that

a2m.r/ D .�1/m
m
Y

j D1

2j C r

2j C r � 3 ; m � 0: (7.7.27)

Therefore

a2m.3/ D
.�1/m

Qm
j D1.2j C 3/

2mmŠ
: (7.7.28)

Substituting this into (7.7.25) yields

y1 D x3

1
X

mD0

.�1/m
Qm

j D1.2j C 3/

2mmŠ
x2m:
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To compute the coefficients a2.�5/, a4.�5/, and a6.�5/ in y2, we set r D �5 in (7.7.26) and apply

the resulting recurrence formula for m D 1, 2, 3; thus,

a2m.�5/ D � 2m� 5

2.m � 4/a2m�2.�5/; m D 1; 2; 3:

This yields

a2.�5/ D �1
2
; a4.�5/ D 1

8
; a6.�5/ D 1

16
:

Substituting r1 D 3, r2 D �5, k D 4, and ˛0 D 1 into (7.7.23) yields C D �3=16. Therefore, from

(7.7.24),

y2 D x�5

�

1 � 1

2
x2 C 1

8
x4 C 1

16
x6

�

� 3

16

 

y1 lnx C x3

1
X

mD1

a0
2m.3/x

2m

!

: (7.7.29)

To obtain a0
2m.r/ we use logarithmic differentiation. From (7.7.27),

ja2m.r/j D
m
Y

j D1

j2j C r j
j2j C r � 3j ; m � 1:

Therefore

ln ja2m.r/j D
n
X

j D1

.ln j2j C r j � ln j2j C r � 3j/ :

Differentiating with respect to r yields

a0
2m.r/

a2m.r/
D

m
X

j D1

�

1

2j C r
� 1

2j C r � 3

�

:

Therefore

a0
2m.r/ D a2m.r/

n
X

j D1

�

1

2j C r
� 1

2j C r � 3

�

:

Setting r D 3 here and recalling (7.7.28) yields

a0
2m.3/ D

.�1/m
Qm

j D1.2j C 3/

2mmŠ

m
X

j D1

�

1

2j C 3
� 1

2j

�

: (7.7.30)

Since
1

2j C 3
� 1

2j
D � 3

2j.2j C 3/
;

we can rewrite (7.7.30) as

a0
2m.3/ D �3

2

.�1/n
Qm

j D1.2j C 3/

2mmŠ

0

@

n
X

j D1

1

j.2j C 3/

1

A :

Substituting this into (7.7.29) yields

y2 D x�5

�

1 � 1

2
x2 C 1

8
x4 C 1

16
x6

�

� 3

16
y1 ln x

C 9

32
x3

1
X

mD1

.�1/m
Qm

j D1.2j C 3/

2mmŠ

0

@

m
X

j D1

1

j.2j C 3/

1

A x2m:
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Example 7.7.4 Find a fundamental set of Frobenius solutions of

x2.1 � 2x2/y00 C x.7 � 13x2/y0 � 14x2y D 0:

Give explicit formulas for the coefficients in the solutions.

Solution For the given equation, the polynomials defined in Theorem 7.7.2 are

p0.r/ D r.r � 1/C 7r D r.r C 6/;

p2.r/ D �2r.r � 1/� 13r � 14 D �.r C 2/.2r C 7/:

The roots of the indicial equation are r1 D 0 and r2 D �6, so k D .r1 � r2/=2 D 3. Therefore

Theorem 7.7.2 implies that

y1 D
1
X

mD0

a2m.0/x
2m; (7.7.31)

and

y2 D x�6

2
X

mD0

a2m.�6/x2m CC

 

y1 lnx C
1
X

mD1

a0
2m.0/x

2m

!

(7.7.32)

(with C as in (7.7.23)) form a fundamental set of solutions of Ly D 0. The recurrence formulas (7.7.22)
are

a0.r/ D 1;

a2m.r/ D �p2.2mC r � 2/

p0.2mC r/
a2m�2.r/

D .2mC r/.4mC 2r C 3/

.2mC r/.2mC r C 6/
a2m�2.r/

D 4mC 2r C 3

2mC r C 6
a2m�2.r/; m � 1;

(7.7.33)

which implies that

a2m.r/ D
m
Y

j D1

4j C 2r C 3

2j C r C 6
:

Setting r D 0 yields

a2m.0/ D 6

Qm
j D1.4j C 3/

2m.mC 3/Š
:

Substituting this into (7.7.31) yields

y1 D 6

1
X

mD0

Qm
j D1.4j C 3/

2m.mC 3/Š
x2m:

To compute the coefficients a0.�6/, a2.�6/, and a4.�6/ in y2, we set r D �6 in (7.7.33) and apply

the resulting recurrence formula for m D 1, 2; thus,

a0.�6/ D 1;

a2m.�6/ D 4m� 9
2m

a2m�2.�6/; m D 1; 2:
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The last formula yields

a2.�6/ D �5
2

and a4.�6/ D 5

8
:

Since p2.�2/ D 0, the constant C in (7.7.23) is zero. Therefore (7.7.32) reduces to

y2 D x�6

�

1� 5

2
x2 C 5

8
x4

�

:

7.7 Exercises

In Exercises 1–40 find a fundamental set of Frobenius solutions. Give explicit formulas for the coeffi-

cients.

1. x2y00 � 3xy0 C .3 C 4x/y D 0

2. xy00 C y D 0

3. 4x2.1 C x/y00 C 4x.1C 2x/y0 � .1 C 3x/y D 0

4. xy00 C xy0 C y D 0

5. 2x2.2 C 3x/y00 C x.4C 21x/y0 � .1 � 9x/y D 0

6. x2y00 C x.2C x/y0 � .2 � 3x/y D 0

7. 4x2y00 C 4xy0 � .9 � x/y D 0

8. x2y00 C 10xy0 C .14C x/y D 0

9. 4x2.1 C x/y00 C 4x.3C 8x/y0 � .5 � 49x/y D 0

10. x2.1 C x/y00 � x.3C 10x/y0 C 30xy D 0

11. x2y00 C x.1C x/y0 � 3.3C x/y D 0

12. x2y00 C x.1 � 2x/y0 � .4C x/y D 0

13. x.1C x/y00 � 4y0 � 2y D 0

14. x2.1 C 2x/y00 C x.9C 13x/y0 C .7 C 5x/y D 0

15. 4x2y00 � 2x.4 � x/y0 � .7C 5x/y D 0

16. 3x2.3 C x/y00 � x.15C x/y0 � 20y D 0

17. x2.1 C x/y00 C x.1 � 10x/y0 � .9 � 10x/y D 0

18. x2.1 C x/y00 C 3x2y0 � .6 � x/y D 0

19. x2.1 C 2x/y00 � 2x.3C 14x/y0 C .6 C 100x/y D 0

20. x2.1 C x/y00 � x.6C 11x/y0 C .6C 32x/y D 0

21. 4x2.1 C x/y00 C 4x.1C 4x/y0 � .49C 27x/y D 0

22. x2.1 C 2x/y00 � x.9C 8x/y0 � 12xy D 0

23. x2.1 C x2/y00 � x.7 � 2x2/y0 C 12y D 0

24. x2y00 � x.7 � x2/y0 C 12y D 0

25. xy00 � 5y0 C xy D 0

26. x2y00 C x.1C 2x2/y0 � .1 � 10x2/y D 0

27. x2y00 � xy0 � .3 � x2/y D 0
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28. 4x2y00 C 2x.8C x2/y0 C .5C 3x2/y D 0

29. x2y00 C x.1C x2/y0 � .1 � 3x2/y D 0

30. x2y00 C x.1 � 2x2/y0 � 4.1C 2x2/y D 0

31. 4x2y00 C 8xy0 � .35 � x2/y D 0

32. 9x2y00 � 3x.11C 2x2/y0 C .13C 10x2/y D 0

33. x2y00 C x.1 � 2x2/y0 � 4.1 � x2/y D 0

34. x2y00 C x.1 � 3x2/y0 � 4.1 � 3x2/y D 0

35. x2.1 C x2/y00 C x.5C 11x2/y0 C 24x2y D 0

36. 4x2.1 C x2/y00 C 8xy0 � .35 � x2/y D 0

37. x2.1 C x2/y00 � x.5 � x2/y0 � .7 C 25x2/y D 0

38. x2.1 C x2/y00 C x.5C 2x2/y0 � 21y D 0

39. x2.1 C 2x2/y00 � x.3 C x2/y0 � 2x2y D 0

40. 4x2.1 C x2/y00 C 4x.2C x2/y0 � .15C x2/y D 0

41. (a) Under the assumptions of Theorem 7.7.1, show that

y1 D xr1

1
X

nD0

an.r1/x
n

and

y2 D xr2

k�1
X

nD0

an.r2/x
n C C

 

y1 ln x C xr1

1
X

nD1

a0
n.r1/x

n

!

are linearly independent. HINT: Show that if c1 and c2 are constants such that c1y1 Cc2y2 �
0 on an interval .0; �/, then

x�r2.c1y1.x/C c2y2.x// D 0; 0 < x < �:

Then let x ! 0C to conclude that c2=0.

(b) Use the result of (a) to complete the proof of Theorem 7.7.1.

42. Find a fundamental set of Frobenius solutions of Bessel’s equation

x2y00 C xy0 C .x2 � �2/y D 0

in the case where � is a positive integer.

43. Prove Theorem 7.7.2.

44. Under the assumptions of Theorem 7.7.1, show that C D 0 if and only if p1.r2 C ł/ D 0 for some

integer ł in f0; 1; : : : ; k � 1g.

45. Under the assumptions of Theorem 7.7.2, show that C D 0 if and only if p2.r2 C 2ł/ D 0 for
some integer ` in f0; 1; : : : ; k � 1g.

46. Let

Ly D ˛0x
2y00 C ˇ0xy

0 C .
0 C 
1x/y

and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0:
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Show that if

p0.r/ D ˛0.r � r1/.r � r2/

where r1 � r2 D k, a positive integer, then Ly D 0 has the solutions

y1 D xr1

1
X

nD0

.�1/n
nŠ
Qn

j D1.j C k/

�


1

˛0

�n

xn

and

y2 D xr2

k�1
X

nD0

.�1/n
nŠ
Qn

j D1.j � k/

�


1

˛0

�n

xn

� 1

kŠ.k � 1/Š

�


1

˛0

�k

0

@y1 lnx � xr1

1
X

nD1

.�1/n
nŠ
Qn

j D1.j C k/

�


1

˛0

�n

0

@

n
X

j D1

2j C k

j.j C k/

1

A xn

1

A :

47. Let

Ly D ˛0x
2y00 C ˇ0xy

0 C .
0 C 
2x
2/y

and define

p0.r/ D ˛0r.r � 1/C ˇ0r C 
0:

Show that if

p0.r/ D ˛0.r � r1/.r � r2/

where r1 � r2 D 2k, an even positive integer, then Ly D 0 has the solutions

y1 D xr1

1
X

mD0

.�1/m
4mmŠ

Qm
j D1.j C k/

�


2

˛0

�m

x2m

and

y2 D xr2

k�1
X

mD0

.�1/m
4mmŠ

Qm
j D1.j � k/

�


2

˛0

�m

x2m

� 2

4kkŠ.k � 1/Š

�


2

˛0

�k
0

@y1 lnx � xr1

2

1
X

mD1

.�1/m
4mmŠ

Qm
j D1.j C k/

�


2

˛0

�m
0

@

m
X

j D1

2j C k

j.j C k/

1

A x2m

1

A :

48. Let L be as in Exercises 7.5.57 and 7.5.58, and suppose the indicial polynomial of Ly D 0 is

p0.r/ D ˛0.r � r1/.r � r2/;

with k D r1 � r2, where k is a positive integer. Define a0.r/ D 1 for all r . If r is a real number

such that p0.nC r/ is nonzero for all positive integers n, define

an.r/ D � 1

p0.nC r/

n
X

j D1

pj .nC r � j /an�j .r/; n � 1;
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and let

y1 D xr1

1
X

nD0

an.r1/x
n:

Define

an.r2/ D � 1

p0.nC r2/

n
X

j D1

pj .nC r2 � j /an�j .r2/ if n � 1 and n ¤ k;

and let ak.r2/ be arbitrary.

(a) Conclude from Exercise 7.6..66 that

L

 

y1 lnx C xr1

1
X

nD1

a0
n.r1/x

n

!

D k˛0x
r1:

(b) Conclude from Exercise 7.5..57 that

L

 

xr2

1
X

nD0

an.r2/x
n

!

D Axr1;

where

A D
k
X

j D1

pj .r1 � j /ak�j .r2/:

(c) Show that y1 and

y2 D xr2

1
X

nD0

an.r2/x
n � A

k˛0

 

y1 ln x C xr1

1
X

nD1

a0
n.r1/x

n

!

form a fundamental set of Frobenius solutions of Ly D 0.

(d) Show that choosing the arbitrary quantity ak.r2/ to be nonzero merely adds a multiple of y1

to y2. Conclude that we may as well take ak.r2/ D 0.



CHAPTER 8
Laplace Transforms

IN THIS CHAPTER we study the method of Laplace transforms, which illustrates one of the basic prob-

lem solving techniques in mathematics: transform a difficult problem into an easier one, solve the lat-
ter, and then use its solution to obtain a solution of the original problem. The method discussed here

transforms an initial value problem for a constant coefficient equation into an algebraic equation whose

solution can then be used to solve the initial value problem. In some cases this method is merely an

alternative procedure for solving problems that can be solved equally well by methods that we considered

previously; however, in other cases the method of Laplace transforms is more efficient than the methods
previously discussed. This is especially true in physical problems dealing with discontinuous forcing

functions.

SECTION 8.1 defines the Laplace transform and developes its properties.

SECTION 8.2 deals with the problem of finding a function that has a given Laplace transform.

SECTION 8.3 applies the Laplace transform to solve initial value problems for constant coefficient second

order differential equations on .0;1/.

SECTION 8.4 introduces the unit step function.

SECTION 8.5 uses the unit step function to solve constant coefficient equations with piecewise continu-

ous forcing functions.

SECTION 8.6 deals with the convolution theorem, an important theoretical property of the Laplace trans-

form.

SECTION 8.7 introduces the idea of impulsive force, and treats constant coefficient equations with im-

pulsive forcing functions.

SECTION 8.8 is a brief table of Laplace transforms.

393
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8.1 INTRODUCTION TO THE LAPLACE TRANSFORM

Definition of the Laplace Transform

To define the Laplace transform, we first recall the definition of an improper integral. If g is integrable

over the interval Œa; T � for every T > a, then the improper integral of g over Œa;1/ is defined as

Z 1

a

g.t/ dt D lim
T !1

Z T

a

g.t/ dt: (8.1.1)

We say that the improper integral converges if the limit in (8.1.1) exists; otherwise, we say that the

improper integral diverges or does not exist. Here’s the definition of the Laplace transform of a function

f .

Definition 8.1.1 Let f be defined for t � 0 and let s be a real number: Then the Laplace transform of f

is the function F defined by

F.s/ D
Z 1

0

e�stf .t/ dt; (8.1.2)

for those values of s for which the improper integral converges:

It is important to keep in mind that the variable of integration in (8.1.2) is t , while s is a parameter in-
dependent of t . We use t as the independent variable for f because in applications the Laplace transform

is usually applied to functions of time.

The Laplace transform can be viewed as an operator L that transforms the function f D f .t/ into the

function F D F.s/. Thus, (8.1.2) can be expressed as

F D L.f /:

The functions f and F form a transform pair, which we’ll sometimes denote by

f .t/ $ F.s/:

It can be shown that if F.s/ is defined for s D s0 then it’s defined for all s > s0 (Exercise 14(b)).

Computation of Some Simple Laplace Transforms

Example 8.1.1 Find the Laplace transform of f .t/ D 1.

Solution From (8.1.2) with f .t/ D 1,

F.s/ D
Z 1

0

e�st dt D lim
T !1

Z T

0

e�st dt:

If s ¤ 0 then
Z T

0

e�stdt D �1
s
e�st

ˇ

ˇ

ˇ

T

0
D 1 � e�sT

s
: (8.1.3)

Therefore

lim
T !1

Z T

0

e�stdt D
(

1

s
; s > 0;

1; s < 0:
(8.1.4)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Laplace.html
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If s D 0 the integrand reduces to the constant 1, and

lim
T !1

Z T

0

1 dt D lim
T !1

Z T

0

1 dt D lim
T !1

T D 1:

Therefore F.0/ is undefined, and

F.s/ D
Z 1

0

e�stdt D 1

s
; s > 0:

This result can be written in operator notation as

L.1/ D 1

s
; s > 0;

or as the transform pair

1 $ 1

s
; s > 0:

REMARK: It is convenient to combine the steps of integrating from 0 to T and lettingT ! 1. Therefore,

instead of writing (8.1.3) and (8.1.4) as separate steps we write

Z 1

0

e�stdt D �1
s
e�st

ˇ

ˇ

ˇ

1

0
D
(

1

s
; s > 0;

1; s < 0:

We’ll follow this practice throughout this chapter.

Example 8.1.2 Find the Laplace transform of f .t/ D t .

Solution From (8.1.2) with f .t/ D t ,

F.s/ D
Z 1

0

e�st t dt: (8.1.5)

If s ¤ 0, integrating by parts yields
Z 1

0

e�st t dt D � te
�st

s

ˇ

ˇ

ˇ

ˇ

1

0

C 1

s

Z 1

0

e�st dt D �
�

t

s
C 1

s2

�

e�st

ˇ

ˇ

ˇ

ˇ

1

0

D
(

1

s2
; s > 0;

1; s < 0:

If s D 0, the integral in (8.1.5) becomes

Z 1

0

t dt D t2

2

ˇ

ˇ

ˇ

ˇ

1

0

D 1:

Therefore F.0/ is undefined and

F.s/ D 1

s2
; s > 0:

This result can also be written as

L.t/ D 1

s2
; s > 0;

or as the transform pair

t $ 1

s2
; s > 0:
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Example 8.1.3 Find the Laplace transform of f .t/ D eat , where a is a constant.

Solution From (8.1.2) with f .t/ D eat ,

F.s/ D
Z 1

0

e�steat dt:

Combining the exponentials yields

F.s/ D
Z 1

0

e�.s�a/t dt:

However, we know from Example 8.1.1 that

Z 1

0

e�st dt D 1

s
; s > 0:

Replacing s by s � a here shows that

F.s/ D 1

s � a ; s > a:

This can also be written as

L.eat / D 1

s � a ; s > a; or eat $ 1

s � a ; s > a:

Example 8.1.4 Find the Laplace transforms of f .t/ D sin!t and g.t/ D cos!t , where ! is a constant.

Solution Define

F.s/ D
Z 1

0

e�st sin!t dt (8.1.6)

and

G.s/ D
Z 1

0

e�st cos!t dt: (8.1.7)

If s > 0, integrating (8.1.6) by parts yields

F.s/ D �e
�st

s
sin!t

ˇ

ˇ

ˇ

1

0
C !

s

Z 1

0

e�st cos!t dt;

so

F.s/ D !

s
G.s/: (8.1.8)

If s > 0, integrating (8.1.7) by parts yields

G.s/ D �e
�st cos!t

s

ˇ

ˇ

ˇ

1

0
� !

s

Z 1

0

e�st sin!t dt;

so

G.s/ D 1

s
� !

s
F.s/:

Now substitute from (8.1.8) into this to obtain

G.s/ D 1

s
� !2

s2
G.s/:
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Solving this for G.s/ yields

G.s/ D s

s2 C !2
; s > 0:

This and (8.1.8) imply that

F.s/ D !

s2 C !2
; s > 0:

Tables of Laplace transforms

Extensive tables of Laplace transforms have been compiled and are commonly used in applications. The
brief table of Laplace transforms in the Appendix will be adequate for our purposes.

Example 8.1.5 Use the table of Laplace transforms to find L.t3e4t/.

Solution The table includes the transform pair

tneat $ nŠ

.s � a/nC1
:

Setting n D 3 and a D 4 here yields

L.t3e4t/ D 3Š

.s � 4/4 D 6

.s � 4/4
:

We’ll sometimes write Laplace transforms of specific functions without explicitly stating how they are
obtained. In such cases you should refer to the table of Laplace transforms.

Linearity of the Laplace Transform

The next theorem presents an important property of the Laplace transform.

Theorem 8.1.2 ŒLinearity Property� Suppose L.fi / is defined for s > si ; 1 � i � n/: Let s0 be the

largest of the numbers s1, s2; . . . ,sn ; and let c1, c2,. . . , cn be constants: Then

L.c1f1 C c2f2 C � � � C cnfn/ D c1L.f1/C c2L.f2/C � � � C cnL.fn/ for s > s0:

Proof We give the proof for the case where n D 2. If s > s0 then

L.c1f1 C c2f2/ D
Z 1

0

e�st .c1f1.t/C c2f2.t/// dt

D c1

Z 1

0

e�stf1.t/ dt C c2

Z 1

0

e�stf2.t/ dt

D c1L.f1/C c2L.f2/:

Example 8.1.6 Use Theorem 8.1.2 and the known Laplace transform

L.eat / D 1

s � a
to find L.cosh bt/ .b ¤ 0/.
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Solution By definition,

cosh bt D ebt C e�bt

2
:

Therefore

L.cosh bt/ D L

�

1

2
ebt C 1

2
e�bt

�

D 1

2
L.ebt/C 1

2
L.e�bt / (linearity property)

D 1

2

1

s � b C 1

2

1

s C b
;

(8.1.9)

where the first transform on the right is defined for s > b and the second for s > �b; hence, both are

defined for s > jbj. Simplifying the last expression in (8.1.9) yields

L.cosh bt/ D s

s2 � b2
; s > jbj:

The First Shifting Theorem

The next theorem enables us to start with known transform pairs and derive others. (For other results of

this kind, see Exercises 6 and 13.)

Theorem 8.1.3 ŒFirst Shifting Theorem� If

F.s/ D
Z 1

0

e�stf .t/ dt (8.1.10)

is the Laplace transform of f .t/ for s > s0, then F.s � a/ is the Laplace transform of eatf .t/ for

s > s0 C a.

PROOF. Replacing s by s � a in (8.1.10) yields

F.s � a/ D
Z 1

0

e�.s�a/tf .t/ dt (8.1.11)

if s � a > s0; that is, if s > s0 C a. However, (8.1.11) can be rewritten as

F.s � a/ D
Z 1

0

e�st
�

eatf .t/
�

dt;

which implies the conclusion.

Example 8.1.7 Use Theorem 8.1.3 and the known Laplace transforms of 1, t , cos!t , and sin!t to find

L.eat /; L.teat/; L.e�t sin!t/; and L.e�t cos!t/:

Solution In the following table the known transform pairs are listed on the left and the required transform

pairs listed on the right are obtained by applying Theorem 8.1.3.
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f .t/ $ F.s/ eatf .t/ $ F.s � a/

1 $ 1

s
; s > 0 eat $ 1

.s � a/
; s > a

t $ 1

s2
; s > 0 teat $ 1

.s � a/2 ; s > a

sin!t $ !

s2 C !2
; s > 0 e�t sin!t $ !

.s � �/2 C !2
; s > �

cos!t $ s

s2 C !2
; s > 0 e�t sin!t $ s � �

.s � �/2 C !2
; s > �

Existence of Laplace Transforms

Not every function has a Laplace transform. For example, it can be shown (Exercise 3) that

Z 1

0

e�stet2

dt D 1

for every real number s. Hence, the function f .t/ D et2

does not have a Laplace transform.
Our next objective is to establish conditions that ensure the existence of the Laplace transform of a

function. We first review some relevant definitions from calculus.

Recall that a limit

lim
t!t0

f .t/

exists if and only if the one-sided limits

lim
t!t0�

f .t/ and lim
t!t0C

f .t/

both exist and are equal; in this case,

lim
t!t0

f .t/ D lim
t!t0�

f .t/ D lim
t!t0C

f .t/:

Recall also that f is continuous at a point t0 in an open interval .a; b/ if and only if

lim
t!t0

f .t/ D f .t0/;

which is equivalent to

lim
t!t0C

f .t/ D lim
t!t0�

f .t/ D f .t0/: (8.1.12)

For simplicity, we define

f .t0C/ D lim
t!t0C

f .t/ and f .t0�/ D lim
t!t0�

f .t/;

so (8.1.12) can be expressed as

f .t0C/ D f .t0�/ D f .t0/:

If f .t0C/ and f .t0�/ have finite but distinct values, we say that f has a jump discontinuity at t0, and

f .t0C/ � f .t0�/
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Figure 8.1.1 A jump discontinuity

is called the jump in f at t0 (Figure 8.1.1).

If f .t0C/ and f .t0�/ are finite and equal, but either f isn’t defined at t0 or it’s defined but

f .t0/ ¤ f .t0C/ D f .t0�/;

we say that f has a removable discontinuity at t0 (Figure 8.1.2). This terminolgy is appropriate since a

function f with a removable discontinuity at t0 can be made continuous at t0 by defining (or redefining)

f .t0/ D f .t0C/ D f .t0�/:

REMARK: We know from calculus that a definite integral isn’t affected by changing the values of its

integrand at isolated points. Therefore, redefining a function f to make it continuous at removable

discontinuities does not change L.f /.

Definition 8.1.4

(i) A function f is said to be piecewise continuous on a finite closed interval Œ0; T � if f .0C/ and

f .T�/ are finite and f is continuous on the open interval .0; T / except possibly at finitely many

points, where f may have jump discontinuities or removable discontinuities.

(ii) A function f is said to be piecewise continuous on the infinite interval Œ0;1/ if it’s piecewise

continuous on Œ0; T � for every T > 0.

Figure 8.1.3 shows the graph of a typical piecewise continuous function.

It is shown in calculus that if a function is piecewise continuous on a finite closed interval then it’s
integrable on that interval. But if f is piecewise continuous on Œ0;1/, then so is e�stf .t/, and therefore

Z T

0

e�stf .t/ dt
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 a  b
 x

 y

Figure 8.1.3 A piecewise continuous function on
Œa; b�

exists for every T > 0. However, piecewise continuity alone does not guarantee that the improper integral

Z 1

0

e�stf .t/ dt D lim
T !1

Z T

0

e�stf .t/ dt (8.1.13)

converges for s in some interval .s0;1/. For example, we noted earlier that (8.1.13) diverges for all s

if f .t/ D et2

. Stated informally, this occurs because et2

increases too rapidly as t ! 1. The next

definition provides a constraint on the growth of a function that guarantees convergence of its Laplace
transform for s in some interval .s0;1/ .

Definition 8.1.5 A function f is said to be of exponential order s0 if there are constants M and t0 such

that

jf .t/j � Mes0t ; t � t0: (8.1.14)

In situations where the specific value of s0 is irrelevant we say simply that f is of exponential order.

The next theorem gives useful sufficient conditions for a function f to have a Laplace transform. The

proof is sketched in Exercise 10.

Theorem 8.1.6 If f is piecewise continuous on Œ0;1/ and of exponential order s0; then L.f / is defined

for s > s0.

REMARK: We emphasize that the conditions of Theorem 8.1.6 are sufficient, but not necessary, for f to

have a Laplace transform. For example, Exercise 14(c) shows that f may have a Laplace transform even
though f isn’t of exponential order.

Example 8.1.8 If f is bounded on some interval Œt0;1/, say

jf .t/j � M; t � t0;

then (8.1.14) holds with s0 D 0, so f is of exponential order zero. Thus, for example, sin!t and cos!t

are of exponential order zero, and Theorem 8.1.6 implies that L.sin!t/ and L.cos!t/ exist for s > 0.
This is consistent with the conclusion of Example 8.1.4.
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Example 8.1.9 It can be shown that if limt!1 e�s0 tf .t/ exists and is finite then f is of exponential

order s0 (Exercise 9). If ˛ is any real number and s0 > 0 then f .t/ D t˛ is of exponential order s0, since

lim
t!1

e�s0t t˛ D 0;

by L’Hôpital’s rule. If ˛ � 0, f is also continuous on Œ0;1/. Therefore Exercise 9 and Theorem 8.1.6

imply that L.t˛/ exists for s � s0. However, since s0 is an arbitrary positive number, this really implies

that L.t˛/ exists for all s > 0. This is consistent with the results of Example 8.1.2 and Exercises 6 and 8.

Example 8.1.10 Find the Laplace transform of the piecewise continuous function

f .t/ D
�

1; 0 � t < 1;

�3e�t ; t � 1:

Solution Since f is defined by different formulas on Œ0; 1/ and Œ1;1/, we write

F.s/ D
Z 1

0

e�stf .t/ dt D
Z 1

0

e�st .1/ dt C
Z 1

1

e�st.�3e�t / dt:

Since
Z 1

0

e�st dt D

8

<

:

1 � e�s

s
; s ¤ 0;

1; s D 0;

and
Z 1

1

e�st .�3e�t / dt D �3
Z 1

1

e�.sC1/t dt D �3e
�.sC1/

s C 1
; s > �1;

it follows that

F.s/ D

8

ˆ

<

ˆ

:

1 � e�s

s
� 3e

�.sC1/

s C 1
; s > �1; s ¤ 0;

1 � 3

e
; s D 0:

This is consistent with Theorem 8.1.6, since

jf .t/j � 3e�t ; t � 1;

and therefore f is of exponential order s0 D �1.

REMARK: In Section 8.4 we’ll develop a more efficient method for finding Laplace transforms of piece-

wise continuous functions.

Example 8.1.11 We stated earlier that

Z 1

0

e�stet2

dt D 1

for all s, so Theorem 8.1.6 implies that f .t/ D et2

is not of exponential order, since

lim
t!1

et2

Mes0 t
D lim

t!1

1

M
et2�s0 t D 1;

so
et2

> Mes0 t

for sufficiently large values of t , for any choice of M and s0 (Exercise 3).
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8.1 Exercises

1. Find the Laplace transforms of the following functions by evaluating the integralF.s/ D
R1

0 e�stf .t/ dt .

(a) t (b) te�t (c) sinhbt

(d) e2t � 3et (e) t2

2. Use the table of Laplace transforms to find the Laplace transforms of the following functions.

(a) cosh t sin t (b) sin2 t (c) cos2 2t

(d) cosh2 t (e) t sinh 2t (f) sin t cos t

(g) sin
�

t C �

4

�

(h) cos 2t � cos 3t (i) sin 2t C cos 4t

3. Show that
Z 1

0

e�stet2

dt D 1

for every real number s.

4. Graph the following piecewise continuous functions and evaluate f .tC/, f .t�/, and f .t/ at each

point of discontinuity.

(a) f .t/ D

8

<

:

�t; 0 � t < 2;

t � 4; 2 � t < 3;

1; t � 3:

(b) f .t/ D

8

<

:

t2 C 2; 0 � t < 1;

4; t D 1;

t; t > 1:

(c) f .t/ D

8

<

:

sin t; 0 � t < �=2;

2 sin t; �=2 � t < �;

cos t; t � �:

(d) f .t/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

t; 0 � t < 1;

2; t D 1;

2 � t; 1 � t < 2;

3; t D 2;

6; t > 2:

5. Find the Laplace transform:

(a) f .t/ D
�

e�t ; 0 � t < 1;

e�2t ; t � 1:
(b) f .t/ D

�

1; 0 � t < 4;

t; t � 4:

(c) f .t/ D
�

t; 0 � t < 1;

1; t � 1:
(d) f .t/ D

�

tet ; 0 � t < 1;

et ; t � 1:

6. Prove that if f .t/ $ F.s/ then tkf .t/ $ .�1/kF .k/.s/. HINT: Assume that it’s permissible to

differentiate the integral
R1

0
e�stf .t/ dt with respect to s under the integral sign.

7. Use the known Laplace transforms

L.e�t sin!t/ D !

.s � �/2 C !2
and L.e�t cos!t/ D s � �

.s � �/2 C !2

and the result of Exercise 6 to find L.te�t cos!t/ and L.te�t sin!t/.

8. Use the known Laplace transformL.1/ D 1=s and the result of Exercise 6 to show that

L.tn/ D nŠ

snC1
; n D integer:

9. (a) Show that if limt!1 e�s0tf .t/ exists and is finite then f is of exponential order s0.

(b) Show that if f is of exponential order s0 then limt!1 e�stf .t/ D 0 for all s > s0.
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(c) Show that if f is of exponential order s0 and g.t/ D f .t C �/ where � > 0, then g is also

of exponential order s0.

10. Recall the next theorem from calculus.

THEOREM A. Let g be integrable on Œ0; T � for every T > 0: Suppose there’s a function w defined

on some interval Œ�;1/ (with � � 0) such that jg.t/j � w.t/ for t � � and
R1

�
w.t/ dt converges.

Then
R1

0
g.t/ dt converges.

Use Theorem A to show that if f is piecewise continuous on Œ0;1/ and of exponential order s0,
then f has a Laplace transform F.s/ defined for s > s0.

11. Prove: If f is piecewise continuous and of exponential order then lims!1 F.s/ D 0.

12. Prove: If f is continuous on Œ0;1/ and of exponential order s0 > 0, then

L

�Z t

0

f .�/ d�

�

D 1

s
L.f /; s > s0:

HINT: Use integration by parts to evaluate the transform on the left.

13. Suppose f is piecewise continuous and of exponential order, and that limt!0C f .t/=t exists.

Show that

L

�

f .t/

t

�

D
Z 1

s

F.r/ dr:

HINT: Use the results of Exercises 6 and 11.

14. Suppose f is piecewise continuous on Œ0;1/.

(a) Prove: If the integral g.t/ D
R t

0
e�s0�f .�/ d� satisfies the inequality jg.t/j � M .t � 0/,

then f has a Laplace transform F.s/ defined for s > s0. HINT: Use integration by parts to

show that

Z T

0

e�stf .t/ dt D e�.s�s0/T g.T /C .s � s0/
Z T

0

e�.s�s0/tg.t/ dt:

(b) Show that if L.f / exists for s D s0 then it exists for s > s0. Show that the function

f .t/ D tet2

cos.et2

/

has a Laplace transform defined for s > 0, even though f isn’t of exponential order.

(c) Show that the function

f .t/ D tet2

cos.et2

/

has a Laplace transform defined for s > 0, even though f isn’t of exponential order.

15. Use the table of Laplace transforms and the result of Exercise 13 to find the Laplace transforms of

the following functions.

(a)
sin!t

t
.! > 0/ (b)

cos!t � 1
t

.! > 0/ (c)
eat � ebt

t

(d)
cosh t � 1

t
(e)

sinh2 t

t
16. The gamma function is defined by

�.˛/ D
Z 1

0

x˛�1e�x dx;

which can be shown to converge if ˛ > 0.
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(a) Use integration by parts to show that

�.˛ C 1/ D ˛�.˛/; ˛ > 0:

(b) Show that �.n C 1/ D nŠ if n D 1, 2, 3,. . . .

(c) From (b) and the table of Laplace transforms,

L.t˛/ D �.˛ C 1/

s˛C1
; s > 0;

if ˛ is a nonnegative integer. Show that this formula is valid for any ˛ > �1. HINT: Change

the variable of integration in the integral for �.˛ C 1/.

17. Suppose f is continuous on Œ0; T � and f .t C T / D f .t/ for all t � 0. (We say in this case that f

is periodic with period T .)

(a) Conclude from Theorem 8.1.6 that the Laplace transform of f is defined for s > 0. HINT:

Since f is continuous on Œ0; T � and periodic with period T , it’s bounded on Œ0;1/.

(b) (b) Show that

F.s/ D 1

1 � e�sT

Z T

0

e�stf .t/ dt; s > 0:

HINT: Write

F.s/ D
1
X

nD0

Z .nC1/T

nT

e�stf .t/ dt:

Then show that
Z .nC1/T

nT

e�stf .t/ dt D e�nsT

Z T

0

e�stf .t/ dt;

and recall the formula for the sum of a geometric series.

18. Use the formula given in Exercise 17(b) to find the Laplace transforms of the given periodic

functions:

(a) f .t/ D
�

t; 0 � t < 1;

2 � t; 1 � t < 2;
f .t C 2/ D f .t/; t � 0

(b) f .t/ D
�

1; 0 � t < 1
2
;

�1; 1
2

� t < 1;
f .t C 1/ D f .t/; t � 0

(c) f .t/ D j sin t j

(d) f .t/ D
�

sin t; 0 � t < �;

0; � � t < 2�;
f .t C 2�/ D f .t/

8.2 THE INVERSE LAPLACE TRANSFORM

Definition of the Inverse Laplace Transform

In Section 8.1 we defined the Laplace transform of f by

F.s/ D L.f / D
Z 1

0

e�stf .t/ dt:

We’ll also say that f is an inverse Laplace Transform of F , and write

f D L�1.F /:
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To solve differential equations with the Laplace transform, we must be able to obtain f from its transform

F . There’s a formula for doing this, but we can’t use it because it requires the theory of functions of a

complex variable. Fortunately, we can use the table of Laplace transforms to find inverse transforms that

we’ll need.

Example 8.2.1 Use the table of Laplace transforms to find

(a) L�1

�

1

s2 � 1

�

and (b) L�1

�

s

s2 C 9

�

:

SOLUTION(a) Setting b D 1 in the transform pair

sinhbt $ b

s2 � b2

shows that

L�1

�

1

s2 � 1

�

D sinh t:

SOLUTION(b) Setting ! D 3 in the transform pair

cos!t $ s

s2 C !2

shows that

L�1

�

s

s2 C 9

�

D cos 3t:

The next theorem enables us to find inverse transforms of linear combinations of transforms in the
table. We omit the proof.

Theorem 8.2.1 ŒLinearity Property� If F1; F2; . . . ; Fn are Laplace transforms and c1; c2; . . . , cn are

constants; then

L�1.c1F1 C c2F2 C � � � C cnFn/ D c1L
�1.F1/C c2L

�1.F2/C � � � C cnL
�1Fn:

Example 8.2.2 Find

L�1

�

8

s C 5
C 7

s2 C 3

�

:

Solution From the table of Laplace transforms in Section 8.8„

eat $ 1

s � a
and sin!t $ !

s2 C !2
:

Theorem 8.2.1 with a D �5 and ! D
p
3 yields

L�1

�

8

s C 5
C 7

s2 C 3

�

D 8L�1

�

1

s C 5

�

C 7L�1

�

1

s2 C 3

�

D 8L�1

�

1

s C 5

�

C 7p
3
L�1

 p
3

s2 C 3

!

D 8e�5t C 7p
3

sin
p
3t:
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Example 8.2.3 Find

L�1

�

3s C 8

s2 C 2s C 5

�

:

Solution Completing the square in the denominator yields

3s C 8

s2 C 2s C 5
D 3s C 8

.s C 1/2 C 4
:

Because of the form of the denominator, we consider the transform pairs

e�t cos 2t $ s C 1

.s C 1/2 C 4
and e�t sin 2t $ 2

.s C 1/2 C 4
;

and write

L�1

�

3s C 8

.s C 1/2 C 4

�

D L�1

�

3s C 3

.s C 1/2 C 4

�

C L�1

�

5

.s C 1/2 C 4

�

D 3L�1

�

s C 1

.s C 1/2 C 4

�

C 5

2
L�1

�

2

.s C 1/2 C 4

�

D e�t.3 cos 2t C 5

2
sin 2t/:

REMARK: We’ll often write inverse Laplace transforms of specific functions without explicitly stating

how they are obtained. In such cases you should refer to the table of Laplace transforms in Section 8.8.

Inverse Laplace Transforms of Rational Functions

Using the Laplace transform to solve differential equations often requires finding the inverse transform

of a rational function

F.s/ D P.s/

Q.s/
;

where P andQ are polynomials in s with no common factors. Since it can be shown that lims!1 F.s/ D
0 if F is a Laplace transform, we need only consider the case where degree.P / < degree.Q/. To obtain

L�1.F /, we find the partial fraction expansion of F , obtain inverse transforms of the individual terms in

the expansion from the table of Laplace transforms, and use the linearity property of the inverse transform.
The next two examples illustrate this.

Example 8.2.4 Find the inverse Laplace transform of

F.s/ D 3s C 2

s2 � 3s C 2
: (8.2.1)

Solution (METHOD 1) Factoring the denominator in (8.2.1) yields

F.s/ D 3s C 2

.s � 1/.s � 2/ : (8.2.2)

The form for the partial fraction expansion is

3s C 2

.s � 1/.s � 2/ D A

s � 1 C B

s � 2 : (8.2.3)
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Multiplying this by .s � 1/.s � 2/ yields

3s C 2 D .s � 2/AC .s � 1/B:

Setting s D 2 yieldsB D 8 and setting s D 1 yields A D �5. Therefore

F.s/ D � 5

s � 1 C 8

s � 2
and

L�1.F / D �5L�1

�

1

s � 1

�

C 8L�1

�

1

s � 2

�

D �5et C 8e2t :

Solution (METHOD 2) We don’t really have to multiply (8.2.3) by .s � 1/.s � 2/ to compute A and B .

We can obtain A by simply ignoring the factor s � 1 in the denominator of (8.2.2) and setting s D 1

elsewhere; thus,

A D 3s C 2

s � 2

ˇ

ˇ

ˇ

ˇ

sD1

D 3 � 1C 2

1 � 2
D �5: (8.2.4)

Similarly, we can obtain B by ignoring the factor s � 2 in the denominator of (8.2.2) and setting s D 2

elsewhere; thus,

B D 3s C 2

s � 1

ˇ

ˇ

ˇ

ˇ

sD2

D 3 � 2C 2

2 � 1 D 8: (8.2.5)

To justify this, we observe that multiplying (8.2.3) by s � 1 yields

3s C 2

s � 2 D AC .s � 1/ B

s � 2 ;

and setting s D 1 leads to (8.2.4). Similarly, multiplying (8.2.3) by s � 2 yields

3s C 2

s � 1 D .s � 2/ A

s � 2 C B

and setting s D 2 leads to (8.2.5). (It isn’t necesary to write the last two equations. We wrote them only

to justify the shortcut procedure indicated in (8.2.4) and (8.2.5).)

The shortcut employed in the second solution of Example 8.2.4 is Heaviside’s method. The next theo-

rem states this method formally. For a proof and an extension of this theorem, see Exercise 10.

Theorem 8.2.2 Suppose

F.s/ D P.s/

.s � s1/.s � s2/ � � � .s � sn/
; (8.2.6)

where s1, s2; . . . ; sn are distinct and P is a polynomial of degree less than n: Then

F.s/ D A1

s � s1
C A2

s � s2
C � � � C An

s � sn
;

where Ai can be computed from (8.2.6) by ignoring the factor s � si and setting s D si elsewhere.

Example 8.2.5 Find the inverse Laplace transform of

F.s/ D 6C .s C 1/.s2 � 5s C 11/

s.s � 1/.s � 2/.s C 1/
: (8.2.7)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Heaviside.html
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Solution The partial fraction expansion of (8.2.7) is of the form

F.s/ D A

s
C B

s � 1 C C

s � 2 C D

s C 1
: (8.2.8)

To find A, we ignore the factor s in the denominator of (8.2.7) and set s D 0 elsewhere. This yields

A D 6C .1/.11/

.�1/.�2/.1/ D 17

2
:

Similarly, the other coefficients are given by

B D 6C .2/.7/

.1/.�1/.2/ D �10;

C D 6C 3.5/

2.1/.3/
D 7

2
;

and

D D 6

.�1/.�2/.�3/ D �1:

Therefore

F.s/ D 17

2

1

s
� 10

s � 1
C 7

2

1

s � 2 � 1

s C 1

and

L�1.F / D 17

2
L�1

�

1

s

�

� 10L�1

�

1

s � 1

�

C 7

2
L�1

�

1

s � 2

�

�L�1

�

1

s C 1

�

D 17

2
� 10et C 7

2
e2t � e�t :

REMARK: We didn’t “multiply out” the numerator in (8.2.7) before computing the coefficients in (8.2.8),

since it wouldn’t simplify the computations.

Example 8.2.6 Find the inverse Laplace transform of

F.s/ D 8 � .s C 2/.4s C 10/

.s C 1/.s C 2/2
: (8.2.9)

Solution The form for the partial fraction expansion is

F.s/ D A

s C 1
C B

s C 2
C C

.s C 2/2
: (8.2.10)

Because of the repeated factor .s C 2/2 in (8.2.9), Heaviside’s method doesn’t work. Instead, we find a

common denominator in (8.2.10). This yields

F.s/ D A.s C 2/2 C B.s C 1/.s C 2/C C.s C 1/

.s C 1/.s C 2/2
: (8.2.11)

If (8.2.9) and (8.2.11) are to be equivalent, then

A.s C 2/2 C B.s C 1/.s C 2/C C.s C 1/ D 8 � .s C 2/.4s C 10/: (8.2.12)
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The two sides of this equation are polynomials of degree two. From a theorem of algebra, they will be

equal for all s if they are equal for any three distinct values of s. We may determine A, B and C by

choosing convenient values of s.

The left side of (8.2.12) suggests that we take s D �2 to obtainC D �8, and s D �1 to obtain A D 2.

We can now choose any third value of s to determine B . Taking s D 0 yields 4A C 2B C C D �12.

Since A D 2 and C D �8 this implies that B D �6. Therefore

F.s/ D 2

s C 1
� 6

s C 2
� 8

.s C 2/2

and

L�1.F / D 2L�1

�

1

s C 1

�

� 6L�1

�

1

s C 2

�

� 8L�1

�

1

.s C 2/2

�

D 2e�t � 6e�2t � 8te�2t :

Example 8.2.7 Find the inverse Laplace transform of

F.s/ D s2 � 5s C 7

.s C 2/3
:

Solution The form for the partial fraction expansion is

F.s/ D A

s C 2
C B

.s C 2/2
C C

.s C 2/3
:

The easiest way to obtain A, B , and C is to expand the numerator in powers of s C 2. This yields

s2 � 5s C 7 D Œ.s C 2/ � 2�2 � 5Œ.s C 2/� 2�C 7 D .s C 2/2 � 9.s C 2/C 21:

Therefore

F.s/ D .s C 2/2 � 9.s C 2/C 21

.s C 2/3

D 1

s C 2
� 9

.s C 2/2
C 21

.s C 2/3

and

L�1.F / D L�1

�

1

s C 2

�

� 9L�1

�

1

.s C 2/2

�

C 21

2
L�1

�

2

.s C 2/3

�

D e�2t

�

1 � 9t C 21

2
t2
�

:

Example 8.2.8 Find the inverse Laplace transform of

F.s/ D 1 � s.5C 3s/

s Œ.s C 1/2 C 1�
: (8.2.13)



Section 8.2 The Inverse Laplace Transform 411

Solution One form for the partial fraction expansion of F is

F.s/ D A

s
C Bs CC

.s C 1/2 C 1
: (8.2.14)

However, we see from the table of Laplace transforms that the inverse transform of the second fraction

on the right of (8.2.14) will be a linear combination of the inverse transforms

e�t cos t and e�t sin t

of
s C 1

.s C 1/2 C 1
and

1

.s C 1/2 C 1

respectively. Therefore, instead of (8.2.14) we write

F.s/ D A

s
C B.s C 1/C C

.s C 1/2 C 1
: (8.2.15)

Finding a common denominator yields

F.s/ D
A
�

.s C 1/2 C 1
�

C B.s C 1/s C Cs

s Œ.s C 1/2 C 1�
: (8.2.16)

If (8.2.13) and (8.2.16) are to be equivalent, then

A
�

.s C 1/2 C 1
�

C B.s C 1/s C Cs D 1 � s.5C 3s/:

This is true for all s if it’s true for three distinct values of s. Choosing s D 0, �1, and 1 yields the system

2A D 1

A� C D 3

5AC 2B C C D �7:

Solving this system yields

A D 1

2
; B D �7

2
; C D �5

2
:

Hence, from (8.2.15),

F.s/ D 1

2s
� 7

2

s C 1

.s C 1/2 C 1
� 5

2

1

.s C 1/2 C 1
:

Therefore

L�1.F / D 1

2
L�1

�

1

s

�

� 7

2
L�1

�

s C 1

.s C 1/2 C 1

�

� 5

2
L�1

�

1

.s C 1/2 C 1

�

D 1

2
� 7

2
e�t cos t � 5

2
e�t sin t:

Example 8.2.9 Find the inverse Laplace transform of

F.s/ D 8C 3s

.s2 C 1/.s2 C 4/
: (8.2.17)
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Solution The form for the partial fraction expansion is

F.s/ D AC Bs

s2 C 1
C C CDs

s2 C 4
:

The coefficients A, B , C and D can be obtained by finding a common denominator and equating the

resulting numerator to the numerator in (8.2.17). However, since there’s no first power of s in the denom-

inator of (8.2.17), there’s an easier way: the expansion of

F1.s/ D 1

.s2 C 1/.s2 C 4/

can be obtained quickly by using Heaviside’s method to expand

1

.x C 1/.x C 4/
D 1

3

�

1

x C 1
� 1

x C 4

�

and then setting x D s2 to obtain

1

.s2 C 1/.s2 C 4/
D 1

3

�

1

s2 C 1
� 1

s2 C 4

�

:

Multiplying this by 8C 3s yields

F.s/ D 8C 3s

.s2 C 1/.s2 C 4/
D 1

3

�

8C 3s

s2 C 1
� 8C 3s

s2 C 4

�

:

Therefore

L�1.F / D 8

3
sin t C cos t � 4

3
sin 2t � cos 2t:

USING TECHNOLOGY

Some software packages that do symbolic algebra can find partial fraction expansions very easily. We

recommend that you use such a package if one is available to you, but only after you’ve done enough

partial fraction expansions on your own to master the technique.

8.2 Exercises

1. Use the table of Laplace transforms to find the inverse Laplace transform.

(a)
3

.s � 7/4 (b)
2s � 4

s2 � 4s C 13
(c)

1

s2 C 4s C 20

(d)
2

s2 C 9
(e)

s2 � 1
.s2 C 1/2

(f)
1

.s � 2/2 � 4

(g)
12s � 24

.s2 � 4s C 85/2
(h)

2

.s � 3/2 � 9 (i)
s2 � 4s C 3

.s2 � 4s C 5/2

2. Use Theorem 8.2.1 and the table of Laplace transforms to find the inverse Laplace transform.
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(a)
2s C 3

.s � 7/4 (b)
s2 � 1
.s � 2/6 (c)

s C 5

s2 C 6s C 18

(d)
2s C 1

s2 C 9
(e)

s

s2 C 2s C 1
(f)

s C 1

s2 � 9

(g)
s3 C 2s2 � s � 3

.s C 1/4
(h)

2s C 3

.s � 1/2 C 4
(i)
1

s
� s

s2 C 1

(j)
3s C 4

s2 � 1
(k)

3

s � 1
C 4s C 1

s2 C 9
(l)

3

.s C 2/2
� 2s C 6

s2 C 4

3. Use Heaviside’s method to find the inverse Laplace transform.

(a)
3 � .s C 1/.s � 2/

.s C 1/.s C 2/.s � 2/ (b)
7C .s C 4/.18 � 3s/

.s � 3/.s � 1/.s C 4/

(c)
2C .s � 2/.3 � 2s/
.s � 2/.s C 2/.s � 3/ (d)

3 � .s � 1/.s C 1/

.s C 4/.s � 2/.s � 1/

(e)
3C .s � 2/.10 � 2s � s2/

.s � 2/.s C 2/.s � 1/.s C 3/
(f)

3C .s � 3/.2s2 C s � 21/

.s � 3/.s � 1/.s C 4/.s � 2/
4. Find the inverse Laplace transform.

(a)
2C 3s

.s2 C 1/.s C 2/.s C 1/
(b)

3s2 C 2s C 1

.s2 C 1/.s2 C 2s C 2/

(c)
3s C 2

.s � 2/.s2 C 2s C 5/
(d)

3s2 C 2s C 1

.s � 1/2.s C 2/.s C 3/

(e)
2s2 C s C 3

.s � 1/2.s C 2/2
(f)

3s C 2

.s2 C 1/.s � 1/2
5. Use the method of Example 8.2.9 to find the inverse Laplace transform.

(a)
3s C 2

.s2 C 4/.s2 C 9/
(b)

�4s C 1

.s2 C 1/.s2 C 16/
(c)

5s C 3

.s2 C 1/.s2 C 4/

(d)
�s C 1

.4s2 C 1/.s2 C 1/
(e)

17s � 34
.s2 C 16/.16s2 C 1/

(f)
2s � 1

.4s2 C 1/.9s2 C 1/

6. Find the inverse Laplace transform.

(a)
17s � 15

.s2 � 2s C 5/.s2 C 2s C 10/
(b)

8s C 56

.s2 � 6s C 13/.s2 C 2s C 5/

(c)
s C 9

.s2 C 4s C 5/.s2 � 4s C 13/
(d)

3s � 2
.s2 � 4s C 5/.s2 � 6s C 13/

(e)
3s � 1

.s2 � 2s C 2/.s2 C 2s C 5/
(f)

20s C 40

.4s2 � 4s C 5/.4s2 C 4s C 5/

7. Find the inverse Laplace transform.

(a)
1

s.s2 C 1/
(b)

1

.s � 1/.s2 � 2s C 17/

(c)
3s C 2

.s � 2/.s2 C 2s C 10/
(d)

34� 17s

.2s � 1/.s2 � 2s C 5/

(e)
s C 2

.s � 3/.s2 C 2s C 5/
(f)

2s � 2
.s � 2/.s2 C 2s C 10/

8. Find the inverse Laplace transform.
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(a)
2s C 1

.s2 C 1/.s � 1/.s � 3/ (b)
s C 2

.s2 C 2s C 2/.s2 � 1/

(c)
2s � 1

.s2 � 2s C 2/.s C 1/.s � 2/ (d)
s � 6

.s2 � 1/.s2 C 4/

(e)
2s � 3

s.s � 2/.s2 � 2s C 5/
(f)

5s � 15
.s2 � 4s C 13/.s � 2/.s � 1/

9. Given that f .t/ $ F.s/, find the inverse Laplace transform of F.as � b/, where a > 0.

10. (a) If s1, s2, . . . , sn are distinct and P is a polynomial of degree less than n, then

P.s/

.s � s1/.s � s2/ � � � .s � sn/
D A1

s � s1
C A2

s � s2
C � � � C An

s � sn
:

Multiply through by s � si to show that Ai can be obtained by ignoring the factor s � si on

the left and setting s D si elsewhere.

(b) Suppose P and Q1 are polynomials such that degree.P / � degree.Q1/ and Q1.s1/ ¤ 0.
Show that the coefficient of 1=.s � s1/ in the partial fraction expansion of

F.s/ D P.s/

.s � s1/Q1.s/

is P.s1/=Q1.s1/.

(c) Explain how the results of (a) and (b) are related.

8.3 SOLUTION OF INITIAL VALUE PROBLEMS

Laplace Transforms of Derivatives

In the rest of this chapter we’ll use the Laplace transform to solve initial value problems for constant
coefficient second order equations. To do this, we must know how the Laplace transform of f 0 is related

to the Laplace transform of f . The next theorem answers this question.

Theorem 8.3.1 Suppose f is continuous on Œ0;1/ and of exponential order s0, and f 0 is piecewise

continuous on Œ0;1/: Then f and f 0 have Laplace transforms for s > s0; and

L.f 0/ D sL.f / � f .0/: (8.3.1)

Proof

We know from Theorem 8.1.6 that L.f / is defined for s > s0. We first consider the case where f 0 is

continuous on Œ0;1/. Integration by parts yields
Z T

0

e�stf 0.t/ dt D e�stf .t/
ˇ

ˇ

ˇ

T

0
C s

Z T

0

e�stf .t/ dt

D e�sT f .T / � f .0/C s

Z T

0

e�stf .t/ dt

(8.3.2)

for any T > 0. Since f is of exponential order s0, limT !1 e�sT f .T / D 0 and the last integral in (8.3.2)

converges as T ! 1 if s > s0. Therefore
Z 1

0

e�stf 0.t/ dt D �f .0/C s

Z 1

0

e�stf .t/ dt

D �f .0/C sL.f /;
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which proves (8.3.1). Now suppose T > 0 and f 0 is only piecewise continuous on Œ0; T �, with dis-

continuities at t1 < t2 < � � � < tn�1. For convenience, let t0 D 0 and tn D T . Integrating by parts

yields

Z ti

ti�1

e�stf 0.t/ dt D e�stf .t/
ˇ

ˇ

ˇ

ti

ti�1

C s

Z ti

ti�1

e�stf .t/ dt

D e�stif .ti / � e�sti�1f .ti�1/C s

Z ti

ti�1

e�stf .t/ dt:

Summing both sides of this equation from i D 1 to n and noting that

�

e�st1f .t1/ � e�st0f .t0/
�

C
�

e�st2f .t2/� e�st1f .t1/
�

C � � � C
�

e�stN f .tN / � e�stN �1f .tN�1/
�

D e�stN f .tN /� e�st0f .t0/ D e�sT f .T / � f .0/
yields (8.3.2), so (8.3.1) follows as before.

Example 8.3.1 In Example 8.1.4 we saw that

L.cos!t/ D s

s2 C !2
:

Applying (8.3.1) with f .t/ D cos!t shows that

L.�! sin!t/ D s
s

s2 C !2
� 1 D � !2

s2 C !2
:

Therefore

L.sin!t/ D !

s2 C !2
;

which agrees with the corresponding result obtained in 8.1.4.

In Section 2.1 we showed that the solution of the initial value problem

y0 D ay; y.0/ D y0; (8.3.3)

is y D y0e
at . We’ll now obtain this result by using the Laplace transform.

Let Y.s/ D L.y/ be the Laplace transform of the unknown solution of (8.3.3). Taking Laplace trans-

forms of both sides of (8.3.3) yields

L.y0/ D L.ay/;

which, by Theorem 8.3.1, can be rewritten as

sL.y/ � y.0/ D aL.y/;

or

sY.s/ � y0 D aY.s/:

Solving for Y.s/ yields

Y.s/ D y0

s � a ;
so

y D L�1.Y.s// D L�1
� y0

s � a

�

D y0L
�1

�

1

s � a

�

D y0e
at ;

which agrees with the known result.
We need the next theorem to solve second order differential equations using the Laplace transform.
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Theorem 8.3.2 Suppose f and f 0 are continuous on Œ0;1/ and of exponential order s0; and that f 00 is

piecewise continuous on Œ0;1/: Then f , f 0, and f 00 have Laplace transforms for s > s0,

L.f 0/ D sL.f / � f .0/; (8.3.4)

and

L.f 00/ D s2L.f / � f 0.0/ � sf .0/: (8.3.5)

Proof Theorem 8.3.1 implies that L.f 0/ exists and satisfies (8.3.4) for s > s0. To prove that L.f 00/

exists and satisfies (8.3.5) for s > s0, we first apply Theorem 8.3.1 to g D f 0. Since g satisfies the

hypotheses of Theorem 8.3.1, we conclude that L.g0/ is defined and satisfies

L.g0/ D sL.g/ � g.0/

for s > s0. However, since g0 D f 00, this can be rewritten as

L.f 00/ D sL.f 0/� f 0.0/:

Substituting (8.3.4) into this yields (8.3.5).

Solving Second Order Equations with the Laplace Transform

We’ll now use the Laplace transform to solve initial value problems for second order equations.

Example 8.3.2 Use the Laplace transform to solve the initial value problem

y00 � 6y0 C 5y D 3e2t ; y.0/ D 2; y0.0/ D 3: (8.3.6)

Solution Taking Laplace transforms of both sides of the differential equation in (8.3.6) yields

L.y00 � 6y0 C 5y/ D L
�

3e2t
�

D 3

s � 2 ;

which we rewrite as

L.y00/ � 6L.y0/C 5L.y/ D 3

s � 2
: (8.3.7)

Now denote L.y/ D Y.s/. Theorem 8.3.2 and the initial conditions in (8.3.6) imply that

L.y0/ D sY.s/ � y.0/ D sY.s/ � 2

and
L.y00/ D s2Y.s/ � y0.0/ � sy.0/ D s2Y.s/� 3 � 2s:

Substituting from the last two equations into (8.3.7) yields

�

s2Y.s/� 3 � 2s
�

� 6 .sY.s/ � 2/C 5Y.s/ D 3

s � 2
:

Therefore

.s2 � 6s C 5/Y.s/ D 3

s � 2 C .3 C 2s/C 6.�2/; (8.3.8)

so

.s � 5/.s � 1/Y.s/ D 3C .s � 2/.2s � 9/
s � 2 ;
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and

Y.s/ D 3C .s � 2/.2s � 9/
.s � 2/.s � 5/.s � 1/ :

Heaviside’s method yields the partial fraction expansion

Y.s/ D � 1

s � 2 C 1

2

1

s � 5 C 5

2

1

s � 1 ;

and taking the inverse transform of this yields

y D �e2t C 1

2
e5t C 5

2
et

as the solution of (8.3.6).
It isn’t necessary to write all the steps that we used to obtain (8.3.8). To see how to avoid this, let’s

apply the method of Example 8.3.2 to the general initial value problem

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1: (8.3.9)

Taking Laplace transforms of both sides of the differential equation in (8.3.9) yields

aL.y00/C bL.y0/C cL.y/ D F.s/: (8.3.10)

Now let Y.s/ D L.y/. Theorem 8.3.2 and the initial conditions in (8.3.9) imply that

L.y0/ D sY.s/� k0 and L.y00/ D s2Y.s/ � k1 � k0s:

Substituting these into (8.3.10) yields

a
�

s2Y.s/ � k1 � k0s
�

C b .sY.s/� k0/C cY.s/ D F.s/: (8.3.11)

The coefficient of Y.s/ on the left is the characteristic polynomial

p.s/ D as2 C bs C c

of the complementary equation for (8.3.9). Using this and moving the terms involving k0 and k1 to the

right side of (8.3.11) yields

p.s/Y.s/ D F.s/C a.k1 C k0s/C bk0: (8.3.12)

This equation corresponds to (8.3.8) of Example 8.3.2. Having established the form of this equation in

the general case, it is preferable to go directly from the initial value problem to this equation. You may

find it easier to remember (8.3.12) rewritten as

p.s/Y.s/ D F.s/C a
�

y0.0/C sy.0/
�

C by.0/: (8.3.13)

Example 8.3.3 Use the Laplace transform to solve the initial value problem

2y00 C 3y0 C y D 8e�2t ; y.0/ D �4; y0.0/ D 2: (8.3.14)

Solution The characteristic polynomial is

p.s/ D 2s2 C 3s C 1 D .2s C 1/.s C 1/
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and

F.s/ D L.8e�2t / D 8

s C 2
;

so (8.3.13) becomes

.2s C 1/.s C 1/Y.s/ D 8

s C 2
C 2.2 � 4s/C 3.�4/:

Solving for Y.s/ yields

Y.s/ D 4 .1 � .s C 2/.s C 1//

.s C 1=2/.s C 1/.s C 2/
:

Heaviside’s method yields the partial fraction expansion

Y.s/ D 4

3

1

s C 1=2
� 8

s C 1
C 8

3

1

s C 2
;

so the solution of (8.3.14) is

y D L�1.Y.s// D 4

3
e�t=2 � 8e�t C 8

3
e�2t

(Figure 8.3.1).

1 2 3 4 5 6 7

−1

−2

−3

−4

 t

 y

Figure 8.3.1 y D 4

3
e�t=2 � 8e�t C 8

3
e�2t

1 2 3 4 5 6 7

1

−1

−2

−3

−4

.5

 t

 y

Figure 8.3.2 y D 1

2
� 7

2
e�t cos t � 5

2
e�t sin t

Example 8.3.4 Solve the initial value problem

y00 C 2y0 C 2y D 1; y.0/ D �3; y0.0/ D 1: (8.3.15)

Solution The characteristic polynomial is

p.s/ D s2 C 2s C 2 D .s C 1/2 C 1

and

F.s/ D L.1/ D 1

s
;
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so (8.3.13) becomes
�

.s C 1/2 C 1
�

Y.s/ D 1

s
C 1 � .1 � 3s/C 2.�3/:

Solving for Y.s/ yields

Y.s/ D 1 � s.5C 3s/

s Œ.s C 1/2 C 1�
:

In Example 8.2.8 we found the inverse transform of this function to be

y D 1

2
� 7

2
e�t cos t � 5

2
e�t sin t

(Figure 8.3.2), which is therefore the solution of (8.3.15).

REMARK: In our examples we applied Theorems 8.3.1 and 8.3.2 without verifying that the unknown

function y satisfies their hypotheses. This is characteristic of the formal manipulative way in which the
Laplace transform is used to solve differential equations. Any doubts about the validity of the method for

solving a given equation can be resolved by verifying that the resulting function y is the solution of the

given problem.

8.3 Exercises

In Exercises 1–31 use the Laplace transform to solve the initial value problem.

1. y00 C 3y0 C 2y D et ; y.0/ D 1; y0.0/ D �6
2. y00 � y0 � 6y D 2; y.0/ D 1; y0.0/ D 0

3. y00 C y0 � 2y D 2e3t; y.0/ D �1; y0.0/ D 4

4. y00 � 4y D 2e3t ; y.0/ D 1; y0.0/ D �1
5. y00 C y0 � 2y D e3t ; y.0/ D 1; y0.0/ D �1
6. y00 C 3y0 C 2y D 6et ; y.0/ D 1; y0.0/ D �1
7. y00 C y D sin 2t; y.0/ D 0; y0.0/ D 1

8. y00 � 3y0 C 2y D 2e3t ; y.0/ D 1; y0.0/ D �1
9. y00 � 3y0 C 2y D e4t ; y.0/ D 1; y0.0/ D �2

10. y00 � 3y0 C 2y D e3t ; y.0/ D �1; y0.0/ D �4
11. y00 C 3y0 C 2y D 2et; y.0/ D 0; y0.0/ D �1
12. y00 C y0 � 2y D �4; y.0/ D 2; y0.0/ D 3

13. y00 C 4y D 4; y.0/ D 0; y0.0/ D 1

14. y00 � y0 � 6y D 2; y.0/ D 1; y0.0/ D 0

15. y00 C 3y0 C 2y D et ; y.0/ D 0; y0.0/ D 1

16. y00 � y D 1; y.0/ D 1; y0.0/ D 0

17. y00 C 4y D 3 sin t; y.0/ D 1; y0.0/ D �1
18. y00 C y0 D 2e3t; y.0/ D �1; y0.0/ D 4

19. y00 C y D 1; y.0/ D 2; y0.0/ D 0

20. y00 C y D t; y.0/ D 0; y0.0/ D 2
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21. y00 C y D t � 3 sin 2t; y.0/ D 1; y0.0/ D �3
22. y00 C 5y0 C 6y D 2e�t ; y.0/ D 1; y0.0/ D 3

23. y00 C 2y0 C y D 6 sin t � 4 cos t; y.0/ D �1; y0.0/ D 1

24. y00 � 2y0 � 3y D 10 cos t; y.0/ D 2; y0.0/ D 7

25. y00 C y D 4 sin t C 6 cos t; y.0/ D �6; y0.0/ D 2

26. y00 C 4y D 8 sin 2t C 9 cos t; y.0/ D 1; y0.0/ D 0

27. y00 � 5y0 C 6y D 10et cos t; y.0/ D 2; y0.0/ D 1

28. y00 C 2y0 C 2y D 2t; y.0/ D 2; y0.0/ D �7
29. y00 � 2y0 C 2y D 5 sin t C 10 cos t; y.0/ D 1; y0.0/ D 2

30. y00 C 4y0 C 13y D 10e�t � 36et ; y.0/ D 0; y0.0/ D �16
31. y00 C 4y0 C 5y D e�t.cos t C 3 sin t/; y.0/ D 0; y0.0/ D 4

32. 2y00 � 3y0 � 2y D 4et ; y.0/ D 1; y0.0/ D �2
33. 6y00 � y0 � y D 3e2t ; y.0/ D 0; y0.0/ D 0

34. 2y00 C 2y0 C y D 2t; y.0/ D 1; y0.0/ D �1
35. 4y00 � 4y0 C 5y D 4 sin t � 4 cos t; y.0/ D 0; y0.0/ D 11=17

36. 4y00 C 4y0 C y D 3 sin t C cos t; y.0/ D 2; y0.0/ D �1
37. 9y00 C 6y0 C y D 3e3t ; y.0/ D 0; y0.0/ D �3
38. Suppose a; b, and c are constants and a ¤ 0. Let

y1 D L�1

�

as C b

as2 C bs C c

�

and y2 D L�1

�

a

as2 C bs C c

�

:

Show that

y1.0/ D 1; y0
1.0/ D 0 and y2.0/ D 0; y0

2.0/ D 1:

HINT: Use the Laplace transform to solve the initial value problems

ay00 C by0 C cy D 0; y.0/ D 1; y0.0/ D 0

ay00 C by0 C cy D 0; y.0/ D 0; y0.0/ D 1:

8.4 THE UNIT STEP FUNCTION

In the next section we’ll consider initial value problems

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1;

where a, b, and c are constants and f is piecewise continuous. In this section we’ll develop procedures
for using the table of Laplace transforms to find Laplace transforms of piecewise continuous functions,

and to find the piecewise continuous inverses of Laplace transforms.
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Example 8.4.1 Use the table of Laplace transforms to find the Laplace transform of

f .t/ D
(

2t C 1; 0 � t < 2;

3t; t � 2
(8.4.1)

(Figure 8.4.1).

Solution Since the formula for f changes at t D 2, we write

L.f / D
Z 1

0

e�stf .t/ dt

D
Z 2

0

e�st .2t C 1/ dt C
Z 1

2

e�st.3t/ dt:

(8.4.2)

To relate the first term to a Laplace transform, we add and subtract

Z 1

2

e�st .2t C 1/ dt

in (8.4.2) to obtain

L.f / D
Z 1

0

e�st .2t C 1/ dt C
Z 1

2

e�st .3t � 2t � 1/ dt

D
Z 1

0

e�st .2t C 1/ dt C
Z 1

2

e�st .t � 1/ dt

D L.2t C 1/C
Z 1

2

e�st.t � 1/ dt:

(8.4.3)

To relate the last integral to a Laplace transform, we make the change of variable x D t � 2 and rewrite
the integral as

Z 1

2

e�st .t � 1/ dt D
Z 1

0

e�s.xC2/.x C 1/ dx

D e�2s

Z 1

0

e�sx.x C 1/ dx:

Since the symbol used for the variable of integration has no effect on the value of a definite integral, we

can now replace x by the more standard t and write

Z 1

2

e�st .t � 1/ dt D e�2s

Z 1

0

e�st .t C 1/ dt D e�2sL.t C 1/:

This and (8.4.3) imply that

L.f / D L.2t C 1/C e�2sL.t C 1/:

Now we can use the table of Laplace transforms to find that

L.f / D 2

s2
C 1

s
C e�2s

�

1

s2
C 1

s

�

:
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Figure 8.4.1 The piecewise continuous function
(8.4.1)
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Figure 8.4.2 y D u.t � �/

Laplace Transforms of Piecewise Continuous Functions

We’ll now develop the method of Example 8.4.1 into a systematic way to find the Laplace transform of a
piecewise continuous function. It is convenient to introduce the unit step function, defined as

u.t/ D
�

0; t < 0

1; t � 0:
(8.4.4)

Thus, u.t/ “steps” from the constant value 0 to the constant value 1 at t D 0. If we replace t by t � � in

(8.4.4), then

u.t � �/ D
�

0; t < �;

1; t � �
I

that is, the step now occurs at t D � (Figure 8.4.2).

The step function enables us to represent piecewise continuous functions conveniently. For example,

consider the function

f .t/ D
(

f0.t/; 0 � t < t1;

f1.t/; t � t1;
(8.4.5)

where we assume that f0 and f1 are defined on Œ0;1/, even though they equal f only on the indicated

intervals. This assumption enables us to rewrite (8.4.5) as

f .t/ D f0.t/ C u.t � t1/ .f1.t/ � f0.t// : (8.4.6)

To verify this, note that if t < t1 then u.t � t1/ D 0 and (8.4.6) becomes

f .t/ D f0.t/C .0/ .f1.t/ � f0.t// D f0.t/:

If t � t1 then u.t � t1/ D 1 and (8.4.6) becomes

f .t/ D f0.t/C .1/ .f1.t/ � f0.t// D f1.t/:

We need the next theorem to show how (8.4.6) can be used to find L.f /.
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Theorem 8.4.1 Let g be defined on Œ0;1/: Suppose � � 0 and L.g.t C �// exists for s > s0: Then

L.u.t � �/g.t// exists for s > s0, and

L.u.t � �/g.t// D e�s�L.g.t C �// :

Proof By definition,

L.u.t � �/g.t// D
Z 1

0

e�stu.t � �/g.t/ dt:

From this and the definition of u.t � �/,

L.u.t � �/g.t// D
Z �

0

e�st .0/ dt C
Z 1

�

e�stg.t/ dt:

The first integral on the right equals zero. Introducing the new variable of integration x D t � � in the

second integral yields

L.u.t � �/g.t// D
Z 1

0

e�s.xC�/g.x C �/ dx D e�s�

Z 1

0

e�sxg.x C �/ dx:

Changing the name of the variable of integration in the last integral from x to t yields

L.u.t � �/g.t// D e�s�

Z 1

0

e�stg.t C �/ dt D e�s�L.g.t C �//:

Example 8.4.2 Find

L
�

u.t � 1/.t2 C 1/
�

:

Solution Here � D 1 and g.t/ D t2 C 1, so

g.t C 1/ D .t C 1/2 C 1 D t2 C 2t C 2:

Since

L.g.t C 1// D 2

s3
C 2

s2
C 2

s
;

Theorem 8.4.1 implies that

L
�

u.t � 1/.t2 C 1/
�

D e�s

�

2

s3
C 2

s2
C 2

s

�

:

Example 8.4.3 Use Theorem 8.4.1 to find the Laplace transform of the function

f .t/ D
(

2t C 1; 0 � t < 2;

3t; t � 2;

from Example 8.4.1.

Solution We first write f in the form (8.4.6) as

f .t/ D 2t C 1C u.t � 2/.t � 1/:
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Therefore

L.f / D L.2t C 1/C L.u.t � 2/.t � 1//

D L.2t C 1/C e�2sL.t C 1/ (from Theorem 8.4.1/

D 2

s2
C 1

s
C e�2s

�

1

s2
C 1

s

�

;

which is the result obtained in Example 8.4.1.
Formula (8.4.6) can be extended to more general piecewise continuous functions. For example, we can

write

f .t/ D

8

ˆ

<

ˆ

:

f0.t/; 0 � t < t1;

f1.t/; t1 � t < t2;

f2.t/; t � t2;

as

f .t/ D f0.t/C u.t � t1/ .f1.t/ � f0.t// C u.t � t2/ .f2.t/ � f1.t//

if f0, f1, and f2 are all defined on Œ0;1/.

Example 8.4.4 Find the Laplace transform of

f .t/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1; 0 � t < 2;

�2t C 1; 2 � t < 3;

3t; 3 � t < 5;

t � 1; t � 5

(8.4.7)

(Figure 8.4.3).

Solution In terms of step functions,

f .t/ D 1C u.t � 2/.�2t C 1 � 1/C u.t � 3/.3t C 2t � 1/

Cu.t � 5/.t � 1 � 3t/;

or

f .t/ D 1 � 2u.t � 2/t C u.t � 3/.5t � 1/� u.t � 5/.2t C 1/:

Now Theorem 8.4.1 implies that

L.f / D L.1/� 2e�2sL.t C 2/C e�3sL.5.t C 3/� 1/� e�5sL.2.t C 5/C 1/

D L.1/� 2e�2sL.t C 2/C e�3sL.5t C 14/� e�5sL.2t C 11/

D 1

s
� 2e�2s

�

1

s2
C 2

s

�

C e�3s

�

5

s2
C 14

s

�

� e�5s

�

2

s2
C 11

s

�

:

The trigonometric identities

sin.AC B/ D sinA cosB C cosA sinB (8.4.8)

cos.AC B/ D cosA cosB � sinA sinB (8.4.9)

are useful in problems that involve shifting the arguments of trigonometric functions. We’ll use these
identities in the next example.
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Figure 8.4.3 The piecewise contnuous function (8.4.7)

Example 8.4.5 Find the Laplace transform of

f .t/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

sin t; 0 � t <
�

2
;

cos t � 3 sin t;
�

2
� t < �;

3 cos t; t � �

(8.4.10)

(Figure 8.4.4).

Solution In terms of step functions,

f .t/ D sin t C u.t � �=2/.cos t � 4 sin t/C u.t � �/.2 cos t C 3 sin t/:

Now Theorem 8.4.1 implies that

L.f / D L.sin t/C e� �
2 sL

�

cos
�

t C �
2

�

� 4 sin
�

t C �
2

��

Ce��sL.2 cos.t C �/C 3 sin.t C �// :
(8.4.11)

Since

cos
�

t C �

2

�

� 4 sin
�

t C �

2

�

D � sin t � 4 cos t

and

2 cos.t C �/C 3 sin.t C �/ D �2 cos t � 3 sin t;

we see from (8.4.11) that

L.f / D L.sin t/� e��s=2L.sin t C 4 cos t/ � e��sL.2 cos t C 3 sin t/

D 1

s2 C 1
� e� �

2 s

�

1C 4s

s2 C 1

�

� e��s

�

3C 2s

s2 C 1

�

:
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Figure 8.4.4 The piecewise continuous function (8.4.10)

The Second Shifting Theorem

Replacing g.t/ by g.t � �/ in Theorem 8.4.1 yields the next theorem.

Theorem 8.4.2 ŒSecond Shifting Theorem� If � � 0 andL.g/ exists for s > s0 then L.u.t � �/g.t � �//
exists for s > s0 and

L.u.t � �/g.t � �// D e�s�L.g.t//;

or, equivalently,

if g.t/ $ G.s/; then u.t � �/g.t � �/ $ e�s�G.s/: (8.4.12)

REMARK: Recall that the First Shifting Theorem (Theorem 8.1.3 states that multiplying a function by

eat corresponds to shifting the argument of its transform by a units. Theorem 8.4.2 states that multiplying

a Laplace transform by the exponential e��s corresponds to shifting the argument of the inverse transform
by � units.

Example 8.4.6 Use (8.4.12) to find

L�1

�

e�2s

s2

�

:

Solution To apply (8.4.12) we let � D 2 and G.s/ D 1=s2. Then g.t/ D t and (8.4.12) implies that

L�1

�

e�2s

s2

�

D u.t � 2/.t � 2/:
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Example 8.4.7 Find the inverse Laplace transform h of

H.s/ D 1

s2
� e�s

�

1

s2
C 2

s

�

C e�4s

�

4

s3
C 1

s

�

;

and find distinct formulas for h on appropriate intervals.

Solution Let

G0.s/ D 1

s2
; G1.s/ D 1

s2
C 2

s
; G2.s/ D 4

s3
C 1

s
:

Then

g0.t/ D t; g1.t/ D t C 2; g2.t/ D 2t2 C 1:

Hence, (8.4.12) and the linearity of L�1 imply that

h.t/ D L�1 .G0.s// � L�1 .e�sG1.s//C L�1
�

e�4sG2.s/
�

D t � u.t � 1/ Œ.t � 1/C 2�C u.t � 4/
�

2.t � 4/2 C 1
�

D t � u.t � 1/.t C 1/C u.t � 4/.2t2 � 16t C 33/;

which can also be written as

h.t/ D

8

ˆ

<

ˆ

:

t; 0 � t < 1;

�1; 1 � t < 4;

2t2 � 16t C 32; t � 4:

Example 8.4.8 Find the inverse transform of

H.s/ D 2s

s2 C 4
� e� �

2
s 3s C 1

s2 C 9
C e��s s C 1

s2 C 6s C 10
:

Solution Let

G0.s/ D 2s

s2 C 4
; G1.s/ D � .3s C 1/

s2 C 9
;

and

G2.s/ D s C 1

s2 C 6s C 10
D .s C 3/� 2

.s C 3/2 C 1
:

Then

g0.t/ D 2 cos 2t; g1.t/ D �3 cos 3t � 1

3
sin 3t;

and

g2.t/ D e�3t .cos t � 2 sin t/:

Therefore (8.4.12) and the linearity of L�1 imply that

h.t/ D 2 cos 2t � u.t � �=2/

�

3 cos 3.t � �=2/C 1

3
sin 3

�

t � �

2

�

�

Cu.t � �/e�3.t��/ Œcos.t � �/� 2 sin.t � �/� :
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Using the trigonometric identities (8.4.8) and (8.4.9), we can rewrite this as

h.t/ D 2 cos 2t C u.t � �=2/
�

3 sin 3t � 1
3

cos 3t
�

�u.t � �/e�3.t��/.cos t � 2 sin t/
(8.4.13)

(Figure 8.4.5).
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Figure 8.4.5 The piecewise continouous function (8.4.13)

8.4 Exercises

In Exercises 1–6 find the Laplace transform by the method of Example 8.4.1. Then express the given

function f in terms of unit step functions as in Eqn. (8.4.6), and use Theorem 8.4.1 to find L.f /. Where

indicated by C/G , graph f .

1. f .t/ D
(

1; 0 � t < 4;

t; t � 4:

2. f .t/ D
(

t; 0 � t < 1;

1; t � 1:

3. C/G f .t/ D
(

2t � 1; 0 � t < 2;

t; t � 2:
4. C/G f .t/ D

(

1; 0 � t < 1;

t C 2; t � 1:

5. f .t/ D
(

t � 1; 0 � t < 2;

4; t � 2:
6. f .t/ D

(

t2; 0 � t < 1;

0; t � 1:
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In Exercises 7–18 express the given function f in terms of unit step functions and use Theorem 8.4.1 to

find L.f /. Where indicated by C/G , graph f .

7. f .t/ D
(

0; 0 � t < 2;

t2 C 3t; t � 2:

8. f .t/ D
(

t2 C 2; 0 � t < 1;

t; t � 1:

9. f .t/ D
(

tet ; 0 � t < 1;

et ; t � 1:
10. f .t/ D

(

e �t ; 0 � t < 1;

e�2t ; t � 1:

11. f .t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

�t; 0 � t < 2;

t � 4; 2 � t < 3;

1; t � 3:

12. f .t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; 0 � t < 1;

t; 1 � t < 2;

0; t � 2:

13. f .t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

t; 0 � t < 1;

t2; 1 � t < 2;

0; t � 2:

14. f .t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

t; 0 � t < 1;

2 � t; 1 � t < 2;

6; t > 2:

15. C/G f .t/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

sin t; 0 � t <
�

2
;

2 sin t;
�

2
� t < �;

cos t; t � �:

16. C/G f .t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

2; 0 � t < 1;

�2t C 2; 1 � t < 3;

3t; t � 3:

17. C/G f .t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

3; 0 � t < 2;

3t C 2; 2 � t < 4;

4t; t � 4:

18. C/G f .t/ D
(

.t C 1/2; 0 � t < 1;

.t C 2/2; t � 1:

In Exercises 19–28 use Theorem 8.4.2 to express the inverse transforms in terms of step functions, and

then find distinct formulas the for inverse transforms on the appropriate intervals, as in Example 8.4.7.

Where indicated by C/G , graph the inverse transform.

19. H.s/ D e�2s

s � 2

20. H.s/ D e�s

s.s C 1/

21. C/G H.s/ D e�s

s3
C e�2s

s2

22. C/G H.s/ D
�

2

s
C 1

s2

�

C e�s

�

3

s
� 1

s2

�

C e�3s

�

1

s
C 1

s2

�
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23. H.s/ D
�

5

s
� 1

s2

�

C e�3s

�

6

s
C 7

s2

�

C 3e�6s

s3

24. H.s/ D e��s.1 � 2s/

s2 C 4s C 5

25. C/G H.s/ D
�

1

s
� s

s2 C 1

�

C e� �
2 s

�

3s � 1
s2 C 1

�

26. H.s/ D e�2s

�

3.s � 3/
.s C 1/.s � 2/ � s C 1

.s � 1/.s � 2/

�

27. H.s/ D 1

s
C 1

s2
C e�s

�

3

s
C 2

s2

�

C e�3s

�

4

s
C 3

s2

�

28. H.s/ D 1

s
� 2

s3
C e�2s

�

3

s
� 1

s3

�

C e�4s

s2

29. Find L.u.t � �//.
30. Let ftmg1

mD0 be a sequence of points such that t0 D 0, tmC1 > tm, and limm!1 tm D 1. For

each nonnegative integer m, let fm be continuous on Œtm;1/, and let f be defined on Œ0;1/ by

f .t/ D fm.t/; tm � t < tmC1 .m D 0; 1; : : : /:

Show that f is piecewise continuous on Œ0;1/ and that it has the step function representation

f .t/ D f0.t/C
1
X

mD1

u.t � tm/ .fm.t/ � fm�1.t// ; 0 � t < 1:

How do we know that the series on the right converges for all t in Œ0;1/?

31. In addition to the assumptions of Exercise 30, assume that

jfm.t/j � Mes0t ; t � tm; m D 0; 1; : : : ; .A/

and that the series
1
X

mD0

e��tm .B/

converges for some � > 0. Using the steps listed below, show that L.f / is defined for s > s0 and

L.f / D L.f0/C
1
X

mD1

e�stmL.gm/ .C/

for s > s0 C �, where

gm.t/ D fm.t C tm/ � fm�1.t C tm/:

(a) Use (A) and Theorem 8.1.6 to show that

L.f / D
1
X

mD0

Z tmC1

tm

e�stfm.t/ dt .D/

is defined for s > s0.
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(b) Show that (D) can be rewritten as

L.f / D
1
X

mD0

 

Z 1

tm

e�stfm.t/ dt �
Z 1

tmC1

e�stfm.t/ dt

!

: .E/

(c) Use (A), the assumed convergence of (B), and the comparison test to show that the series

1
X

mD0

Z 1

tm

e�stfm.t/ dt and

1
X

mD0

Z 1

tmC1

e�stfm.t/ dt

both converge (absolutely) if s > s0 C �.

(d) Show that (E) can be rewritten as

L.f / D L.f0/C
1
X

mD1

Z 1

tm

e�st .fm.t/ � fm�1.t// dt

if s > s0 C �.

(e) Complete the proof of (C).

32. Suppose ftmg1
mD0 and ffmg1

mD0 satisfy the assumptions of Exercises 30 and 31, and there’s a
positive constant K such that tm � Km for m sufficiently large. Show that the series (B) of

Exercise 31 converges for any � > 0, and conclude from this that (C) of Exercise 31 holds for

s > s0.

In Exercises 33–36 find the step function representation of f and use the result of Exercise 32 to find

L.f /. HINT: You will need formulas related to the formula for the sum of a geometric series.

33. f .t/ D mC 1; m � t < mC 1 .m D 0; 1; 2; : : : /

34. f .t/ D .�1/m; m � t < mC 1 .m D 0; 1; 2; : : : /

35. f .t/ D .mC 1/2; m � t < mC 1 .m D 0; 1; 2; : : : /

36. f .t/ D .�1/mm; m � t < mC 1 .m D 0; 1; 2; : : : /

8.5 CONSTANT COEEFFICIENT EQUATIONS WITH PIECEWISE CONTINUOUS FORCING FUNC-

TIONS

We’ll now consider initial value problems of the form

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1; (8.5.1)

where a, b, and c are constants (a ¤ 0) and f is piecewise continuous on Œ0;1/. Problems of this

kind occur in situations where the input to a physical system undergoes instantaneous changes, as when
a switch is turned on or off or the forces acting on the system change abruptly.

It can be shown (Exercises 23 and 24) that the differential equation in (8.5.1) has no solutions on an

open interval that contains a jump discontinuity of f . Therefore we must define what we mean by a

solution of (8.5.1) on Œ0;1/ in the case where f has jump discontinuities. The next theorem motivates

our definition. We omit the proof.
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Theorem 8.5.1 Suppose a; b, and c are constants .a ¤ 0/; and f is piecewise continuous on Œ0;1/:

with jump discontinuities at t1; . . . , tn; where

0 < t1 < � � � < tn:

Let k0 and k1 be arbitrary real numbers. Then there is a unique function y defined on Œ0;1/ with these

properties:

(a) y.0/ D k0 and y0.0/ D k1.

(b) y and y0 are continuous on Œ0;1/.

(c) y00 is defined on every open subinterval of Œ0;1/ that does not contain any of the points t1; . . . , tn,

and

ay00 C by0 C cy D f .t/

on every such subinterval.

(d) y00 has limits from the right and left at t1; . . . ; tn.

We define the function y of Theorem 8.5.1 to be the solution of the initial value problem (8.5.1).

We begin by considering initial value problems of the form

ay00 C by0 C cy D
(

f0.t/; 0 � t < t1;

f1.t/; t � t1;
y.0/ D k0; y0.0/ D k1; (8.5.2)

where the forcing function has a single jump discontinuity at t1.

We can solve (8.5.2) by the these steps:

Step 1. Find the solution y0 of the initial value problem

ay00 C by0 C cy D f0.t/; y.0/ D k0; y0.0/ D k1:

Step 2. Compute c0 D y0.t1/ and c1 D y0
0.t1/.

Step 3. Find the solution y1 of the initial value problem

ay00 C by0 C cy D f1.t/; y.t1/ D c0; y0.t1/ D c1:

Step 4. Obtain the solution y of (8.5.2) as

y D
(

y0.t/; 0 � t < t1

y1.t/; t � t1:

It is shown in Exercise 23 that y0 exists and is continuous at t1. The next example illustrates this

procedure.

Example 8.5.1 Solve the initial value problem

y00 C y D f .t/; y.0/ D 2; y0.0/ D �1; (8.5.3)

where

f .t/ D

8

<

:

1; 0 � t <
�

2
;

�1; t � �

2
:
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Figure 8.5.1 Graph of (8.5.4)

Solution The initial value problem in Step 1 is

y00 C y D 1; y.0/ D 2; y0.0/ D �1:

We leave it to you to verify that its solution is

y0 D 1C cos t � sin t:

Doing Step 2 yields y0.�=2/ D 0 and y0
0.�=2/ D �1, so the second initial value problem is

y00 C y D �1; y
��

2

�

D 0; y0
��

2

�

D �1:

We leave it to you to verify that the solution of this problem is

y1 D �1C cos t C sin t:

Hence, the solution of (8.5.3) is

y D

8

<

:

1C cos t � sin t; 0 � t <
�

2
;

�1C cos t C sin t; t � �

2

(8.5.4)

(Figure:8.5.1).

If f0 and f1 are defined on Œ0;1/, we can rewrite (8.5.2) as

ay00 C by0 C cy D f0.t/ C u.t � t1/ .f1.t/ � f0.t// ; y.0/ D k0; y0.0/ D k1;

and apply the method of Laplace transforms. We’ll now solve the problem considered in Example 8.5.1
by this method.
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Example 8.5.2 Use the Laplace transform to solve the initial value problem

y00 C y D f .t/; y.0/ D 2; y0.0/ D �1; (8.5.5)

where

f .t/ D

8

<

:

1; 0 � t <
�

2
;

�1; t � �

2
:

Solution Here

f .t/ D 1 � 2u
�

t � �

2

�

;

so Theorem 8.4.1 (with g.t/ D 1) implies that

L.f / D 1 � 2e��s=2

s
:

Therefore, transforming (8.5.5) yields

.s2 C 1/Y.s/ D 1 � 2e��s=2

s
� 1C 2s;

so

Y.s/ D .1 � 2e��s=2/G.s/C 2s � 1
s2 C 1

; (8.5.6)

with

G.s/ D 1

s.s2 C 1/
:

The form for the partial fraction expansion of G is

1

s.s2 C 1/
D A

s
C Bs C C

s2 C 1
: (8.5.7)

Multiplying through by s.s2 C 1/ yields

A.s2 C 1/C .Bs C C/s D 1;

or

.AC B/s2 CCs C A D 1:

Equating coefficients of like powers of s on the two sides of this equation shows that A D 1, B D �A D
�1 and C D 0. Hence, from (8.5.7),

G.s/ D 1

s
� s

s2 C 1
:

Therefore

g.t/ D 1 � cos t:

From this, (8.5.6), and Theorem 8.4.2,

y D 1 � cos t � 2u
�

t � �

2

� �

1 � cos
�

t � �

2

��

C 2 cos t � sin t:

Simplifying this (recalling that cos.t � �=2/ D sin t/ yields

y D 1C cos t � sin t � 2u
�

t � �

2

�

.1 � sin t/;
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or

y D

8

<

:

1C cos t � sin t; 0 � t <
�

2
;

�1C cos t C sin t; t � �

2
;

which is the result obtained in Example 8.5.1.

REMARK: It isn’t obvious that using the Laplace transform to solve (8.5.2) as we did in Example 8.5.2

yields a function y with the properties stated in Theorem 8.5.1; that is, such that y and y0 are continuous
on Œ0;1/ and y00 has limits from the right and left at t1. However, this is true if f0 and f1 are continuous

and of exponential order on Œ0;1/. A proof is sketched in Exercises 8.6.11–8.6.13.

Example 8.5.3 Solve the initial value problem

y00 � y D f .t/; y.0/ D �1; y0.0/ D 2; (8.5.8)

where

f .t/ D
�

t; 0 � t < 1;

1; t � 1:

Solution Here

f .t/ D t � u.t � 1/.t � 1/;

so

L.f / D L.t/ �L.u.t � 1/.t � 1//

D L.t/ � e�sL.t/ (from Theorem 8.4.1)

D 1

s2
� e�s

s2
:

Since transforming (8.5.8) yields

.s2 � 1/Y.s/ D L.f /C 2 � s;

we see that

Y.s/ D .1 � e�s/H.s/ C 2 � s
s2 � 1

; (8.5.9)

where

H.s/ D 1

s2.s2 � 1/ D 1

s2 � 1
� 1

s2
I

therefore

h.t/ D sinh t � t: (8.5.10)

Since

L�1

�

2 � s
s2 � 1

�

D 2 sinh t � cosh t;

we conclude from (8.5.9), (8.5.10), and Theorem 8.4.1 that

y D sinh t � t � u.t � 1/ .sinh.t � 1/ � t C 1/C 2 sinh t � cosh t;

or

y D 3 sinh t � cosh t � t � u.t � 1/ .sinh.t � 1/� t C 1/ (8.5.11)

We leave it to you to verify that y and y0 are continuous and y00 has limits from the right and left at t1 D 1.
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Example 8.5.4 Solve the initial value problem

y00 C y D f .t/; y.0/ D 0; y0.0/ D 0; (8.5.12)

where

f .t/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0; 0 � t <
�

4
;

cos 2t;
�

4
� t < �;

0; t � �:

Solution Here

f .t/ D u.t � �=4/ cos 2t � u.t � �/ cos 2t;

so

L.f / D L.u.t � �=4/ cos 2t/� L.u.t � �/ cos 2t/

D e��s=4L .cos 2.t C �=4// � e��sL.cos 2.t C �//

D �e��s=4L.sin 2t/ � e��sL.cos 2t/

D �2e
��s=4

s2 C 4
� se��s

s2 C 4
:

Since transforming (8.5.12) yields
.s2 C 1/Y.s/ D L.f /;

we see that

Y.s/ D e��s=4H1.s/C e��sH2.s/; (8.5.13)

where

H1.s/ D � 2

.s2 C 1/.s2 C 4/
and H2.s/ D � s

.s2 C 1/.s2 C 4/
: (8.5.14)

To simplify the required partial fraction expansions, we first write

1

.x C 1/.x C 4/
D 1

3

�

1

x C 1
� 1

x C 4

�

:

Setting x D s2 and substituting the result in (8.5.14) yields

H1.s/ D �2
3

�

1

s2 C 1
� 1

s2 C 4

�

and H2.s/ D �1
3

�

s

s2 C 1
� s

s2 C 4

�

:

The inverse transforms are

h1.t/ D �2
3

sin t C 1

3
sin 2t and h2.t/ D �1

3
cos t C 1

3
cos 2t:

From (8.5.13) and Theorem 8.4.2,

y D u
�

t � �

4

�

h1

�

t � �

4

�

C u.t � �/h2.t � �/: (8.5.15)

Since

h1

�

t � �

4

�

D �2
3

sin
�

t � �

4

�

C 1

3
sin 2

�

t � �

4

�

D �
p
2

3
.sin t � cos t/ � 1

3
cos 2t



Section 8.5 Constant Coeefficient Equations with Piecewise Continuous Forcing Functions 437

1.0

0.5

−0.5

−1.0

1 2 3 4 5 6
 t

 y

Figure 8.5.2 Graph of (8.5.16)

and

h2.t � �/ D �1
3

cos.t � �/C 1

3
cos 2.t � �/

D 1

3
cos t C 1

3
cos 2t;

(8.5.15) can be rewritten as

y D �1
3
u
�

t � �

4

� �p
2.sin t � cos t/C cos 2t

�

C 1

3
u.t � �/.cos t C cos 2t/

or

y D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

0; 0 � t <
�

4
;

�
p
2

3
.sin t � cos t/ � 1

3
cos 2t;

�

4
� t < �;

�
p
2

3
sin t C 1C

p
2

3
cos t; t � �:

(8.5.16)

We leave it to you to verify that y and y0 are continuous and y00 has limits from the right and left at

t1 D �=4 and t2 D � (Figure 8.5.2).

8.5 Exercises

In Exercises 1–20 use the Laplace transform to solve the initial value problem. Where indicated by

C/G , graph the solution.
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1. y00 C y D
(

3; 0 � t < �;

0; t � �;
y.0/ D 0; y0.0/ D 0

2. y00 C y D
�

3; 0 � t < 4;

I 2t � 5; t > 4;
y.0/ D 1; y0.0/ D 0

3. y00 � 2y0 D
(

4; 0 � t < 1;

6; t � 1;
y.0/ D �6; y0.0/ D 1

4. y00 � y D
(

e2t ; 0 � t < 2;

1; t � 2;
y.0/ D 3; y0.0/ D �1

5. y00 � 3y0 C 2y D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; 0 � t < 1;

1; 1 � t < 2;

�1; t � 2;

y.0/ D �3; y0.0/ D 1

6. C/G y00 C 4y D
(

j sin t j; 0 � t < 2�;

0; t � 2�;
y.0/ D �3; y0.0/ D 1

7. y00 � 5y0 C 4y D

8

ˆ

ˆ

<

ˆ

ˆ

:

1; 0 � t < 1

�1; 1 � t < 2;

0; t � 2;

y.0/ D 3; y0.0/ D �5

8. y00 C 9y D

8

ˆ

<

ˆ

:

cos t; 0 � t <
3�

2
;

sin t; t � 3�

2
;

y.0/ D 0; y0.0/ D 0

9. C/G y00 C 4y D

8

<

:

t; 0 � t <
�

2
;

�; t � �

2
;

y.0/ D 0; y0.0/ D 0

10. y00 C y D
(

t; 0 � t < �;

�t; t � �;
y.0/ D 0; y0.0/ D 0

11. y00 � 3y0 C 2y D
�

0; 0 � t < 2;

2t � 4; t � 2;
; y.0/ D 0; y0.0/ D 0

12. y00 C y D
�

t; 0 � t < 2�;

�2t; t � 2�;
y.0/ D 1; y0.0/ D 2

13. C/G y00 C 3y0 C 2y D
�

1; 0 � t < 2;

�1; t � 2;
y.0/ D 0; y0.0/ D 0

14. y00 � 4y0 C 3y D
�

�1; 0 � t < 1;

1; t � 1;
y.0/ D 0; y0.0/ D 0

15. y00 C 2y0 C y D
�

et ; 0 � t < 1;

et � 1; t � 1;
y.0/ D 3; y0.0/ D �1

16. y00 C 2y0 C y D
�

4et ; 0 � t < 1;

0; t � 1;
y.0/ D 0; y0.0/ D 0

17. y00 C 3y0 C 2y D
�

e�t ; 0 � t < 1;

0; t � 1;
y.0/ D 1; y0.0/ D �1



Section 8.5 Constant Coeefficient Equations with Piecewise Continuous Forcing Functions 439

18. y00 � 4y0 C 4y D
�

e2t ; 0 � t < 2;

�e2t ; t � 2;
y.0/ D 0; y0.0/ D �1

19. C/G y00 D

8

<

:

t2; 0 � t < 1;

�t; 1 � t < 2;

t C 1; t � 2;

y.0/ D 1; y0.0/ D 0

20. y00 C 2y0 C 2y D

8

<

:

1; 0 � t < 2�;

t; 2� � t < 3�;

�1; t � 3�;

y.0/ D 2; y0.0/ D �1

21. Solve the initial value problem

y00 D f .t/; y.0/ D 0; y0.0/ D 0;

where

f .t/ D mC 1; m � t < mC 1; m D 0; 1; 2; : : : :

22. Solve the given initial value problem and find a formula that does not involve step functions and
represents y on each interval of continuity of f .

(a) y00 C y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D mC 1; m� � t < .mC 1/�; m D 0; 1; 2; : : : .

(b) y00 C y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D .m C 1/t; 2m� � t < 2.m C 1/�; m D 0; 1; 2; : : : HINT: You’ll need the

formula

1C 2C � � � Cm D m.m C 1/

2
:

(c) y00 C y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D .�1/m; m� � t < .mC 1/�; m D 0; 1; 2; : : : :

(d) y00 � y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D mC 1; m � t < .mC 1/; m D 0; 1; 2; : : : :

HINT: You will need the formula

1C r C � � � C rm D 1 � rmC1

1 � r .r ¤ 1/:

(e) y00 C 2y0 C 2y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D .mC 1/.sin t C 2 cos t/; 2m� � t < 2.mC 1/�; m D 0; 1; 2; : : : :

(See the hint in (d).)

(f) y00 � 3y0 C 2y D f .t/; y.0/ D 0; y0.0/ D 0;

f .t/ D mC 1; m � t < mC 1; m D 0; 1; 2; : : : :

(See the hints in (b) and (d).)

23. (a) Let g be continuous on .˛; ˇ/ and differentiable on the .˛; t0/ and .t0; ˇ/. Suppose A D
limt!t0� g

0.t/ and B D limt!t0C g
0.t/ both exist. Use the mean value theorem to show that

lim
t!t0�

g.t/ � g.t0/
t � t0

D A and lim
t!t0C

g.t/ � g.t0/
t � t0

D B:

(b) Conclude from (a) that g0.t0/ exists and g0 is continuous at t0 if A D B .
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(c) Conclude from (a) that if g is differentiable on .˛; ˇ/ then g0 can’t have a jump discontinuity

on .˛; ˇ/.

24. (a) Let a, b, and c be constants, with a ¤ 0. Let f be piecewise continuous on an interval .˛; ˇ/,
with a single jump discontinuity at a point t0 in .˛; ˇ/. Suppose y and y0 are continuous on

.˛; ˇ/ and y00 on .˛; t0/ and .t0; ˇ/. Suppose also that

ay00 C by0 C cy D f .t/ .A/

on .˛; t0/ and .t0; ˇ/. Show that

y00.t0C/� y00.t0�/ D f .t0C/� f .t0�/
a

¤ 0:

(b) Use (a) and Exercise 23(c) to show that (A) does not have solutions on any interval .˛; ˇ/

that contains a jump discontinuity of f .

25. Suppose P0; P1, and P2 are continuous and P0 has no zeros on an open interval .a; b/, and that F

has a jump discontinuity at a point t0 in .a; b/. Show that the differential equation

P0.t/y
00 C P1.t/y

0 C P2.t/y D F.t/

has no solutions on .a; b/.HINT: Generalize the result of Exercise 24 and use Exercise 23.c/.

26. Let 0 D t0 < t1 < � � � < tn. Suppose fm is continuous on Œtm;1/ for m D 1; : : : ; n. Let

f .t/ D
�

fm.t/; tm � t < tmC1; m D 1; : : : ; n� 1;
fn.t/; t � tn:

Show that the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1;

as defined following Theorem 8.5.1, is given by

y D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

´0.t/; 0 � t < t1;

´0.t/C ´1.t/; t1 � t < t2;
:::

´0 C � � � C ´n�1.t/; tn�1 � t < tn;

´0 C � � � C ´n.t/; t � tn;

where ´0 is the solution of

a´00 C b´0 C c´ D f0.t/; ´.0/ D k0; ´0.0/ D k1

and ´m is the solution of

a´00 C b´0 C c´ D fm.t/ � fm�1.t/; ´.tm/ D 0; ´0.tm/ D 0

form D 1; : : : ; n.

8.6 CONVOLUTION



Section 8.6 Convolution 441

In this section we consider the problem of finding the inverse Laplace transform of a product H.s/ D
F.s/G.s/, where F and G are the Laplace transforms of known functions f and g. To motivate our

interest in this problem, consider the initial value problem

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0:

Taking Laplace transforms yields

.as2 C bs C c/Y.s/ D F.s/;

so

Y.s/ D F.s/G.s/; (8.6.1)

where

G.s/ D 1

as2 C bs C c
:

Until now wen’t been interested in the factorization indicated in (8.6.1), since we dealt only with differ-

ential equations with specific forcing functions. Hence, we could simply do the indicated multiplication

in (8.6.1) and use the table of Laplace transforms to find y D L�1.Y /. However, this isn’t possible if we

want a formula for y in terms of f , which may be unspecified.

To motivate the formula for L�1.FG/, consider the initial value problem

y0 � ay D f .t/; y.0/ D 0; (8.6.2)

which we first solve without using the Laplace transform. The solution of the differential equation in
(8.6.2) is of the form y D ueat where

u0 D e�atf .t/:

Integrating this from 0 to t and imposing the initial condition u.0/ D y.0/ D 0 yields

u D
Z t

0

e�a�f .�/ d�:

Therefore

y.t/ D eat

Z t

0

e�a�f .�/ d� D
Z t

0

ea.t��/f .�/ d�: (8.6.3)

Now we’ll use the Laplace transform to solve (8.6.2) and compare the result to (8.6.3). Taking Laplace

transforms in (8.6.2) yields

.s � a/Y.s/ D F.s/;

so

Y.s/ D F.s/
1

s � a ;

which implies that

y.t/ D L�1

�

F.s/
1

s � a

�

: (8.6.4)

If we now let g.t/ D eat , so that

G.s/ D 1

s � a
;

then (8.6.3) and (8.6.4) can be written as

y.t/ D
Z t

0

f .�/g.t � �/ d�
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and

y D L�1.FG/;

respectively. Therefore

L�1.FG/ D
Z t

0

f .�/g.t � �/ d� (8.6.5)

in this case.

This motivates the next definition.

Definition 8.6.1 The convolution f � g of two functions f and g is defined by

.f � g/.t/ D
Z t

0

f .�/g.t � �/ d�:

It can be shown (Exercise 6) that f � g D g � f ; that is,

Z t

0

f .t � �/g.�/ d� D
Z t

0

f .�/g.t � �/ d�:

Eqn. (8.6.5) shows that L�1.FG/ D f � g in the special case where g.t/ D eat . This next theorem

states that this is true in general.

Theorem 8.6.2 ŒThe Convolution Theorem� If L.f / D F and L.g/ D G; then

L.f � g/ D FG:

A complete proof of the convolution theorem is beyond the scope of this book. However, we’ll assume

that f � g has a Laplace transform and verify the conclusion of the theorem in a purely computational

way. By the definition of the Laplace transform,

L.f � g/ D
Z 1

0

e�st .f � g/.t/ dt D
Z 1

0

e�st

Z t

0

f .�/g.t � �/ d� dt:

This iterated integral equals a double integral over the region shown in Figure 8.6.1. Reversing the order

of integration yields

L.f � g/ D
Z 1

0

f .�/

Z 1

�

e�stg.t � �/ dt d�: (8.6.6)

However, the substitution x D t � � shows that

Z 1

�

e�stg.t � �/ dt D
Z 1

0

e�s.xC�/g.x/ dx

D e�s�

Z 1

0

e�sxg.x/ dx D e�s�G.s/:

Substituting this into (8.6.6) and noting thatG.s/ is independent of � yields

L.f � g/ D
Z 1

0

e�s�f .�/G.s/ d�

D G.s/

Z 1

0

e�stf .�/ d� D F.s/G.s/:
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 t = τ

 t

 τ

Figure 8.6.1

Example 8.6.1 Let

f .t/ D eat and g.t/ D ebt .a ¤ b/:

Verify that L.f � g/ D L.f /L.g/, as implied by the convolution theorem.

Solution We first compute

.f � g/.t/ D
Z t

0

ea�eb.t��/ d� D ebt

Z t

0

e.a�b/�d�

D ebt e
.a�b/�

a � b

ˇ

ˇ

ˇ

ˇ

t

0

D
ebt

�

e.a�b/t � 1
�

a � b

D eat � ebt

a � b
:

Since

eat $ 1

s � a and ebt $ 1

s � b
;

it follows that

L.f � g/ D 1

a � b

�

1

s � a � 1

s � b

�

D 1

.s � a/.s � b/

D L.eat/L.ebt / D L.f /L.g/:
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A Formula for the Solution of an Initial Value Problem

The convolution theorem provides a formula for the solution of an initial value problem for a linear

constant coefficient second order equation with an unspecified. The next three examples illustrate this.

Example 8.6.2 Find a formula for the solution of the initial value problem

y00 � 2y0 C y D f .t/; y.0/ D k0; y0.0/ D k1: (8.6.7)

Solution Taking Laplace transforms in (8.6.7) yields

.s2 � 2s C 1/Y.s/ D F.s/C .k1 C k0s/ � 2k0:

Therefore

Y.s/ D 1

.s � 1/2F.s/ C k1 C k0s � 2k0

.s � 1/2

D 1

.s � 1/2F.s/ C k0

s � 1
C k1 � k0

.s � 1/2 :

From the table of Laplace transforms,

L�1

�

k0

s � 1 C k1 � k0

.s � 1/2
�

D et .k0 C .k1 � k0/t/ :

Since
1

.s � 1/2 $ tet and F.s/ $ f .t/;

the convolution theorem implies that

L�1

�

1

.s � 1/2F.s/
�

D
Z t

0

�e�f .t � �/ d�:

Therefore the solution of (8.6.7) is

y.t/ D et .k0 C .k1 � k0/t/ C
Z t

0

�e�f .t � �/ d�:

Example 8.6.3 Find a formula for the solution of the initial value problem

y00 C 4y D f .t/; y.0/ D k0; y0.0/ D k1: (8.6.8)

Solution Taking Laplace transforms in (8.6.8) yields

.s2 C 4/Y.s/ D F.s/C k1 C k0s:

Therefore

Y.s/ D 1

.s2 C 4/
F.s/C k1 C k0s

s2 C 4
:

From the table of Laplace transforms,

L�1

�

k1 C k0s

s2 C 4

�

D k0 cos 2t C k1

2
sin 2t:
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Since
1

.s2 C 4/
$ 1

2
sin 2t and F.s/ $ f .t/;

the convolution theorem implies that

L�1

�

1

.s2 C 4/
F.s/

�

D 1

2

Z t

0

f .t � �/ sin 2� d�:

Therefore the solution of (8.6.8) is

y.t/ D k0 cos 2t C k1

2
sin 2t C 1

2

Z t

0

f .t � �/ sin 2� d�:

Example 8.6.4 Find a formula for the solution of the initial value problem

y00 C 2y0 C 2y D f .t/; y.0/ D k0; y0.0/ D k1: (8.6.9)

Solution Taking Laplace transforms in (8.6.9) yields

.s2 C 2s C 2/Y.s/ D F.s/C k1 C k0s C 2k0:

Therefore

Y.s/ D 1

.s C 1/2 C 1
F.s/C k1 C k0s C 2k0

.s C 1/2 C 1

D 1

.s C 1/2 C 1
F.s/C .k1 C k0/C k0.s C 1/

.s C 1/2 C 1
:

From the table of Laplace transforms,

L�1

�

.k1 C k0/C k0.s C 1/

.s C 1/2 C 1

�

D e�t ..k1 C k0/ sin t C k0 cos t/ :

Since
1

.s C 1/2 C 1
$ e�t sin t and F.s/ $ f .t/;

the convolution theorem implies that

L�1

�

1

.s C 1/2 C 1
F.s/

�

D
Z t

0

f .t � �/e�� sin � d�:

Therefore the solution of (8.6.9) is

y.t/ D e�t ..k1 C k0/ sin t C k0 cos t/C
Z t

0

f .t � �/e�� sin � d�: (8.6.10)

Evaluating Convolution Integrals

We’ll say that an integral of the form
R t

0 u.�/v.t � �/ d� is a convolution integral. The convolution
theorem provides a convenient way to evaluate convolution integrals.



446 Chapter 8 Laplace Transforms

Example 8.6.5 Evaluate the convolution integral

h.t/ D
Z t

0

.t � �/5�7d�:

Solution We could evaluate this integral by expanding .t � �/5 in powers of � and then integrating.

However, the convolution theorem provides an easier way. The integral is the convolution of f .t/ D t5

and g.t/ D t7. Since

t5 $ 5Š

s6
and t7 $ 7Š

s8
;

the convolution theorem implies that

h.t/ $ 5Š7Š

s14
D 5Š7Š

13Š

13Š

s14
;

where we have written the second equality because

13Š

s14
$ t13:

Hence,

h.t/ D 5Š7Š

13Š
t13:

Example 8.6.6 Use the convolution theorem and a partial fraction expansion to evaluate the convolution

integral

h.t/ D
Z t

0

sina.t � �/ cos b� d� .jaj ¤ jbj/:

Solution Since

sin at $ a

s2 C a2
and cos bt $ s

s2 C b2
;

the convolution theorem implies that

H.s/ D a

s2 C a2

s

s2 C b2
:

Expanding this in a partial fraction expansion yields

H.s/ D a

b2 � a2

�

s

s2 C a2
� s

s2 C b2

�

:

Therefore

h.t/ D a

b2 � a2
.cos at � cos bt/ :

Volterra Integral Equations

An equation of the form

y.t/ D f .t/C
Z t

0

k.t � �/y.�/ d� (8.6.11)
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is a Volterra integral equation. Here f and k are given functions and y is unknown. Since the integral

on the right is a convolution integral, the convolution theorem provides a convenient formula for solving

(8.6.11). Taking Laplace transforms in (8.6.11) yields

Y.s/ D F.s/CK.s/Y.s/;

and solving this for Y.s/ yields

Y.s/ D F.s/

1 �K.s/ :

We then obtain the solution of (8.6.11) as y D L�1.Y /.

Example 8.6.7 Solve the integral equation

y.t/ D 1C 2

Z t

0

e�2.t��/y.�/ d�: (8.6.12)

Solution Taking Laplace transforms in (8.6.12) yields

Y.s/ D 1

s
C 2

s C 2
Y.s/;

and solving this for Y.s/ yields

Y.s/ D 1

s
C 2

s2
:

Hence,

y.t/ D 1C 2t:

Transfer Functions

The next theorem presents a formula for the solution of the general initial value problem

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1;

where we assume for simplicity that f is continuous on Œ0;1/ and that L.f / exists. In Exercises 11–14

it’s shown that the formula is valid under much weaker conditions on f .

Theorem 8.6.3 Suppose f is continuous on Œ0;1/ and has a Laplace transform: Then the solution of

the initial value problem

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1; (8.6.13)

is

y.t/ D k0y1.t/C k1y2.t/ C
Z t

0

w.�/f .t � �/ d�; (8.6.14)

where y1 and y2 satisfy

ay00
1 C by0

1 C cy1 D 0; y1.0/ D 1; y0
1.0/ D 0; (8.6.15)

and

ay00
2 C by0

2 C cy2 D 0; y2.0/ D 0; y0
2.0/ D 1; (8.6.16)

and

w.t/ D 1

a
y2.t/: (8.6.17)

http://www-history.mcs.st-and.ac.uk/Mathematicians/Volterra.html
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Proof Taking Laplace transforms in (8.6.13) yields

p.s/Y.s/ D F.s/C a.k1 C k0s/C bk0;

where

p.s/ D as2 C bs C c:

Hence,
Y.s/ D W.s/F.s/ C V.s/ (8.6.18)

with

W.s/ D 1

p.s/
(8.6.19)

and

V.s/ D a.k1 C k0s/C bk0

p.s/
: (8.6.20)

Taking Laplace transforms in (8.6.15) and (8.6.16) shows that

p.s/Y1.s/ D as C b and p.s/Y2.s/ D a:

Therefore

Y1.s/ D as C b

p.s/

and

Y2.s/ D a

p.s/
: (8.6.21)

Hence, (8.6.20) can be rewritten as

V.s/ D k0Y1.s/C k1Y2.s/:

Substituting this into (8.6.18) yields

Y.s/ D k0Y1.s/C k1Y2.s/C 1

a
Y2.s/F.s/:

Taking inverse transforms and invoking the convolution theorem yields (8.6.14). Finally, (8.6.19) and

(8.6.21) imply (8.6.17).

It is useful to note from (8.6.14) that y is of the form

y D v C h;

where

v.t/ D k0y1.t/C k1y2.t/

depends on the initial conditions and is independent of the forcing function, while

h.t/ D
Z t

0

w.�/f .t � �/ d�

depends on the forcing function and is independent of the initial conditions. If the zeros of the character-

istic polynomial

p.s/ D as2 C bs C c
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of the complementary equation have negative real parts, then y1 and y2 both approach zero as t ! 1,

so limt!1 v.t/ D 0 for any choice of initial conditions. Moreover, the value of h.t/ is essentially

independent of the values of f .t � �/ for large � , since lim�!1 w.�/ D 0. In this case we say that v and

h are transient and steady state components, respectively, of the solution y of (8.6.13). These definitions

apply to the initial value problem of Example 8.6.4, where the zeros of

p.s/ D s2 C 2s C 2 D .s C 1/2 C 1

are �1˙ i . From (8.6.10), we see that the solution of the general initial value problem of Example 8.6.4

is y D v C h, where
v.t/ D e�t ..k1 C k0/ sin t C k0 cos t/

is the transient component of the solution and

h.t/ D
Z t

0

f .t � �/e�� sin � d�

is the steady state component. The definitions don’t apply to the initial value problems considered in

Examples 8.6.2 and 8.6.3, since the zeros of the characteristic polynomials in these two examples don’t

have negative real parts.

In physical applications where the input f and the output y of a device are related by (8.6.13), the
zeros of the characteristic polynomial usually do have negative real parts. Then W D L.w/ is called the

transfer function of the device. Since

H.s/ D W.s/F.s/;

we see that

W.s/ D H.s/

F.s/

is the ratio of the transform of the steady state output to the transform of the input.

Because of the form of

h.t/ D
Z t

0

w.�/f .t � �/ d�;

w is sometimes called the weighting function of the device, since it assigns weights to past values of the

input f . It is also called the impulse response of the device, for reasons discussed in the next section.

Formula (8.6.14) is given in more detail in Exercises 8–10 for the three possible cases where the zeros

of p.s/ are real and distinct, real and repeated, or complex conjugates, respectively.

8.6 Exercises

1. Express the inverse transform as an integral.

(a)
1

s2.s2 C 4/
(b)

s

.s C 2/.s2 C 9/

(c)
s

.s2 C 4/.s2 C 9/
(d)

s

.s2 C 1/2

(e)
1

s.s � a/ (f)
1

.s C 1/.s2 C 2s C 2/

(g)
1

.s C 1/2.s2 C 4s C 5/
(h)

1

.s � 1/3.s C 2/2
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(i)
s � 1

s2.s2 � 2s C 2/
(j)

s.s C 3/

.s2 C 4/.s2 C 6s C 10/

(k)
1

.s � 3/5s6
(l)

1

.s � 1/3.s2 C 4/

(m)
1

s2.s � 2/3 (n)
1

s7.s � 2/6

2. Find the Laplace transform.

(a)

Z t

0

sina� cos b.t � �/ d� (b)

Z t

0

e� sina.t � �/ d�

(c)

Z t

0

sinha� cosh a.t � �/ d� (d)

Z t

0

�.t � �/ sin!� cos!.t � �/ d�

(e) et

Z t

0

sin!� cos!.t � �/ d� (f) et

Z t

0

�2.t � �/e� d�

(g) e�t

Z t

0

e��� cos!.t � �/ d� (h) et

Z t

0

e2� sinh.t � �/ d�

(i)

Z t

0

�e2� sin 2.t � �/ d� (j)

Z t

0

.t � �/3e� d�

(k)

Z t

0

�6e�.t��/ sin 3.t � �/ d� (l)

Z t

0

�2.t � �/3 d�

(m)

Z t

0

.t � �/7e�� sin 2� d� (n)

Z t

0

.t � �/4 sin 2� d�

3. Find a formula for the solution of the initial value problem.

(a) y00 C 3y0 C y D f .t/; y.0/ D 0; y0.0/ D 0

(b) y00 C 4y D f .t/; y.0/ D 0; y0.0/ D 0

(c) y00 C 2y0 C y D f .t/; y.0/ D 0; y0.0/ D 0

(d) y00 C k2y D f .t/; y.0/ D 1; y0.0/ D �1
(e) y00 C 6y0 C 9y D f .t/; y.0/ D 0; y0.0/ D �2
(f) y00 � 4y D f .t/; y.0/ D 0; y0.0/ D 3

(g) y00 � 5y0 C 6y D f .t/; y.0/ D 1; y0.0/ D 3

(h) y00 C !2y D f .t/; y.0/ D k0; y0.0/ D k1

4. Solve the integral equation.

(a) y.t/ D t �
Z t

0

.t � �/y.�/ d�

(b) y.t/ D sin t � 2
Z t

0

cos.t � �/y.�/ d�

(c) y.t/ D 1C 2

Z t

0

y.�/ cos.t � �/ d� (d) y.t/ D t C
Z t

0

y.�/e�.t��/ d�

(e) y0.t/ D t C
Z t

0

y.�/ cos.t � �/ d�; y.0/ D 4
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(f) y.t/ D cos t � sin t C
Z t

0

y.�/ sin.t � �/ d�

5. Use the convolution theorem to evaluate the integral.

(a)

Z t

0

.t � �/7�8 d� (b)

Z t

0

.t � �/13�7 d�

(c)

Z t

0

.t � �/6�7 d� (d)

Z t

0

e�� sin.t � �/ d�

(e)

Z t

0

sin � cos 2.t � �/ d�

6. Show that
Z t

0

f .t � �/g.�/ d� D
Z t

0

f .�/g.t � �/ d�

by introducing the new variable of integration x D t � � in the first integral.

7. Use the convolution theorem to show that if f .t/ $ F.s/ then

Z t

0

f .�/ d� $ F.s/

s
:

8. Show that if p.s/ D as2 C bs C c has distinct real zeros r1 and r2 then the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1

is

y.t/ D k0

r2e
r1t � r1er2t

r2 � r1
C k1

er2t � er1t

r2 � r1

C 1

a.r2 � r1/

Z t

0

.er2� � er1� /f .t � �/ d�:

9. Show that if p.s/ D as2 C bs C c has a repeated real zero r1 then the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1

is

y.t/ D k0.1 � r1t/er1t C k1te
r1t C 1

a

Z t

0

�er1�f .t � �/ d�:

10. Show that if p.s/ D as2 C bs C c has complex conjugate zeros �˙ i! then the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1

is

y.t/ D e�t

�

k0.cos!t � �

!
sin!t/C k1

!
sin!t

�

C 1

a!

Z t

0

e�tf .t � �/ sin!� d�:
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11. Let

w D L�1

�

1

as2 C bs C c

�

;

where a; b, and c are constants and a ¤ 0.

(a) Show that w is the solution of

aw00 C bw0 C cw D 0; w.0/ D 0; w0.0/ D 1

a
:

(b) Let f be continuous on Œ0;1/ and define

h.t/ D
Z t

0

w.t � �/f .�/ d�:

Use Leibniz’s rule for differentiating an integral with respect to a parameter to show that h is

the solution of

ah00 C bh0 C ch D f; h.0/ D 0; h0.0/ D 0:

(c) Show that the function y in Eqn. (8.6.14) is the solution of Eqn. (8.6.13) provided that f is

continuous on Œ0;1/; thus, it’s not necessary to assume that f has a Laplace transform.

12. Consider the initial value problem

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0; .A/

where a; b, and c are constants, a ¤ 0, and

f .t/ D
(

f0.t/; 0 � t < t1;

f1.t/; t � t1:

Assume that f0 is continuous and of exponential order on Œ0;1/ and f1 is continuous and of

exponential order on Œt1;1/. Let

p.s/ D as2 C bs C c:

(a) Show that the Laplace transform of the solution of (A) is

Y.s/ D F0.s/C e�st1G.s/

p.s/

where g.t/ D f1.t C t1/� f0.t C t1/.

(b) Let w be as in Exercise 11. Use Theorem 8.4.2 and the convolution theorem to show that the

solution of (A) is

y.t/ D
Z t

0

w.t � �/f0.�/ d� C u.t � t1/
Z t�t1

0

w.t � t1 � �/g.�/ d�

for t > 0.

(c) Henceforth, assume only that f0 is continuous on Œ0;1/ and f1 is continuous on Œt1;1/.

Use Exercise 11 (a) and (b) to show that

y0.t/ D
Z t

0

w0.t � �/f0.�/ d� C u.t � t1/

Z t�t1

0

w0.t � t1 � �/g.�/ d�

http://www-history.mcs.st-and.ac.uk/Mathematicians/Leibniz.html


Section 8.7 Constant Coefficient Equations with Impulses 453

for t > 0, and

y00.t/ D f .t/

a
C
Z t

0

w00.t � �/f0.�/ d� C u.t � t1/
Z t�t1

0

w00.t � t1 � �/g.�/ d�

for 0 < t < t1 and t > t1. Also, show y satisfies the differential equation in (A) on.0; t1/

and .t1;1/.

(d) Show that y and y0 are continuous on Œ0;1/.

13. Suppose

f .t/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

f0.t/; 0 � t < t1;

f1.t/; t1 � t < t2;
:::

fk�1.t/; tk�1 � t < tk;

fk.t/; t � tk;

where fm is continuous on Œtm;1/ for m D 0; : : : ; k (let t0 D 0), and define

gm.t/ D fm.t C tm/ � fm�1.t C tm/; m D 1; : : : ; k:

Extend the results of Exercise 12 to show that the solution of

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0

is

y.t/ D
Z t

0

w.t � �/f0.�/ d� C
k
X

mD1

u.t � tm/
Z t�tm

0

w.t � tm � �/gm.�/ d�:

14. Let ftmg1
mD0 be a sequence of points such that t0 D 0, tmC1 > tm, and limm!1 tm D 1. For

each nonegative integer m let fm be continuous on Œtm;1/, and let f be defined on Œ0;1/ by

f .t/ D fm.t/; tm � t < tmC1 m D 0; 1; 2 : : : :

Let

gm.t/ D fm.t C tm/ � fm�1.t C tm/; m D 1; : : : ; k:

Extend the results of Exercise 13 to show that the solution of

ay00 C by0 C cy D f .t/; y.0/ D 0; y0.0/ D 0

is

y.t/ D
Z t

0

w.t � �/f0.�/ d� C
1
X

mD1

u.t � tm/
Z t�tm

0

w.t � tm � �/gm.�/ d�:

HINT: See Exercise30.

8.7 CONSTANT COEFFICIENT EQUATIONS WITH IMPULSES

So far in this chapter, we’ve considered initial value problems for the constant coefficient equation

ay00 C by0 C cy D f .t/;
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where f is continuous or piecewise continuous on Œ0;1/. In this section we consider initial value prob-

lems where f represents a force that’s very large for a short time and zero otherwise. We say that such

forces are impulsive. Impulsive forces occur, for example, when two objects collide. Since it isn’t feasible

to represent such forces as continuous or piecewise continuous functions, we must construct a different

mathematical model to deal with them.

If f is an integrable function and f .t/ D 0 for t outside of the interval Œt0; t0 C h�, then
R t0Ch

t0
f .t/ dt

is called the total impulse of f . We’re interested in the idealized situation where h is so small that the

total impulse can be assumed to be applied instantaneously at t D t0. We say in this case that f is an

impulse function. In particular, we denote by ı.t � t0/ the impulse function with total impulse equal to

one, applied at t D t0. (The impulse function ı.t/ obtained by setting t0 D 0 is the Dirac ı function.) It

must be understood, however, that ı.t � t0/ isn’t a function in the standard sense, since our “definition”
implies that ı.t � t0/ D 0 if t ¤ t0, while

Z t0

t0

ı.t � t0/ dt D 1:

From calculus we know that no function can have these properties; nevertheless, there’s a branch of

mathematics known as the theory of distributions where the definition can be made rigorous. Since the

theory of distributions is beyond the scope of this book, we’ll take an intuitive approach to impulse

functions.
Our first task is to define what we mean by the solution of the initial value problem

ay00 C by0 C cy D ı.t � t0/; y.0/ D 0; y0.0/ D 0;

where t0 is a fixed nonnegative number. The next theorem will motivate our definition.

Theorem 8.7.1 Suppose t0 � 0: For each positive number h; let yh be the solution of the initial value

problem

ay00
h C by0

h C cyh D fh.t/; yh.0/ D 0; y0
h.0/ D 0; (8.7.1)

where

fh.t/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; 0 � t < t0;

1=h; t0 � t < t0 C h;

0; t � t0 C h;

(8.7.2)

so fh has unit total impulse equal to the area of the shaded rectangle in Figure 8.7.1. Then

lim
h!0C

yh.t/ D u.t � t0/w.t � t0/; (8.7.3)

where

w D L�1

�

1

as2 C bs C c

�

:

Proof Taking Laplace transforms in (8.7.1) yields

.as2 C bs C c/Yh.s/ D Fh.s/;

so

Yh.s/ D Fh.s/

as2 C bs C c
:

The convolution theorem implies that

yh.t/ D
Z t

0

w.t � �/fh.�/ d�:

http://www-history.mcs.st-and.ac.uk/Mathematicians/Dirac.html


Section 8.7 Constant Coefficient Equations with Impulses 455

 1/h

 t
0

 t
0
+h

 t

 y

Figure 8.7.1 y D fh.t/

Therefore, (8.7.2) implies that

yh.t/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

0; 0 � t < t0;

1

h

Z t

t0

w.t � �/ d� ; t0 � t � t0 C h;

1

h

Z t0Ch

t0

w.t � �/ d�; t > t0 C h:

(8.7.4)

Since yh.t/ D 0 for all h if 0 � t � t0, it follows that

lim
h!0C

yh.t/ D 0 if 0 � t � t0: (8.7.5)

We’ll now show that
lim

h!0C
yh.t/ D w.t � t0/ if t > t0: (8.7.6)

Suppose t is fixed and t > t0. From (8.7.4),

yh.t/ D 1

h

Z t0Ch

t0

w.t � �/d� if h < t � t0: (8.7.7)

Since
1

h

Z t0Ch

t0

d� D 1; (8.7.8)

we can write

w.t � t0/ D 1

h
w.t � t0/

Z t0Ch

t0

d� D 1

h

Z t0Ch

t0

w.t � t0/ d�:
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From this and (8.7.7),

yh.t/ �w.t � t0/ D 1

h

Z t0Ch

t0

.w.t � �/ �w.t � t0// d�:

Therefore

jyh.t/ �w.t � t0/j � 1

h

Z t0Ch

t0

jw.t � �/ �w.t � t0/j d�: (8.7.9)

Now let Mh be the maximum value of jw.t � �/ � w.t � t0/j as � varies over the interval Œt0; t0 C h�.

(Remember that t and t0 are fixed.) Then (8.7.8) and (8.7.9) imply that

jyh.t/ �w.t � t0/j � 1

h
Mh

Z t0Ch

t0

d� D Mh: (8.7.10)

But limh!0C Mh D 0, since w is continuous. Therefore (8.7.10) implies (8.7.6). This and (8.7.5) imply

(8.7.3).
Theorem 8.7.1 motivates the next definition.

Definition 8.7.2 If t0 > 0, then the solution of the initial value problem

ay00 C by0 C cy D ı.t � t0/; y.0/ D 0; y0.0/ D 0; (8.7.11)

is defined to be

y D u.t � t0/w.t � t0/;

where

w D L�1

�

1

as2 C bs C c

�

:

In physical applications where the input f and the output y of a device are related by the differential

equation
ay00 C by0 C cy D f .t/;

w is called the impulse response of the device. Note that w is the solution of the initial value problem

aw00 C bw0 C cw D 0; w.0/ D 0; w0.0/ D 1=a; (8.7.12)

as can be seen by using the Laplace transform to solve this problem. (Verify.) On the other hand, we can

solve (8.7.12) by the methods of Section 5.2 and show that w is defined on .�1;1/ by

w D er2t � er1t

a.r2 � r1/
; w D 1

a
ter1t ; or w D 1

a!
e�t sin!t; (8.7.13)

depending upon whether the polynomialp.r/ D ar2 CbrCc has distinct real zeros r1 and r2, a repeated

zero r1, or complex conjugate zeros �˙ i!. (In most physical applications, the zeros of the characteristic

polynomial have negative real parts, so limt!1 w.t/ D 0.) This means that y D u.t � t0/w.t � t0/ is

defined on .�1;1/ and has the following properties:

y.t/ D 0; t < t0;

ay00 C by0 C cy D 0 on .�1; t0/ and .t0;1/;

and
y0

�.t0/ D 0; y0
C.t0/ D 1=a (8.7.14)
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 t
0

 y

 t

Figure 8.7.2 An illustration of Theorem 8.7.1

(remember that y0
�.t0/ and y0

C.t0/ are derivatives from the right and left, respectively) and y0.t0/ does not

exist. Thus, even though we defined y D u.t � t0/w.t � t0/ to be the solution of (8.7.11), this function

doesn’t satisfy the differential equation in (8.7.11) at t0, since it isn’t differentiable there; in fact (8.7.14)

indicates that an impulse causes a jump discontinuity in velocity. (To see that this is reasonable, think of

what happens when you hit a ball with a bat.) This means that the initial value problem (8.7.11) doesn’t
make sense if t0 D 0, since y0.0/ doesn’t exist in this case. However y D u.t/w.t/ can be defined to be

the solution of the modified initial value problem

ay00 C by0 C cy D ı.t/; y.0/ D 0; y0
�.0/ D 0;

where the condition on the derivative at t D 0 has been replaced by a condition on the derivative from the

left.
Figure 8.7.2 illustrates Theorem 8.7.1 for the case where the impulse response w is the first expression

in (8.7.13) and r1 and r2 are distinct and both negative. The solid curve in the figure is the graph of w.

The dashed curves are solutions of (8.7.1) for various values of h. As h decreases the graph of yh moves

to the left toward the graph of w.

Example 8.7.1 Find the solution of the initial value problem

y00 � 2y0 C y D ı.t � t0/; y.0/ D 0; y0.0/ D 0; (8.7.15)

where t0 > 0. Then interpret the solution for the case where t0 D 0.

Solution Here

w D L�1

�

1

s2 � 2s C 1

�

D L�1

�

1

.s � 1/2
�

D te�t ;
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 + 1  t

0
 + 2  t

0
 + 3  t

0
 + 4  t

0
 + 5  t

0
 + 6  t

0
 + 7

 t

 y

Figure 8.7.3 y D u.t � t0/.t � t0/e
�.t�t0/

so Definition 8.7.2 yields

y D u.t � t0/.t � t0/e�.t�t0/

as the solution of (8.7.15) if t0 > 0. If t0 D 0, then (8.7.15) doesn’t have a solution; however, y D
u.t/te�t (which we would usually write simply as y D te�t ) is the solution of the modified initial value

problem

y00 � 2y0 C y D ı.t/; y.0/ D 0; y0
�.0/ D 0:

The graph of y D u.t � t0/.t � t0/e�.t�t0/ is shown in Figure 8.7.3

Definition 8.7.2 and the principle of superposition motivate the next definition.

Definition 8.7.3 Suppose ˛ is a nonzero constant and f is piecewise continuous on Œ0;1/. If t0 > 0,

then the solution of the initial value problem

ay00 C by0 C cy D f .t/C ˛ı.t � t0/; y.0/ D k0; y0.0/ D k1

is defined to be

y.t/ D Oy.t/ C ˛u.t � t0/w.t � t0/;
where Oy is the solution of

ay00 C by0 C cy D f .t/; y.0/ D k0; y0.0/ D k1:

This definition also applies if t0 D 0, provided that the initial condition y0.0/ D k1 is replaced by
y0

�.0/ D k1.

Example 8.7.2 Solve the initial value problem

y00 C 6y0 C 5y D 3e�2t C 2ı.t � 1/; y.0/ D �3; y0.0/ D 2: (8.7.16)
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Solution We leave it to you to show that the solution of

y00 C 6y0 C 5y D 3e�2t ; y.0/ D �3; y0.0/ D 2

is

Oy D �e�2t C 1

2
e�5t � 5

2
e�t :

Since

w.t/ D L�1

�

1

s2 C 6s C 5

�

D L�1

�

1

.s C 1/.s C 5/

�

D 1

4
L�1

�

1

s C 1
� 1

s C 5

�

D e�t � e�5t

4
;

the solution of (8.7.16) is

y D �e�2t C 1

2
e�5t � 5

2
e�t C u.t � 1/e

�.t�1/ � e�5.t�1/

2
(8.7.17)

(Figure 8.7.4) .
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Figure 8.7.5 Graph of (8.7.19)

Definition 8.7.3 can be extended in the obvious way to cover the case where the forcing function

contains more than one impulse.

Example 8.7.3 Solve the initial value problem

y00 C y D 1C 2ı.t � �/� 3ı.t � 2�/; y.0/ D �1; y0.0/ D 2: (8.7.18)

Solution We leave it to you to show that

Oy D 1 � 2 cos t C 2 sin t

is the solution of

y00 C y D 1; y.0/ D �1; y0.0/ D 2:

Since

w D L�1

�

1

s2 C 1

�

D sin t;
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the solution of (8.7.18) is

y D 1 � 2 cos t C 2 sin t C 2u.t � �/ sin.t � �/� 3u.t � 2�/ sin.t � 2�/
D 1 � 2 cos t C 2 sin t � 2u.t � �/ sin t � 3u.t � 2�/ sin t;

or

y D

8

ˆ

<

ˆ

:

1 � 2 cos t C 2 sin t; 0 � t < �;

1 � 2 cos t; � � t < 2�;

1 � 2 cos t � 3 sin t; t � 2�

(8.7.19)

(Figure 8.7.5).
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8.7 Exercises

In Exercises 1–20 solve the initial value problem. Where indicated by C/G , graph the solution.

1. y00 C 3y0 C 2y D 6e2t C 2ı.t � 1/; y.0/ D 2; y0.0/ D �6
2. C/G y00 C y0 � 2y D �10e�t C 5ı.t � 1/; y.0/ D 7; y0.0/ D �9
3. y00 � 4y D 2e�t C 5ı.t � 1/; y.0/ D �1; y0.0/ D 2

4. C/G y00 C y D sin 3t C 2ı.t � �=2/; y.0/ D 1; y0.0/ D �1
5. y00 C 4y D 4C ı.t � 3�/; y.0/ D 0; y0.0/ D 1

6. y00 � y D 8C 2ı.t � 2/; y.0/ D �1; y0.0/ D 1

7. y00 C y0 D et C 3ı.t � 6/; y.0/ D �1; y0.0/ D 4

8. y00 C 4y D 8e2t C ı.t � �=2/; y.0/ D 8; y0.0/ D 0

9. C/G y00 C 3y0 C 2y D 1C ı.t � 1/; y.0/ D 1; y0.0/ D �1
10. y00 C 2y0 C y D et C 2ı.t � 2/; y.0/ D �1; y0.0/ D 2

11. C/G y00 C 4y D sin t C ı.t � �=2/; y.0/ D 0; y0.0/ D 2

12. y00 C 2y0 C 2y D ı.t � �/� 3ı.t � 2�/; y.0/ D �1; y0.0/ D 2

13. y00 C 4y0 C 13y D ı.t � �=6/C 2ı.t � �=3/; y.0/ D 1; y0.0/ D 2

14. 2y00 � 3y0 � 2y D 1C ı.t � 2/; y.0/ D �1; y0.0/ D 2

15. 4y00 � 4y0 C 5y D 4 sin t � 4 cos t C ı.t � �=2/ � ı.t � �/; y.0/ D 1; y0.0/ D 1

16. y00 C y D cos 2t C 2ı.t � �=2/� 3ı.t � �/; y.0/ D 0; y0.0/ D �1
17. C/G y00 � y D 4e�t � 5ı.t � 1/C 3ı.t � 2/; y.0/ D 0; y0.0/ D 0

18. y00 C 2y0 C y D et � ı.t � 1/C 2ı.t � 2/; y.0/ D 0; y0.0/ D �1
19. y00 C y D f .t/C ı.t � 2�/; y.0/ D 0; y0.0/ D 1, and

f .t/ D
(

sin 2t; 0 � t < �;

0; t � �:

20. y00 C 4y D f .t/C ı.t � �/� 3ı.t � 3�=2/; y.0/ D 1; y0.0/ D �1, and

f .t/ D
(

1; 0 � t < �=2;

2; t � �=2

21. y00 C y D ı.t/; y.0/ D 1; y0
�.0/ D �2

22. y00 � 4y D 3ı.t/; y.0/ D �1; y0
�.0/ D 7

23. y00 C 3y0 C 2y D �5ı.t/; y.0/ D 0; y0
�.0/ D 0

24. y00 C 4y0 C 4y D �ı.t/; y.0/ D 1; y0
�.0/ D 5

25. 4y00 C 4y0 C y D 3ı.t/; y.0/ D 1; y0
�.0/ D �6

In Exercises 26-28, solve the initial value problem

ay00
h C by0

h C cyh D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; 0 � t < t0;

1=h; t0 � t < t0 C h;

0; t � t0 C h;

yh.0/ D 0; y0
h.0/ D 0;
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where t0 > 0 and h > 0. Then find

w D L�1

�

1

as2 C bs C c

�

and verify Theorem 8.7.1 by graphing w and yh on the same axes, for small positive values of h.

26. L y00 C 2y0 C 2y D fh.t/; y.0/ D 0; y0.0/ D 0

27. L y00 C 2y0 C y D fh.t/; y.0/ D 0; y0.0/ D 0

28. L y00 C 3y0 C 2y D fh.t/; y.0/ D 0; y0.0/ D 0

29. Recall from Section 6.2 that the displacement of an object of mass m in a spring–mass system in

free damped oscillation is

my00 C cy0 C ky D 0; y.0/ D y0; y0.0/ D v0;

and that y can be written as
y D Re�ct=2m cos.!1t � �/

if the motion is underdamped. Suppose y.�/ D 0. Find the impulse that would have to be applied

to the object at t D � to put it in equilibrium.

30. Solve the initial value problem. Find a formula that does not involve step functions and represents

y on each subinterval of Œ0;1/ on which the forcing function is zero.

(a) y00 � y D
1
X

kD1

ı.t � k/; y.0/ D 0; y0.0/ D 1

(b) y00 C y D
1
X

kD1

ı.t � 2k�/; y.0/ D 0; y0.0/ D 1

(c) y00 � 3y0 C 2y D
1
X

kD1

ı.t � k/; y.0/ D 0; y0.0/ D 1

(d) y00 C y D
1
X

kD1

ı.t � k�/; y.0/ D 0; y0.0/ D 0
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8.8 A BRIEF TABLE OF LAPLACE TRANSFORMS

f .t/ F.s/

1
1

s
.s > 0/

tn
nŠ

snC1
.s > 0/

(n D integer > 0)

tp ; p > �1 �.p C 1/

s.pC1/
.s > 0/

eat
1

s � a .s > a/

tneat
nŠ

.s � a/nC1
.s > 0/

(n D integer > 0)

cos!t
s

s2 C !2
.s > 0/

sin!t
!

s2 C !2
.s > 0/

e�t cos!t
s � �

.s � �/2 C !2
.s > �/

e�t sin!t
!

.s � �/2 C !2
.s > �/

cosh bt
s

s2 � b2
.s > jbj/

sinhbt
b

s2 � b2
.s > jbj/

t cos!t
s2 � !2

.s2 C !2/2
.s > 0/
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t sin!t
2!s

.s2 C !2/2
.s > 0/

sin!t � !t cos!t
2!3

.s2 C !2/2
.s > 0/

!t � sin!t
!3

s2.s2 C !2/2
.s > 0/

1

t
sin!t arctan

�!

s

�

.s > 0/

eatf .t/ F.s � a/

tkf .t/ .�1/kF .k/.s/

f .!t/
1

!
F
� s

!

�

; ! > 0

u.t � �/ e��s

s
.s > 0/

u.t � �/f .t � �/ .� > 0/ e��sF.s/

Z t

o

f .�/g.t � �/ d� F.s/ �G.s/

ı.t � a/ e�as .s > 0/



CHAPTER 9

Linear Higher Order Equations

IN THIS CHAPTER we extend the results obtained in Chapter 5 for linear second order equations to

linear higher order equations.

SECTION 9.1 presents a theoretical introduction to linear higher order equations.

SECTION 9.2 discusses higher order constant coefficient homogeneous equations.

SECTION 9.3 presents the method of undetermined coefficients for higher order equations.

SECTION 9.4 extends the method of variation of parameters to higher order equations.

465
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9.1 INTRODUCTION TO LINEAR HIGHER ORDER EQUATIONS

An nth order differential equation is said to be linear if it can be written in the form

y.n/ C p1.x/y
.n�1/ C � � � C pn.x/y D f .x/: (9.1.1)

We considered equations of this form with n D 1 in Section 2.1 and with n D 2 in Chapter 5. In this

chapter n is an arbitrary positive integer.

In this section we sketch the general theory of linear nth order equations. Since this theory has already
been discussed for n D 2 in Sections 5.1 and 5.3, we’ll omit proofs.

For convenience, we consider linear differential equations written as

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D F.x/; (9.1.2)

which can be rewritten as (9.1.1) on any interval on which P0 has no zeros, with p1 D P1=P0, . . . ,
pn D Pn=P0 and f D F=P0. For simplicity, throughout this chapter we’ll abbreviate the left side of

(9.1.2) by Ly; that is,

Ly D P0y
.n/ C P1y

.n�1/ C � � � C Pny:

We say that the equation Ly D F is normal on .a; b/ if P0, P1, . . . , Pn and F are continuous on .a; b/

and P0 has no zeros on .a; b/. If this is so then Ly D F can be written as (9.1.1) with p1, . . . , pn and f

continuous on .a; b/.

The next theorem is analogous to Theorem 5.3.1.

Theorem 9.1.1 SupposeLy D F is normal on .a; b/, let x0 be a point in .a; b/; and let k0, k1, . . . , kn�1

be arbitrary real numbers: Then the initial value problem

Ly D F; y.x0/ D k0; y0.x0/ D k1; : : : ; y.n�1/.x0/ D kn�1

has a unique solution on .a; b/:

Homogeneous Equations

Eqn. (9.1.2) is said to be homogeneous if F � 0 and nonhomogeneous otherwise. Since y � 0 is

obviously a solution of Ly D 0, we call it the trivial solution. Any other solution is nontrivial.

If y1, y2, . . . , yn are defined on .a; b/ and c1, c2, . . . , cn are constants, then

y D c1y1 C c2y2 C � � � C cnyn (9.1.3)

is a linear combination of fy1; y2 : : : ; yng. It’s easy to show that if y1, y2, . . . , yn are solutions ofLy D 0

on .a; b/, then so is any linear combination of fy1; y2; : : : ; yng. (See the proof of Theorem 5.1.2.) We say

that fy1; y2; : : : ; yng is a fundamental set of solutions of Ly D 0 on .a; b/ if every solution of Ly D 0

on .a; b/ can be written as a linear combination of fy1; y2; : : : ; yng, as in (9.1.3). In this case we say that

(9.1.3) is the general solution of Ly D 0 on .a; b/.

It can be shown (Exercises 14 and 15) that if the equation Ly D 0 is normal on .a; b/ then it has
infinitely many fundamental sets of solutions on .a; b/. The next definition will help to identify funda-

mental sets of solutions of Ly D 0.

We say that fy1; y2; : : : ; yng is linearly independent on .a; b/ if the only constants c1, c2, . . . , cn such

that

c1y1.x/C c2y2.x/C � � � C cnyn.x/ D 0; a < x < b; (9.1.4)

are c1 D c2 D � � � D cn D 0. If (9.1.4) holds for some set of constants c1, c2, . . . , cn that are not all zero,

then fy1; y2; : : : ; yng is linearly dependent on .a; b/
The next theorem is analogous to Theorem 5.1.3.
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Theorem 9.1.2 If Ly D 0 is normal on .a; b/, then a set fy1; y2; : : : ; yng of n solutions of Ly D 0 on

.a; b/ is a fundamental set if and only if it’s linearly independent on .a; b/.

Example 9.1.1 The equation

x3y000 � x2y00 � 2xy0 C 6y D 0 (9.1.5)

is normal and has the solutions y1 D x2, y2 D x3, and y3 D 1=x on .�1; 0/ and .0;1/. Show that

fy1; y2; y3g is linearly independent on .�1; 0/ and .0;1/. Then find the general solution of (9.1.5) on

.�1; 0/ and .0;1/.

Solution Suppose

c1x
2 C c2x

3 C c3

x
D 0 (9.1.6)

on .0;1/. We must show that c1 D c2 D c3 D 0. Differentiating (9.1.6) twice yields the system

c1x
2 C c2x

3 C c3

x
D 0

2c1x C 3c2x
2 � c3

x2
D 0

2c1 C 6c2x C 2c3

x3
D 0:

(9.1.7)

If (9.1.7) holds for all x in .0;1/, then it certainly holds at x D 1; therefore,

c1 C c2 C c3 D 0

2c1 C 3c2 � c3 D 0

2c1 C 6c2 C 2c3 D 0:

(9.1.8)

By solving this system directly, you can verify that it has only the trivial solution c1 D c2 D c3 D
0; however, for our purposes it’s more useful to recall from linear algebra that a homogeneous linear

system of n equations in n unknowns has only the trivial solution if its determinant is nonzero. Since the
determinant of (9.1.8) is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

2 3 �1
2 6 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0

2 1 �3
2 4 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 12;

it follows that (9.1.8) has only the trivial solution, so fy1; y2; y3g is linearly independent on .0;1/. Now

Theorem 9.1.2 implies that

y D c1x
2 C c2x

3 C c3

x

is the general solution of (9.1.5) on .0;1/. To see that this is also true on .�1; 0/, assume that (9.1.6)
holds on .�1; 0/. Setting x D �1 in (9.1.7) yields

c1 � c2 � c3 D 0

�2c1 C 3c2 � c3 D 0

2c1 � 6c2 � 2c3 D 0:

Since the determinant of this system is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 �1 �1
�2 3 �1
2 �6 �2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0

�2 1 �3
2 �4 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �12;

it follows that c1 D c2 D c3 D 0; that is, fy1; y2; y3g is linearly independent on .�1; 0/.
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Example 9.1.2 The equation

y.4/ C y000 � 7y00 � y0 C 6y D 0 (9.1.9)

is normal and has the solutions y1 D ex, y2 D e�x, y3 D e2x, and y4 D e�3x on .�1;1/. (Verify.)

Show that fy1; y2; y3; y4g is linearly independent on .�1;1/. Then find the general solution of (9.1.9).

Solution Suppose c1, c2, c3, and c4 are constants such that

c1e
x C c2e

�x C c3e
2x C c4e

�3x D 0 (9.1.10)

for all x. We must show that c1 D c2 D c3 D c4 D 0. Differentiating (9.1.10) three times yields the
system

c1e
x C c2e

�x C c3e
2x C c4e

�3x D 0

c1e
x � c2e

�x C 2c3e
2x � 3c4e

�3x D 0

c1e
x C c2e

�x C 4c3e
2x C 9c4e

�3x D 0

c1e
x � c2e

�x C 8c3e
2x � 27c4e

�3x D 0:

(9.1.11)

If (9.1.11) holds for all x, then it certainly holds for x D 0. Therefore

c1 C c2 C c3 C c4 D 0

c1 � c2 C 2c3 � 3c4 D 0

c1 C c2 C 4c3 C 9c4 D 0

c1 � c2 C 8c3 � 27c4 D 0:

The determinant of this system is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

1 �1 2 �3
1 1 4 9

1 �1 8 �27

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

0 �2 1 �4
0 0 3 8

0 �2 7 �28

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�2 1 �4
0 3 8

�2 7 �28

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�2 1 �4
0 3 8

0 6 �24

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �2
ˇ

ˇ

ˇ

ˇ

3 8

6 �24

ˇ

ˇ

ˇ

ˇ

D 240;

(9.1.12)

so the system has only the trivial solution c1 D c2 D c3 D c4 D 0. Now Theorem 9.1.2 implies that

y D c1e
x C c2e

�x C c3e
2x C c4e

�3x

is the general solution of (9.1.9).

The Wronskian

We can use the method used in Examples 9.1.1 and 9.1.2 to test n solutions fy1; y2; : : : ; yng of any nth
order equation Ly D 0 for linear independence on an interval .a; b/ on which the equation is normal.

Thus, if c1, c2 ,. . . , cn are constants such that

c1y1 C c2y2 C � � � C cnyn D 0; a < x < b;

then differentiating n� 1 times leads to the n � n system of equations

c1y1.x/C c2y2.x/C � � � Ccnyn.x/ D 0

c1y
0
1.x/C c2y

0
2.x/C � � � Ccny

0
n.x/ D 0

:::

c1y
.n�1/
1 .x/C c2y

.n�1/
2 .x/C � � � Ccny

.n�1/
n .x/ D 0

(9.1.13)
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for c1, c2, . . . , cn. For a fixed x, the determinant of this system is

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1.x/ y2.x/ � � � yn.x/

y0
1.x/ y0

2.x/ � � � y0
n.x/

:::
:::

: : :
:::

y
.n�1/
1 .x/ y

.n�1/
2 .x/ � � � y

.n�1/
n .x/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

We call this determinant the Wronskian of fy1; y2; : : : ; yng. If W.x/ ¤ 0 for some x in .a; b/ then the

system (9.1.13) has only the trivial solution c1 D c2 D � � � D cn D 0, and Theorem 9.1.2 implies that

y D c1y1 C c2y2 C � � � C cnyn

is the general solution of Ly D 0 on .a; b/.

The next theorem generalizes Theorem 5.1.4. The proof is sketched in (Exercises 17–20).

Theorem 9.1.3 Suppose the homogeneous linear nth order equation

P0.x/y
.n/ C P1.x/y

n�1 C � � � C Pn.x/y D 0 (9.1.14)

is normal on .a; b/; let y1; y2; . . . , yn be solutions of (9.1.14) on .a; b/; and let x0 be in .a; b/. Then the

Wronskian of fy1; y2; : : : ; yng is given by

W.x/ D W.x0/ exp

�

�
Z x

x0

P1.t/

P0.t/
dt

�

; a < x < b: (9.1.15)

Therefore; eitherW has no zeros in .a; b/ orW � 0 on .a; b/:

Formula (9.1.15) is Abel’s formula.

The next theorem is analogous to Theorem 5.1.6..

Theorem 9.1.4 Suppose Ly D 0 is normal on .a; b/ and let y1, y2, . . . , yn be n solutions of Ly D 0 on

.a; b/. Then the following statements are equivalentI that is; they are either all true or all falseW
(a) The general solution of Ly D 0 on .a; b/ is y D c1y1 C c2y2 C � � � C cnyn:

(b) fy1; y2; : : : ; yng is a fundamental set of solutions of Ly D 0 on .a; b/:

(c) fy1; y2; : : : ; yng is linearly independent on .a; b/:

(d) The Wronskian of fy1; y2; : : : ; yng is nonzero at some point in .a; b/:

(e) The Wronskian of fy1; y2; : : : ; yng is nonzero at all points in .a; b/:

Example 9.1.3 In Example 9.1.1 we saw that the solutions y1 D x2, y2 D x3, and y3 D 1=x of

x3y000 � x2y00 � 2xy0 C 6y D 0

are linearly independent on .�1; 0/ and .0;1/. Calculate the Wronskian of fy1; y2; y3g.

Solution If x ¤ 0, then

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2 x3
1

x

2x 3x2 � 1

x2

2 6x
2

x3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 2x3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 x
1

x3

2 3x � 1

x3

1 3x
1

x3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Wronski.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Abel.html
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where we factored x2, x, and 2 out of the first, second, and third rows of W.x/, respectively. Adding the

second row of the last determinant to the first and third rows yields

W.x/ D 2x3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 4x 0

2 3x � 1

x3

3 6x 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 2x3

�

1

x3

�
ˇ

ˇ

ˇ

ˇ

3 4x

3 6x

ˇ

ˇ

ˇ

ˇ

D 12x:

Therefore W.x/ ¤ 0 on .�1; 0/ and .0;1/.

Example 9.1.4 In Example 9.1.2 we saw that the solutions y1 D ex, y2 D e�x, y3 D e2x, and y4 D
e�3x of

y.4/ C y000 � 7y00 � y0 C 6y D 0

are linearly independent on every open interval. Calculate the Wronskian of fy1; y2; y3; y4g.

Solution For all x,

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ex e�x e2x e�3x

ex �e�x 2e2x �3e�3x

ex e�x 4e2x 9e�3x

ex �e�x 8e2x �27e�3x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Factoring the exponential common factor from each row yields

W.x/ D e�x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

1 �1 2 �3
1 1 4 9

1 �1 8 �27

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 240e�x;

from (9.1.12).

REMARK: Under the assumptions of Theorem 9.1.4, it isn’t necessary to obtain a formula for W.x/. Just

evaluate W.x/ at a convenient point in .a; b/, as we did in Examples 9.1.1 and 9.1.2.

Theorem 9.1.5 Suppose c is in .a; b/ and ˛1; ˛2; . . . ; are real numbers, not all zero. Under the assump-

tions of Theorem 10.3.3, suppose y1 and y2 are solutions of (5.1.35) such that

˛yi.c/C y0
i .c/C � � � C y

.n�1/
i .c/ D 0; 1 � i � n: (9.1.16)

Then fy1; y2; : : : yng isn’t linearly independent on .a; b/:

Proof Since ˛1, ˛2, . . . , ˛n are not all zero, (9.1.14) implies that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1.c/ y0
1.c/ � � � y

.n�1/
1 .c/

y2.c/ y0
2.c/ � � � y

.n�1/
2 .c/

:::
:::

: : :
:::

yn.c/ y0
n.c/ � � � y

.n�1/
n .c/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0;

so
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1.c/ y2.c/ � � � yn.c/

y0
1.c/ y0

2.c/ � � � y0
n.c/

:::
:::

: : :
:::

y
.n�1/
1 .c/ y

.n�1/
2 .c/.c/ � � � y

.n�1/
n .c/.c/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

and Theorem 9.1.4 implies the stated conclusion.
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General Solution of a Nonhomogeneous Equation

The next theorem is analogous to Theorem 5.3.2. It shows how to find the general solution of Ly D F

if we know a particular solution of Ly D F and a fundamental set of solutions of the complementary

equation Ly D 0.

Theorem 9.1.6 Suppose Ly D F is normal on .a; b/: Let yp be a particular solution of Ly D F on

.a; b/; and let fy1; y2; : : : ; yng be a fundamental set of solutions of the complementary equation Ly D 0

on .a; b/. Then y is a solution of Ly D F on .a; b/ if and only if

y D yp C c1y1 C c2y2 C � � � C cnyn;

where c1; c2; : : : ; cn are constants.

The next theorem is analogous to Theorem 5.3.2.

Theorem 9.1.7 ŒThe Principle of Superposition� Suppose for each i D 1; 2; . . . , r , the function ypi
is a

particular solution of Ly D Fi on .a; b/: Then

yp D yp1
C yp2

C � � � C ypr

is a particular solution of

Ly D F1.x/C F2.x/C � � � C Fr.x/

on .a; b/:

We’ll apply Theorems 9.1.6 and 9.1.7 throughout the rest of this chapter.

9.1 Exercises

1. Verify that the given function is the solution of the initial value problem.

(a) x3y000 � 3x2y00 C 6xy0 � 6y D �24
x
; y.�1/ D 0, y0.�1/ D 0; y00.�1/ D 0;

y D �6x � 8x2 � 3x3 C 1

x

(b) y000 � 1

x
y00 � y0 C 1

x
y D x2 � 4

x4
; y.1/ D 3

2
; y0.1/ D 1

2
, y00.1/ D 1;

y D x C 1

2x

(c) xy000 � y00 � xy0 C y D x2; y.1/ D 2; y0.1/ D 5; y00.1/ D �1;

y D �x2 � 2C 2e.x�1/ � e�.x�1/ C 4x

(d) 4x3y000 C 4x2y00 � 5xy0 C 2y D 30x2; y.1/ D 5; y0.1/ D 17

2
;

y00.1/ D 63

4
I y D 2x2 lnx � x1=2 C 2x�1=2 C 4x2

(e) x4y.4/ � 4x3y000 C 12x2y00 � 24xy0 C 24y D 6x4; y.1/ D �2,

y0.1/ D �9; y00.1/ D �27; y000.1/ D �52;

y D x4 ln x C x � 2x2 C 3x3 � 4x4

(f) xy.4/ � y000 � 4xy00 C 4y0 D 96x2; y.1/ D �5; y0.1/ D �24
y00.1/ D �36I y000.1/ D �48I y D 9 � 12x C 6x2 � 8x3
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2. Solve the initial value problem

x3y000 � x2y00 � 2xy0 C 6y D 0; y.�1/ D �4; y0.�1/ D �14; y00.�1/ D �20:

HINT: See Example 9.1.1.

3. Solve the initial value problem

y.4/ C y000 � 7y00 � y0 C 6y D 0; y.0/ D 5; y0.0/ D �6; y00.0/ D 10; y000.0/ � 36:

HINT: See Example 9.1.2.

4. Find solutions y1, y2, . . . , yn of the equation y.n/ D 0 that satisfy the initial conditions

y
.j /
i .x0/ D

(

0; j ¤ i � 1;

1; j D i � 1;
1 � i � n:

5. (a) Verify that the function

y D c1x
3 C c2x

2 C c3

x

satisfies
x3y000 � x2y00 � 2xy0 C 6y D 0 .A/

if c1, c2, and c3 are constants.

(b) Use (a) to find solutions y1, y2, and y3 of (A) such that

y1.1/ D 1; y0
1.1/ D 0; y00

1.1/ D 0

y2.1/ D 0; y0
2.1/ D 1; y00

2.1/ D 0

y3.1/ D 0; y0
3.1/ D 0; y00

3.1/ D 1:

(c) Use (b) to find the solution of (A) such that

y.1/ D k0; y0.1/ D k1; y00.1/ D k2:

6. Verify that the given functions are solutions of the given equation, and show that they form a

fundamental set of solutions of the equation on any interval on which the equation is normal.

(a) y000 C y00 � y0 � y D 0I fex; e�x; xe�xg
(b) y000 � 3y00 C 7y0 � 5y D 0I fex; ex cos 2x; ex sin 2xg.

(c) xy000 � y00 � xy0 C y D 0I fex; e�x; xg
(d) x2y000 C 2xy00 � .x2 C 2/y D 0I fex=x; e�x=x; 1g
(e) .x2 � 2x C 2/y000 � x2y00 C 2xy0 � 2y D 0I fx; x2; exg
(f) .2x � 1/y.4/ � 4xy000 C .5 � 2x/y00 C 4xy0 � 4y D 0I fx; ex; e�x; e2xg
(g) xy.4/ � y000 � 4xy0 C 4y0 D 0I f1; x2; e2x; e�2xg

7. Find the Wronskian W of a set of three solutions of

y000 C 2xy00 C exy0 � y D 0;

given thatW.0/ D 2.



Section 9.1 Introduction to Linear Higher Order Equations 473

8. Find the Wronskian W of a set of four solutions of

y.4/ C .tan x/y000 C x2y00 C 2xy D 0;

given thatW.�=4/ D K.

9. (a) Evaluate the WronskianW fex; xex; x2exg. Evaluate W.0/.

(b) Verify that y1, y2, and y3 satisfy

y000 � 3y00 C 3y0 � y D 0: .A/

(c) Use W.0/ from (a) and Abel’s formula to calculate W.x/.

(d) What is the general solution of (A)?

10. Compute the Wronskian of the given set of functions.

(a) f1; ex; e�xg (b) fex; ex sin x; ex cos xg
(c) f2; x C 1; x2 C 2g (d) x; x lnx; 1=xg

(e) f1; x; x
2

2Š
;
x3

3Š
; � � � ; x

n

nŠ
g (f) fex; e�x; xg

(g) fex=x; e�x=x; 1g (h) fx; x2; exg
(i) fx; x3; 1=x; 1=x2g (j) fex; e�x; x; e2xg
(k) fe2x; e�2x; 1; x2g

11. Suppose Ly D 0 is normal on .a; b/ and x0 is in .a; b/. Use Theorem 9.1.1 to show that y � 0 is

the only solution of the initial value problem

Ly D 0; y.x0/ D 0; y0.x0/ D 0; : : : ; y.n�1/.x0/ D 0;

on .a; b/.

12. Prove: If y1, y2, . . . , yn are solutions of Ly D 0 and the functions

´i D
n
X

j D1

aijyj ; 1 � i � n;

form a fundamental set of solutions of Ly D 0, then so do y1, y2, . . . , yn.

13. Prove: If

y D c1y1 C c2y2 C � � � C ckyk C yp

is a solution of a linear equation Ly D F for every choice of the constants c1, c2 ,. . . , ck, then

Lyi D 0 for 1 � i � k.

14. Suppose Ly D 0 is normal on .a; b/ and let x0 be in .a; b/. For 1 � i � n, let yi be the solution
of the initial value problem

Lyi D 0; y
.j /
i .x0/ D

(

0; j ¤ i � 1;
1; j D i � 1; 1 � i � n;

where x0 is an arbitrary point in .a; b/. Show that any solution of Ly D 0 on .a; b/, can be written

as

y D c1y1 C c2y2 C � � � C cnyn;

with cj D y.j �1/.x0/.
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15. Suppose fy1; y2; : : : ; yng is a fundamental set of solutions of

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D 0

on .a; b/, and let
´1 D a11y1 C a12y2 C � � � C a1nyn

´2 D a21y1 C a22y2 C � � � C a2nyn

:::
:::

:::
:::

´n D an1y1 C an2y2 C � � � C annyn;

where the faij g are constants. Show that f´1; ´2; : : : ; ´ng is a fundamental set of solutions of (A)

if and only if the determinant
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

is nonzero.HINT: The determinant of a product of n � n matrices equals the product of the deter-

minants.

16. Show that fy1; y2; : : : ; yng is linearly dependent on .a; b/ if and only if at least one of the functions

y1, y2, . . . , yn can be written as a linear combination of the others on .a; b/.

Take the following as a hint in Exercises 17–19:

By the definition of determinant,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an1 an2 � � � ann

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
X

˙a1i1a2i2 ; : : : ; anin ;

where the sum is over all permutations .i1; i2; : : : ; in/ of .1; 2; : : : ; n/ and the choice of C or � in each

term depends only on the permutation associated with that term.

17. Prove: If

A.u1; u2; : : : ; un/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11 a12 � � � a1n

a21 a22 � � � a2n

:::
:::

: : :
:::

an�1;1 an�1;2 � � � an�1;n

u1 u2 � � � un

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

then

A.u1 C v1; u2 C v2; : : : ; un C vn/ D A.u1; u2; : : : ; un/C A.v1; v2; : : : ; vn/:
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18. Let

F D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f11 f12 � � � f1n

f21 f22 � � � f2n

:::
:::

: : :
:::

fn1 fn2 � � � fnn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

where fij .1 � i; j � n/ is differentiable. Show that

F 0 D F1 C F2 C � � � C Fn;

where Fi is the determinant obtained by differentiating the i th row of F .

19. Use Exercise 18 to show that ifW is the Wronskian of the n-times differentiable functions y1, y2,

. . . , yn, then

W 0 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2 � � � yn

y0
1 y0

2 � � � y0
n

:::
:::

: : :
:::

y
.n�2/
1 y

.n�2/
2 � � � y

.n�2/
n

y
.n/
1 y

.n/
2 � � � y

.n/
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

20. Use Exercises 17 and 19 to show that if W is the Wronskian of solutions fy1; y2; : : : ; yng of the

normal equation

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D 0; .A/

then W 0 D �P1W=P0. Derive Abel’s formula (Eqn. (9.1.15)) from this. HINT: Use (A) to write

y.n/ in terms of y; y0; : : : ; y.n�1/.

21. Prove Theorem 9.1.6.

22. Prove Theorem 9.1.7.

23. Show that if the Wronskian of the n-times continuously differentiable functions fy1; y2; : : : ; yng
has no zeros in .a; b/, then the differential equation obtained by expanding the determinant

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y y1 y2 � � � yn

y0 y0
1 y0

2 � � � y0
n

:::
:::

:::
: : :

:::

y.n/ y
.n/
1 y

.n/
2 � � � y

.n/
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0;

in cofactors of its first column is normal and has fy1; y2; : : : ; yng as a fundamental set of solutions
on .a; b/.

24. Use the method suggested by Exercise 23 to find a linear homogeneous equation such that the

given set of functions is a fundamental set of solutions on intervals on which the Wronskian of the
set has no zeros.

(a) fx; x2 � 1; x2 C 1g (b) fex; e�x; xg
(c) fex; xe�x; 1g (d) fx; x2; exg
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(e) fx; x2; 1=xg (f) fx C 1; ex; e3xg
(g) fx; x3; 1=x; 1=x2g (h) fx; x lnx; 1=x; x2g
(i) fex; e�x ; x; e2xg (j) fe2x; e�2x; 1; x2g

9.2 HIGHER ORDER CONSTANT COEFFICIENT HOMOGENEOUS EQUATIONS

If a0, a1, . . . , an are constants and a0 ¤ 0, then

a0y
.n/ C a1y

.n�1/ C � � � C any D F.x/

is said to be a constant coefficient equation. In this section we consider the homogeneous constant coef-

ficient equation

a0y
.n/ C a1y

.n�1/ C � � � C any D 0: (9.2.1)

Since (9.2.1) is normal on .�1;1/, the theorems in Section 9.1 all apply with .a; b/ D .�1;1/.

As in Section 5.2, we call

p.r/ D a0r
n C a1r

n�1 C � � � C an (9.2.2)

the characteristic polynomial of (9.2.1). We saw in Section 5.2 that when n D 2 the solutions of (9.2.1)

are determined by the zeros of the characteristic polynomial. This is also true when n > 2, but the

situation is more complicated in this case. Consequently, we take a different approach here than in

Section 5.2.
If k is a positive integer, let Dk stand for the k-th derivative operator; that is

Dky D y.k/:

If

q.r/ D b0r
m C b1r

m�1 C � � � C bm

is an arbitrary polynomial, define the operator

q.D/ D b0D
m C b1D

m�1 C � � � C bm

such that

q.D/y D .b0D
m C b1D

m�1 C � � � C bm/y D b0y
.m/ C b1y

.m�1/ C � � � C bmy

whenever y is a function withm derivatives. We call q.D/ a polynomial operator.

With p as in (9.2.2),

p.D/ D a0D
n C a1D

n�1 C � � � C an;

so (9.2.1) can be written as p.D/y D 0. If r is a constant then

p.D/erx D
�

a0D
nerx C a1D

n�1erx C � � � C ane
rx
�

D .a0r
n C a1r

n�1 C � � � C an/e
rxI

that is

p.D/.erx/ D p.r/erx:

This shows that y D erx is a solution of (9.2.1) if p.r/ D 0. In the simplest case, where p has n distinct

real zeros r1, r2,. . . , rn, this argument yields n solutions

y1 D er1x; y2 D er2x ; : : : ; yn D ernx :

It can be shown (Exercise 39) that the Wronskian of fer1x; er2x; : : : ; ernxg is nonzero if r1, r2, . . . , rn are
distinct; hence, fer1x; er2x ; : : : ; ernxg is a fundamental set of solutions of p.D/y D 0 in this case.
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Example 9.2.1

(a) Find the general solution of

y000 � 6y00 C 11y0 � 6y D 0: (9.2.3)

(b) Solve the initial value problem

y000 � 6y00 C 11y0 � 6y D 0; y.0/ D 4; y0.0/ D 5; y00.0/ D 9: (9.2.4)

Solution The characteristic polynomial of (9.2.3) is

p.r/ D r3 � 6r2 C 11r � 6 D .r � 1/.r � 2/.r � 3/:

Therefore fex; e2x; e3xg is a set of solutions of (9.2.3). It is a fundamental set, since its Wronskian is

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D e6x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

1 2 3

1 4 9

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 2e6x ¤ 0:

Therefore the general solution of (9.2.3) is

y D c1e
x C c2e

2x C c3e
3x: (9.2.5)

SOLUTION(b) We must determine c1, c2 and c3 in (9.2.5) so that y satisfies the initial conditions in

(9.2.4). Differentiating (9.2.5) twice yields

y0 D c1e
x C 2c2e

2x C 3c3e
3x

y00 D c1e
x C 4c2e

2x C 9c3e
3x:

(9.2.6)

Setting x D 0 in (9.2.5) and (9.2.6) and imposing the initial conditions yields

c1 C c2 C c3 D 4

c1 C 2c2 C 3c3 D 5

c1 C 4c2 C 9c3 D 9:

The solution of this system is c1 D 4, c2 D �1, c3 D 1. Therefore the solution of (9.2.4) is

y D 4ex � e2x C e3x

(Figure 9.2.1).

Now we consider the case where the characteristic polynomial (9.2.2) does not have n distinct real
zeros. For this purpose it is useful to define what we mean by a factorization of a polynomial operator.

We begin with an example.

Example 9.2.2 Consider the polynomial

p.r/ D r3 � r2 C r � 1

and the associated polynomial operator

p.D/ D D3 �D2 CD � 1:



478 Chapter 9 Linear Higher Order Equations
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Figure 9.2.1 y D 4ex � e2x C e3x

Since p.r/ can be factored as

p.r/ D .r � 1/.r2 C 1/ D .r2 C 1/.r � 1/;

it’s reasonable to expect that p(D) can be factored as

p.D/ D .D � 1/.D2 C 1/ D .D2 C 1/.D � 1/: (9.2.7)

However, before we can make this assertion we must define what we mean by saying that two operators

are equal, and what we mean by the products of operators in (9.2.7). We say that two operators are equal
if they apply to the same functions and always produce the same result. The definitions of the products in

(9.2.7) is this: if y is any three-times differentiable function then

(a) .D � 1/.D2 C 1/y is the function obtained by first applyingD2 C 1 to y and then applyingD � 1
to the resulting function

(b) .D2 C 1/.D � 1/y is the function obtained by first applyingD � 1 to y and then applyingD2 C 1

to the resulting function.

From (a),
.D � 1/.D2 C 1/y D .D � 1/Œ.D2 C 1/y�

D .D � 1/.y00 C y/ D D.y00 C y/ � .y00 C y/

D .y000 C y0/ � .y00 C y/

D y000 � y00 C y0 � y D .D3 �D2 CD � 1/y:
(9.2.8)

This implies that

.D � 1/.D2 C 1/ D .D3 �D2 CD � 1/:
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From (b),
.D2 C 1/.D � 1/y D .D2 C 1/Œ.D � 1/y�

D .D2 C 1/.y0 � y/ D D2.y0 � y/C .y0 � y/
D .y000 � y00/C .y0 � y/

D y000 � y00 C y0 � y D .D3 �D2 CD � 1/y;

(9.2.9)

.D2 C 1/.D � 1/ D .D3 �D2 CD � 1/;
which completes the justification of (9.2.7).

Example 9.2.3 Use the result of Example 9.2.2 to find the general solution of

y000 � y00 C y0 � y D 0: (9.2.10)

Solution From (9.2.8), we can rewrite (9.2.10) as

.D � 1/.D2 C 1/y D 0;

which implies that any solution of .D2 C 1/y D 0 is a solution of (9.2.10). Therefore y1 D cos x and

y2 D sin x are solutions of (9.2.10).
From (9.2.9), we can rewrite (9.2.10) as

.D2 C 1/.D � 1/y D 0;

which implies that any solution of .D � 1/y D 0 is a solution of (9.2.10). Therefore y3 D ex is solution

of (9.2.10).

The Wronskian of fex; cos x; sinxg is

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

cos x sin x ex

� sinx cos x ex

� cos x � sin x ex

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Since

W.0/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 1

0 1 1

�1 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 2;

fcos x; sinx; exg is linearly independent and

y D c1 cos x C c2 sin x C c3e
x

is the general solution of (9.2.10).

Example 9.2.4 Find the general solution of

y.4/ � 16y D 0: (9.2.11)

Solution The characteristic polynomial of (9.2.11) is

p.r/ D r4 � 16 D .r2 � 4/.r2 C 4/ D .r � 2/.r C 2/.r2 C 4/:

By arguments similar to those used in Examples 9.2.2 and 9.2.3, it can be shown that (9.2.11) can be

written as
.D2 C 4/.D C 2/.D � 2/y D 0
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or

.D2 C 4/.D � 2/.D C 2/y D 0

or

.D � 2/.D C 2/.D2 C 4/y D 0:

Therefore y is a solution of (9.2.11) if it’s a solution of any of the three equations

.D � 2/y D 0; .D C 2/y D 0; .D2 C 4/y D 0:

Hence, fe2x; e�2x; cos2x; sin 2xg is a set of solutions of (9.2.11). The Wronskian of this set is

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

e2x e�2x cos 2x sin 2x
2e2x �2e�2x �2 sin 2x 2 cos 2x

4e2x 4e�2x �4 cos 2x �4 sin 2x

8e2x �8e�2x 8 sin 2x �8 cos 2x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Since

W.0/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 0

2 �2 0 2

4 4 �4 0

8 �8 0 �8

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �512;

fe2x; e�2x; cos 2x; sin2xg is linearly independent, and

y1 D c1e
2x C c2e

�2x C c3 cos 2x C c4 sin 2x

is the general solution of (9.2.11).

It is known from algebra that every polynomial

p.r/ D a0r
n C a1r

n�1 C � � � C an

with real coefficients can be factored as

p.r/ D a0p1.r/p2.r/ � � �pk.r/;

where no pair of the polynomials p1, p2, . . . , pk has a commom factor and each is either of the form

pj .r/ D .r � rj /mj ; (9.2.12)

where rj is real and mj is a positive integer, or

pj .r/ D
�

.r � �j /
2 C !2

j

�mj
; (9.2.13)

where �j and !j are real, !j ¤ 0, and mj is a positive integer. If (9.2.12) holds then rj is a real zero of

p, while if (9.2.13) holds then �C i! and � � i! are complex conjugate zeros of p. In either case, mj

is the multiplicity of the zero(s).

By arguments similar to those used in our examples, it can be shown that

p.D/ D a0p1.D/p2.D/ � � �pk.D/ (9.2.14)

and that the order of the factors on the right can be chosen arbitrarily. Therefore, if pj .D/y D 0 for some

j then p.D/y D 0. To see this, we simply rewrite (9.2.14) so that pj .D/ is applied first. Therefore the
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problem of finding solutions of p.D/y D 0 with p as in (9.2.14) reduces to finding solutions of each of

these equations

pj .D/y D 0; 1 � j � k;

where pj is a power of a first degree term or of an irreducible quadratic. To find a fundamental set of

solutions fy1; y2; : : : ; yng of p.D/y D 0, we find fundamental set of solutions of each of the equations

and take fy1; y2; : : : ; yng to be the set of all functions in these separate fundamental sets. In Exercise 40
we sketch the proof that fy1; y2; : : : ; yng is linearly independent, and therefore a fundamental set of

solutions of p.D/y D 0.

To apply this procedure to general homogeneous constant coefficient equations, we must be able to

find fundamental sets of solutions of equations of the form

.D � a/my D 0

and
�

.D � �/2 C !2
�m
y D 0;

where m is an arbitrary positive integer. The next two theorems show how to do this.

Theorem 9.2.1 If m is a positive integer, then

feax; xeax; : : : ; xm�1eaxg (9.2.15)

is a fundamental set of solutions of

.D � a/my D 0: (9.2.16)

Proof We’ll show that if

f .x/ D c1 C c2x C � � � C cmx
m�1

is an arbitrary polynomial of degree � m � 1, then y D eaxf is a solution of (9.2.16). First note that if

g is any differentiable function then

.D � a/eaxg D Deaxg � aeaxg D aeaxg C eaxg0 � aeaxg;

so

.D � a/eaxg D eaxg0: (9.2.17)

Therefore

.D � a/eaxf D eaxf 0 (from (9.2.17) with g D f )

.D � a/2eaxf D .D � a/eaxf 0 D eaxf 00 (from (9.2.17) with g D f 0)

.D � a/3eaxf D .D � a/eaxf 00 D eaxf 000 (from (9.2.17) with g D f 00)
:::

.D � a/meaxf D .D � a/eaxf .m�1/ D eaxf .m/ (from (9.2.17) with g D f .m�1/):

Since f .m/ D 0, the last equation implies that y D eaxf is a solution of (9.2.16) if f is any polynomial

of degree � m� 1. In particular, each function in (9.2.15) is a solution of (9.2.16). To see that (9.2.15) is

linearly independent (and therefore a fundamental set of solutions of (9.2.16)), note that if

c1e
ax C c2xe

ax C c � � � C cm�1x
m�1eax D 0

for all x in some interval .a; b/, then

c1 C c2x C c � � � C cm�1x
m�1 D 0

for all x in .a; b/. However, we know from algebra that if this polynomial has more than m � 1 zeros
then c1 D c2 D � � � D cn D 0.
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Example 9.2.5 Find the general solution of

y000 C 3y00 C 3y0 C y D 0: (9.2.18)

Solution The characteristic polynomial of (9.2.18) is

p.r/ D r3 C 3r2 C 3r C 1 D .r C 1/3:

Therefore (9.2.18) can be written as

.D C 1/3y D 0;

so Theorem 9.2.1 implies that the general solution of (9.2.18) is

y D e�x.c1 C c2x C c3x
2/:

The proof of the next theorem is sketched in Exercise 41.

Theorem 9.2.2 If ! ¤ 0 and m is a positive integer, then

fe�x cos!x; xe�x cos!x; : : : ; xm�1e�x cos!x;

e�x sin!x; xe�x sin!x; : : : ; xm�1e�x sin!xg

is a fundamental set of solutions of

Œ.D � �/2 C !2�my D 0:

Example 9.2.6 Find the general solution of

.D2 C 4D C 13/3y D 0: (9.2.19)

Solution The characteristic polynomial of (9.2.19) is

p.r/ D .r2 C 4r C 13/3 D
�

.r C 2/2 C 9
�3
:

Therefore (9.2.19) can be be written as

Œ.D C 2/2 C 9�3y D 0;

so Theorem 9.2.2 implies that the general solution of (9.2.19) is

y D .a1 C a2x C a3x
2/e�2x cos 3x C .b1 C b2x C b3x

2/e�2x sin 3x:

Example 9.2.7 Find the general solution of

y.4/ C 4y000 C 6y00 C 4y0 D 0: (9.2.20)

Solution The characteristic polynomial of (9.2.20) is

p.r/ D r4 C 4r3 C 6r2 C 4r

D r.r3 C 4r2 C 6r C 4/

D r.r C 2/.r2 C 2r C 2/

D r.r C 2/Œ.r C 1/2 C 1�:
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Therefore (9.2.20) can be written as

Œ.D C 1/2 C 1�.D C 2/Dy D 0:

Fundamental sets of solutions of

�

.D C 1/2 C 1
�

y D 0; .D C 2/y D 0; and Dy D 0:

are given by

fe�x cos x; e�x sin xg; fe�2xg; and f1g;
respectively. Therefore the general solution of (9.2.20) is

y D e�x.c1 cos x C c2 sinx/C c3e
�2x C c4:

Example 9.2.8 Find a fundamental set of solutions of

Œ.D C 1/2 C 1�2.D � 1/3.D C 1/D2y D 0: (9.2.21)

Solution A fundamental set of solutions of (9.2.21) can be obtained by combining fundamental sets of

solutions of
�

.D C 1/2 C 1
�2
y D 0; .D � 1/3y D 0;

.D C 1/y D 0; and D2y D 0:

Fundamental sets of solutions of these equations are given by

fe�x cos x; xe�x cos x; e�x sin x; xe�x sinxg; fex; xex; x2exg;
fe�xg; and f1; xg;

respectively. These ten functions form a fundamental set of solutions of (9.2.21).

9.2 Exercises

In Exercises 1–14 find the general solution.

1. y000 � 3y00 C 3y0 � y D 0 2. y.4/ C 8y00 � 9y D 0

3. y000 � y00 C 16y0 � 16y D 0 4. 2y000 C 3y00 � 2y0 � 3y D 0

5. y000 C 5y00 C 9y0 C 5y D 0 6. 4y000 � 8y00 C 5y0 � y D 0

7. 27y000 C 27y00 C 9y0 C y D 0 8. y.4/ C y00 D 0

9. y.4/ � 16y D 0 10. y.4/ C 12y00 C 36y D 0

11. 16y.4/ � 72y00 C 81y D 0 12. 6y.4/ C 5y000 C 7y00 C 5y0 C y D 0

13. 4y.4/ C 12y000 C 3y00 � 13y0 � 6y D 0

14. y.4/ � 4y000 C 7y00 � 6y0 C 2y D 0
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In Exercises 15–27 solve the initial value problem. Where indicated by C/G , graph the solution.

15. y000 � 2y00 C 4y0 � 8y D 0; y.0/ D 2; y0.0/ D �2; y00.0/ D 0

16. y000 C 3y00 � y0 � 3y D 0; y.0/ D 0; y0.0/ D 14; y00.0/ D �40
17. C/G y000 � y00 � y0 C y D 0; y.0/ D �2; y0.0/ D 9; y00.0/ D 4

18. C/G y000 � 2y0 � 4y D 0; y.0/ D 6; y0.0/ D 3; y00.0/ D 22

19. C/G

3y000 � y00 � 7y0 C 5y D 0; y.0/ D 14

5
; y0.0/ D 0; y00.0/ D 10

20. y000 � 6y00 C 12y0 � 8y D 0; y.0/ D 1; y0.0/ D �1; y00.0/ D �4
21. 2y000 � 11y00 C 12y0 C 9y D 0; y.0/ D 6; y0.0/ D 3; y00.0/ D 13

22. 8y000 � 4y00 � 2y0 C y D 0; y.0/ D 4; y0.0/ D �3; y00.0/ D �1
23. y.4/ � 16y D 0; y.0/ D 2; y0.0/ D 2; y00.0/ D �2; y000.0/ D 0

24. y.4/ � 6y000 C 7y00 C 6y0 � 8y D 0; y.0/ D �2; y0.0/ D �8; y00.0/ D �14,

y000.0/ D �62
25. 4y.4/ � 13y00 C 9y D 0; y.0/ D 1; y0.0/ D 3; y00.0/ D 1; y000.0/ D 3

26. y.4/ C 2y000 � 2y00 � 8y0 � 8y D 0; y.0/ D 5; y0.0/ D �2; y00.0/ D 6; y000.0/ D 8

27. C/G 4y.4/ C 8y000 C 19y00 C 32y0 C 12y D 0; y.0/ D 3; y0.0/ D �3; y00.0/ D �7
2

,

y000.0/ D 31

4

28. Find a fundamental set of solutions of the given equation, and verify that it’s a fundamental set by

evaluating its Wronskian at x D 0.

(a) .D � 1/2.D � 2/y D 0 (b) .D2 C 4/.D � 3/y D 0

(c) .D2 C 2D C 2/.D � 1/y D 0 (d) D3.D � 1/y D 0

(e) .D2 � 1/.D2 C 1/y D 0 (f) .D2 � 2D C 2/.D2 C 1/y D 0

In Exercises 29–38 find a fundamental set of solutions.

29. .D2 C 6D C 13/.D � 2/2D3y D 0

30. .D � 1/2.2D � 1/3.D2 C 1/y D 0

31. .D2 C 9/3D2y D 0 32. .D � 2/3.D C 1/2Dy D 0

33. .D2 C 1/.D2 C 9/2.D � 2/y D 0 34. .D4 � 16/2y D 0

35. .4D2 C 4D C 9/3y D 0 36. D3.D � 2/2.D2 C 4/2y D 0

37. .4D2 C 1/2.9D2 C 4/3y D 0 38.
�

.D � 1/4 � 16
�

y D 0
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39. It can be shown that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 � � � 1

a1 a2 � � � an

a2
1 a2

2 � � � a2
n

:::
:::

: : :
:::

an�1
1 an�1

2 � � � an�1
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
Y

1�i<j �n

.aj � ai /; .A/

where the left side is the Vandermonde determinant and the right side is the product of all factors

of the form .aj � ai / with i and j between 1 and n and i < j .

(a) Verify (A) for n D 2 and n D 3.

(b) Find the Wronskian of fea1x; ea2x; : : : ; eanxg.

40. A theorem from algebra says that ifP1 and P2 are polynomials with no common factors then there

are polynomialsQ1 and Q2 such that

Q1P1 CQ2P2 D 1:

This implies that
Q1.D/P1.D/y CQ2.D/P2.D/y D y

for every function y with enough derivatives for the left side to be defined.

(a) Use this to show that if P1 and P2 have no common factors and

P1.D/y D P2.D/y D 0

then y D 0.

(b) Suppose P1 and P2 are polynomials with no common factors. Let u1, . . . , ur be linearly

independent solutions of P1.D/y D 0 and let v1, . . . , vs be linearly independent solutions

of P2.D/y D 0. Use (a) to show that fu1; : : : ; ur ; v1; : : : ; vsg is a linearly independent set.

(c) Suppose the characteristic polynomial of the constant coefficient equation

a0y
.n/ C a1y

.n�1/ C � � � C any D 0 .A/

has the factorization

p.r/ D a0p1.r/p2.r/ � � �pk.r/;

where each pj is of the form

pj .r/ D .r � rj /nj or pj .r/ D Œ.r � �j /
2 Cw2

j �
mj .!j > 0/

and no two of the polynomials p1, p2, . . . , pk have a common factor. Show that we can

find a fundamental set of solutions fy1; y2; : : : ; yng of (A) by finding a fundamental set of

solutions of each of the equations

pj .D/y D 0; 1 � j � k;

and taking fy1; y2; : : : ; yng to be the set of all functions in these separate fundamental sets.

http://www-history.mcs.st-and.ac.uk/Mathematicians/Vandermonde.html
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41. (a) Show that if

´ D p.x/ cos!x C q.x/ sin!x; .A/

where p and q are polynomials of degree � k, then

.D2 C !2/´ D p1.x/ cos!x C q1.x/ sin!x;

where p1 and q1 are polynomials of degree � k � 1.

(b) Apply (a) m times to show that if ´ is of the form (A) where p and q are polynomial of

degree � m � 1, then

.D2 C !2/m´ D 0: .B/

(c) Use Eqn. (9.2.17) to show that if y D e�x´ then

Œ.D � �/2 C !2�my D e�x.D2 C !2/m´:

(d) Conclude from (b) and (c) that if p and q are arbitrary polynomials of degree � m� 1 then

y D e�x.p.x/ cos!x C q.x/ sin!x/

is a solution of
Œ.D � �/2 C !2�my D 0: .C/

(e) Conclude from (d) that the functions

e�x cos!x; xe�x cos!x; : : : ; xm�1e�x cos!x;

e�x sin!x; xe�x sin!x; : : : ; xm�1e�x sin!x
.D/

are all solutions of (C).

(f) Complete the proof of Theorem 9.2.2 by showing that the functions in (D) are linearly inde-

pendent.

42. (a) Use the trigonometric identities

cos.AC B/ D cosA cosB � sinA sinB

sin.AC B/ D cosA sinB C sinA cosB

to show that

.cosAC i sinA/.cosB C i sinB/ D cos.AC B/C i sin.AC B/:

(b) Apply (a) repeatedly to show that if n is a positive integer then

n
Y

kD1

.cosAk C i sinAk/ D cos.A1 C A2 C � � � C An/C i sin.A1 C A2 C � � � C An/:

(c) Infer from (b) that if n is a positive integer then

.cos � C i sin �/n D cosn� C i sin n�: .A/

(d) Show that (A) also holds if n D 0 or a negative integer. HINT: Verify by direct calculation

that

.cos � C i sin �/�1 D .cos � � i sin �/:

Then replace � by �� in (A).
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(e) Now suppose n is a positive integer. Infer from (A) that if

´k D cos

�

2k�

n

�

C i sin

�

2k�

n

�

; k D 0; 1; : : : ; n� 1;

and

�k D cos

�

.2k C 1/�

n

�

C i sin

�

.2k C 1/�

n

�

; k D 0; 1; : : : ; n� 1;

then
´n

k D 1 and �n
k D �1; k D 0; 1; : : : ; n� 1:

(Why don’t we also consider other integer values for k?)

(f) Let � be a positive number. Use (e) to show that

´n � � D .´ � �1=n´0/.´ � �1=n´1/ � � � .´ � �1=n´n�1/

and

´n C � D .´ � �1=n�0/.´ � �1=n�1/ � � � .´ � �1=n�n�1/:

43. Use (e) of Exercise 42 to find a fundamental set of solutions of the given equation.

(a) y000 � y D 0 (b) y000 C y D 0

(c) y.4/ C 64y D 0 (d) y.6/ � y D 0

(e) y.6/ C 64y D 0 (f)
�

.D � 1/6 � 1
�

y D 0

(g) y.5/ C y.4/ C y000 C y00 C y0 C y D 0

44. An equation of the form

a0x
ny.n/ C a1x

n�1y.n�1/ C � � � C an�1xy
0 C any D 0; x > 0; .A/

where a0, a1, . . . , an are constants, is an Euler or equidimensional equation.

Show that if

x D et and Y.t/ D y.x.t//; .B/

then

x
dy

dx
D dY

dt

x2 d
2y

dx2
D d 2Y

dt2
� dY

dt

x3 d
3y

dx3
D d 3Y

dt3
� 3d

2Y

dt2
C 2

dY

dt
:

In general, it can be shown that if r is any integer � 2 then

xr d
ry

dxr
D d rY

dtr
C A1r

d r�1Y

dtr�1
C � � � C Ar�1;r

dY

dt

where A1r , . . . , Ar�1;r are integers. Use these results to show that the substitution (B) transforms

(A) into a constant coefficient equation for Y as a function of t .
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45. Use Exercise 44 to show that a function y D y.x/ satisfies the equation

a0x
3y000 C a1x

2y00 C a2xy
0 C a3y D 0; .A/

on .0;1/ if and only if the function Y.t/ D y.et / satisfies

a0

d 3Y

dt3
C .a1 � 3a0/

d 2Y

dt2
C .a2 � a1 C 2a0/

dY

dt
C a3Y D 0:

Assuming that a0, a1, a2, a3 are real and a0 ¤ 0, find the possible forms for the general solution

of (A).

9.3 UNDETERMINED COEFFICIENTS FOR HIGHER ORDER EQUATIONS

In this section we consider the constant coefficient equation

a0y
.n/ C a1y

.n�1/ C � � � C any D F.x/; (9.3.1)

where n � 3 and F is a linear combination of functions of the form

e˛x
�

p0 C p1x C � � � C pkx
k
�

or

e�x
h�

p0 C p1x C � � � C pkx
k
�

cos!x C
�

q0 C q1x C � � � C qkx
k
�

sin!x
i

:

From Theorem 9.1.5, the general solution of (9.3.1) is y D yp C yc , where yp is a particular solution

of (9.3.1) and yc is the general solution of the complementary equation

a0y
.n/ C a1y

.n�1/ C � � � C any D 0:

In Section 9.2 we learned how to find yc . Here we will learn how to find yp when the forcing function

has the form stated above. The procedure that we use is a generalization of the method that we used in
Sections 5.4 and 5.5, and is again called method of undetermined coefficients. Since the underlying ideas

are the same as those in Sections 5.4 and 5.5, we’ll give an informal presentation based on examples.

Forcing Functions of the Form e˛x
�

p0 C p1x C � � � C pkx
k
�

We first consider equations of the form

a0y
.n/ C a1y

.n�1/ C � � � C any D e˛x
�

p0 C p1x C � � � C pkx
k
�

:

Example 9.3.1 Find a particular solution of

y000 C 3y00 C 2y0 � y D ex.21 C 24x C 28x2 C 5x3/: (9.3.2)

Solution Substituting

y D uex;

y0 D ex.u0 C u/;

y00 D ex.u00 C 2u0 C u/;

y000 D ex.u000 C 3u00 C 3u0 C u/
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into (9.3.2) and canceling ex yields

.u000 C 3u00 C 3u0 C u/C 3.u00 C 2u0 C u/C 2.u0 C u/ � u D 21C 24x C 28x2 C 5x3;

or
u000 C 6u00 C 11u0 C 5u D 21C 24x C 28x2 C 5x3: (9.3.3)

Since the unknown u appears on the left, we can see that (9.3.3) has a particular solution of the form

up D ACBx C Cx2 CDx3:

Then

u0
p D B C 2Cx C 3Dx2

u00
p D 2C C 6Dx

u000
p D 6D:

Substituting from the last four equations into the left side of (9.3.3) yields

u000
p C 6u00

p C 11u0
p C 5up D 6D C 6.2C C 6Dx/C 11.B C 2Cx C 3Dx2/

C5.AC Bx CCx2 CDx3/

D .5AC 11B C 12C C 6D/C .5B C 22C C 36D/x

C.5C C 33D/x2 C 5Dx3:

Comparing coefficients of like powers of x on the right sides of this equation and (9.3.3) shows that up

satisfies (9.3.3) if
5D D 5

5C C 33D D 28

5B C 22C C 36D D 24

5AC 11B C 12C C 6D D 21:

Solving these equations successively yieldsD D 1, C D �1, B D 2, A D 1. Therefore

up D 1C 2x � x2 C x3

is a particular solution of (9.3.3), so

yp D exup D ex.1C 2x � x2 C x3/

is a particular solution of (9.3.2) (Figure 9.3.1).

Example 9.3.2 Find a particular solution of

y.4/ � y000 � 6y00 C 4y0 C 8y D e2x.4 C 19x C 6x2/: (9.3.4)

Solution Substituting

y D ue2x;

y0 D e2x.u0 C 2u/;

y00 D e2x.u00 C 4u0 C 4u/;

y000 D e2x.u000 C 6u00 C 12u0 C 8u/;

y.4/ D e2x.u.4/ C 8u000 C 24u00 C 32u0 C 16u/
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Figure 9.3.1 yp D ex.1C 2x � x2 C x3/

into (9.3.4) and canceling e2x yields

.u.4/ C 8u000 C 24u00 C 32u0 C 16u/� .u000 C 6u00 C 12u0 C 8u/

�6.u00 C 4u0 C 4u/C 4.u0 C 2u/C 8u D 4C 19x C 6x2;

or

u.4/ C 7u000 C 12u00 D 4C 19x C 6x2: (9.3.5)

Since neither u nor u0 appear on the left, we can see that (9.3.5) has a particular solution of the form

up D Ax2 C Bx3 C Cx4: (9.3.6)

Then

u0
p D 2Ax C 3Bx2 C 4Cx3

u00
p D 2AC 6Bx C 12Cx2

u000
p D 6B C 24Cx

u.4/
p D 24C:

Substitutingu00
p , u000

p , and u
.4/
p into the left side of (9.3.5) yields

u.4/
p C 7u000

p C 12u00
p D 24C C 7.6B C 24Cx/C 12.2AC 6Bx C 12Cx2/

D .24AC 42B C 24C/C .72B C 168C/x C 144Cx2:
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Figure 9.3.2 yp D x2e2x

24
.�4 C 4x C x2/

Comparing coefficients of like powers of x on the right sides of this equation and (9.3.5) shows that up

satisfies (9.3.5) if
144C D 6

72B C 168C D 19

24AC 42B C 24C D 4:

Solving these equations successively yields C D 1=24, B D 1=6, A D �1=6. Substituting these into
(9.3.6) shows that

up D x2

24
.�4 C 4x C x2/

is a particular solution of (9.3.5), so

yp D e2xup D x2e2x

24
.�4 C 4x C x2/

is a particular solution of (9.3.4). (Figure 9.3.2).

Forcing Functions of the Form e�x .P.x/ cos!x CQ.x/ sin!x/

We now consider equations of the form

a0y
.n/ C a1y

.n�1/ C � � � C any D e�x .P.x/ cos!x CQ.x/ sin!x/ ;

where P and Q are polynomials.

Example 9.3.3 Find a particular solution of

y000 C y00 � 4y0 � 4y D exŒ.5 � 5x/ cos x C .2C 5x/ sin x�: (9.3.7)
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Solution Substituting

y D uex;

y0 D ex.u0 C u/;

y00 D ex.u00 C 2u0 C u/;

y000 D ex.u000 C 3u00 C 3u0 C u/

into (9.3.7) and canceling ex yields

.u000 C 3u00 C 3u0 C u/C .u00 C 2u0 C u/ � 4.u0 C u/ � 4u D .5 � 5x/ cos x C .2 C 5x/ sinx;

or

u000 C 4u00 C u0 � 6u D .5 � 5x/ cos x C .2 C 5x/ sinx: (9.3.8)

Since cos x and sinx are not solutions of the complementary equation

u000 C 4u00 C u0 � 6u D 0;

a theorem analogous to Theorem 5.5.1 implies that (9.3.8) has a particular solution of the form

up D .A0 C A1x/ cos x C .B0 CB1x/ sin x: (9.3.9)

Then

u0
p D .A1 C B0 C B1x/ cos x C .B1 �A0 � A1x/ sinx;

u00
p D .2B1 �A0 � A1x/ cos x � .2A1 C B0 C B1x/ sinx;

u000
p D �.3A1 C B0 C B1x/ cos x � .3B1 �A0 � A1x/ sinx;

so
u000

p C 4u00
p C u0

p � 6up D � Œ10A0 C 2A1 � 8B1 C 10A1x� cos x

� Œ10B0 C 2B1 C 8A1 C 10B1x� sinx:

Comparing the coefficients of x cos x, x sin x, cos x, and sin x here with the corresponding coefficients
in (9.3.8) shows that up is a solution of (9.3.8) if

�10A1 D �5
�10B1 D 5

�10A0 � 2A1 C 8B1 D 5

�10B0 � 2B1 � 8A1 D 2:

Solving the first two equations yields A1 D 1=2, B1 D �1=2. Substituting these into the last two

equations yields

�10A0 D 5C 2A1 � 8B1 D 10

�10B0 D 2C 2B1 C 8A1 D 5;

so A0 D �1, B0 D �1=2. Substituting A0 D �1, A1 D 1=2, B0 D �1=2, B1 D �1=2 into (9.3.9)
shows that

up D �1
2
Œ.2 � x/ cos x C .1C x/ sin x�

is a particular solution of (9.3.8), so

yp D exup D �e
x

2
Œ.2 � x/ cos x C .1C x/ sin x�

is a particular solution of (9.3.7) (Figure 9.3.3).
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Figure 9.3.3 yp D exup D �e
x

2
Œ.2 � x/ cos x C .1C x/ sin x�

Example 9.3.4 Find a particular solution of

y000 C 4y00 C 6y0 C 4y D e�x Œ.1 � 6x/ cos x � .3C 2x/ sinx� : (9.3.10)

Solution Substituting

y D ue�x;

y0 D e�x.u0 � u/;
y00 D e�x.u00 � 2u0 C u/;

y000 D e�x.u000 � 3u00 C 3u0 � u/

into (9.3.10) and canceling e�x yields

.u000 � 3u00 C 3u0 � u/C 4.u00 � 2u0 C u/C 6.u0 � u/C 4u D .1 � 6x/ cos x � .3C 2x/ sinx;

or

u000 C u00 C u0 C u D .1 � 6x/ cos x � .3 C 2x/ sinx: (9.3.11)

Since cos x and sinx are solutions of the complementary equation

u000 C u00 C u0 C u D 0;

a theorem analogous to Theorem 5.5.1 implies that (9.3.11) has a particular solution of the form

up D .A0x CA1x
2/ cos x C .B0x C B1x

2/ sin x: (9.3.12)
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Then

u0
p D ŒA0 C .2A1 C B0/x C B1x

2� cos x C ŒB0 C .2B1 �A0/x �A1x
2� sinx;

u00
p D Œ2A1 C 2B0 � .A0 � 4B1/x �A1x

2� cos x

CŒ2B1 � 2A0 � .B0 C 4A1/x � B1x
2� sinx;

u000
p D �Œ3A0 � 6B1 C .6A1 C B0/x C B1x

2� cos x

�Œ3B0 C 6A1 C .6B1 �A0/x � A1x
2� sinx;

so
u000

p C u00
p C u0

p C up D �Œ2A0 � 2B0 � 2A1 � 6B1 C .4A1 � 4B1/x� cos x

�Œ2B0 C 2A0 � 2B1 C 6A1 C .4B1 C 4A1/x� sinx:

Comparing the coefficients of x cos x, x sin x, cos x, and sin x here with the corresponding coefficients

in (9.3.11) shows that up is a solution of (9.3.11) if

�4A1 C 4B1 D �6
�4A1 � 4B1 D �2

�2A0 C 2B0 C 2A1 C 6B1 D 1

�2A0 � 2B0 � 6A1 C 2B1 D �3:

Solving the first two equations yieldsA1 D 1, B1 D �1=2. Substituting these into the last two equations

yields

�2A0 C 2B0 D 1 � 2A1 � 6B1 D 2

�2A0 � 2B0 D �3C 6A1 � 2B1 D 4;

1 2 3 4 5 6 7 8 9

0.1

0.2

−0.1

−0.2

−0.3

−0.4

−0.5

 x

 y

Figure 9.3.4 yp D �xe
�x

2
Œ.3 � 2x/ cos x C .1C x/ sinx�
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so A0 D �3=2 and B0 D �1=2. Substituting A0 D �3=2, A1 D 1, B0 D �1=2, B1 D �1=2 into

(9.3.12) shows that

up D �x
2
Œ.3 � 2x/ cos x C .1 C x/ sinx�

is a particular solution of (9.3.11), so

yp D e�xup D �xe
�x

2
Œ.3 � 2x/ cos x C .1C x/ sin x�

(Figure 9.3.4) is a particular solution of (9.3.10).

9.3 Exercises

In Exercises 1–59 find a particular solution.

1. y000 � 6y00 C 11y0 � 6y D �e�x.4 C 76x � 24x2/

2. y000 � 2y00 � 5y0 C 6y D e�3x.32 � 23x C 6x2/

3. 4y000 C 8y00 � y0 � 2y D �ex.4C 45x C 9x2/

4. y000 C 3y00 � y0 � 3y D e�2x.2 � 17x C 3x2/

5. y000 C 3y00 � y0 � 3y D ex.�1 C 2x C 24x2 C 16x3/

6. y000 C y00 � 2y D ex.14C 34x C 15x2/

7. 4y000 C 8y00 � y0 � 2y D �e�2x.1 � 15x/

8. y000 � y00 � y0 C y D ex.7C 6x/

9. 2y000 � 7y00 C 4y0 C 4y D e2x.17C 30x/

10. y000 � 5y00 C 3y0 C 9y D 2e3x.11 � 24x2/

11. y000 � 7y00 C 8y0 C 16y D 2e4x.13 C 15x/

12. 8y000 � 12y00 C 6y0 � y D ex=2.1C 4x/

13. y.4/ C 3y000 � 3y00 � 7y0 C 6y D �e�x.12 C 8x � 8x2/

14. y.4/ C 3y000 C y00 � 3y0 � 2y D �3e2x.11C 12x/

15. y.4/ C 8y000 C 24y00 C 32y0 D �16e�2x.1 C x C x2 � x3/

16. 4y.4/ � 11y00 � 9y0 � 2y D �ex.1 � 6x/
17. y.4/ � 2y000 C 3y0 � y D ex.3C 4x C x2/

18. y.4/ � 4y000 C 6y00 � 4y0 C 2y D e2x.24C x C x4/

19. 2y.4/ C 5y000 � 5y0 � 2y D 18ex.5 C 2x/

20. y.4/ C y000 � 2y00 � 6y0 � 4y D �e2x.4C 28x C 15x2/

21. 2y.4/ C y000 � 2y0 � y D 3e�x=2.1 � 6x/
22. y.4/ � 5y00 C 4y D ex.3C x � 3x2/

23. y.4/ � 2y000 � 3y00 C 4y0 C 4y D e2x.13C 33x C 18x2/

24. y.4/ � 3y000 C 4y0 D e2x.15C 26x C 12x2/

25. y.4/ � 2y000 C 2y0 � y D ex.1 C x/

26. 2y.4/ � 5y000 C 3y00 C y0 � y D ex.11C 12x/
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27. y.4/ C 3y000 C 3y00 C y0 D e�x.5 � 24x C 10x2/

28. y.4/ � 7y000 C 18y00 � 20y0 C 8y D e2x.3 � 8x � 5x2/

29. y000 � y00 � 4y0 C 4y D e�x Œ.16C 10x/ cos x C .30 � 10x/ sin x�

30. y000 C y00 � 4y0 � 4y D e�x Œ.1 � 22x/ cos 2x � .1C 6x/ sin 2x�

31. y000 � y00 C 2y0 � 2y D e2xŒ.27C 5x � x2/ cos x C .2C 13x C 9x2/ sin x�

32. y000 � 2y00 C y0 � 2y D �ex Œ.9 � 5x C 4x2/ cos 2x � .6 � 5x � 3x2/ sin 2x�

33. y000 C 3y00 C 4y0 C 12y D 8 cos 2x � 16 sin 2x

34. y000 � y00 C 2y D exŒ.20C 4x/ cos x � .12C 12x/ sinx�

35. y000 � 7y00 C 20y0 � 24y D �e2xŒ.13 � 8x/ cos 2x � .8 � 4x/ sin 2x�

36. y000 � 6y00 C 18y0 D �e3x Œ.2 � 3x/ cos 3x � .3 C 3x/ sin 3x�

37. y.4/ C 2y000 � 2y00 � 8y0 � 8y D ex.8 cos x C 16 sinx/

38. y.4/ � 3y000 C 2y00 C 2y0 � 4y D ex.2 cos 2x � sin 2x/

39. y.4/ � 8y000 C 24y00 � 32y0 C 15y D e2x.15x cos 2x C 32 sin2x/

40. y.4/ C 6y000 C 13y00 C 12y0 C 4y D e�xŒ.4 � x/ cos x � .5C x/ sin x�

41. y.4/ C 3y000 C 2y00 � 2y0 � 4y D �e�x.cos x � sinx/

42. y.4/ � 5y000 C 13y00 � 19y0 C 10y D ex.cos 2x C sin 2x/

43. y.4/ C 8y000 C 32y00 C 64y0 C 39y D e�2xŒ.4 � 15x/ cos 3x � .4C 15x/ sin 3x�

44. y.4/ � 5y000 C 13y00 � 19y0 C 10y D exŒ.7C 8x/ cos 2x C .8 � 4x/ sin 2x�

45. y.4/ C 4y000 C 8y00 C 8y0 C 4y D �2e�x.cos x � 2 sinx/

46. y.4/ � 8y000 C 32y00 � 64y0 C 64y D e2x.cos 2x � sin 2x/

47. y.4/ � 8y000 C 26y00 � 40y0 C 25y D e2xŒ3 cos x � .1 C 3x/ sinx�

48. y000 � 4y00 C 5y0 � 2y D e2x � 4ex � 2 cos x C 4 sinx

49. y000 � y00 C y0 � y D 5e2x C 2ex � 4 cos x C 4 sinx

50. y000 � y0 D �2.1C x/C 4ex � 6e�x C 96e3x

51. y000 � 4y00 C 9y0 � 10y D 10e2x C 20ex sin 2x � 10
52. y000 C 3y00 C 3y0 C y D 12e�x C 9 cos 2x � 13 sin 2x

53. y000 C y00 � y0 � y D 4e�x.1 � 6x/ � 2x cos x C 2.1C x/ sinx

54. y.4/ � 5y00 C 4y D �12ex C 6e�x C 10 cos x

55. y.4/ � 4y000 C 11y00 � 14y0 C 10y D �ex.sin x C 2 cos2x/

56. y.4/ C 2y000 � 3y00 � 4y0 C 4y D 2ex.1 C x/C e�2x

57. y.4/ C 4y D sinhx cos x � cosh x sinx

58. y.4/ C 5y000 C 9y00 C 7y0 C 2y D e�x.30C 24x/� e�2x

59. y.4/ � 4y000 C 7y00 � 6y0 C 2y D ex.12x � 2 cos x C 2 sinx/

In Exercises 60–68 find the general solution.

60. y000 � y00 � y0 C y D e2x.10C 3x/

61. y000 C y00 � 2y D �e3x.9C 67x C 17x2/
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62. y000 � 6y00 C 11y0 � 6y D e2x.5 � 4x � 3x2/

63. y000 C 2y00 C y0 D �2e�x.7 � 18x C 6x2/

64. y000 � 3y00 C 3y0 � y D ex.1 C x/

65. y.4/ � 2y00 C y D �e�x.4 � 9x C 3x2/

66. y000 C 2y00 � y0 � 2y D e�2x Œ.23 � 2x/ cos x C .8 � 9x/ sinx�

67. y.4/ � 3y000 C 4y00 � 2y0 D ex Œ.28C 6x/ cos 2x C .11 � 12x/ sin 2x�

68. y.4/ � 4y000 C 14y00 � 20y0 C 25y D ex Œ.2 C 6x/ cos 2x C 3 sin 2x�

In Exercises 69–74 solve the initial value problem and graph the solution.

69. C/G y000 � 2y00 � 5y0 C 6y D 2ex.1 � 6x/; y.0/ D 2; y0.0/ D 7; y00.0/ D 9

70. C/G y000 � y00 � y0 C y D �e�x.4 � 8x/; y.0/ D 2; y0.0/ D 0; y00.0/ D 0

71. C/G 4y000 � 3y0 � y D e�x=2.2 � 3x/; y.0/ D �1; y0.0/ D 15; y00.0/ D �17

72. C/G y.4/ C 2y000 C 2y00 C 2y0 C y D e�x.20 � 12x/; y.0/ D 3; y0.0/ D �4; y00.0/ D
7; y000.0/ D �22

73. C/G y000 C 2y00 C y0 C 2y D 30 cos x � 10 sinx; y.0/ D 3; y0.0/ D �4; y00.0/ D 16

74. C/G y.4/ � 3y000 C 5y00 � 2y0 D �2ex.cos x � sinx/; y.0/ D 2; y0.0/ D 0; y00.0/ D � 1;
y000.0/ D �5

75. Prove: A function y is a solution of the constant coefficient nonhomogeneous equation

a0y
.n/ C a1y

.n�1/ C � � � C any D e˛xG.x/ .A/

if and only if y D ue˛x , where u satisfies the differential equation

a0u
.n/ C p.n�1/.˛/

.n � 1/Š u
.n�1/ C p.n�2/.˛/

.n � 2/Š u
.n�2/ C � � � C p.˛/u D G.x/ .B/

and

p.r/ D a0r
n C a1r

n�1 C � � � C an

is the characteristic polynomial of the complementary equation

a0y
.n/ C a1y

.n�1/ C � � � C any D 0:

76. Prove:

(a) The equation

a0u
.n/ C p.n�1/.˛/

.n � 1/Š u
.n�1/ C p.n�2/.˛/

.n � 2/Š u
.n�2/ C � � � C p.˛/u

D
�

p0 C p1x C � � � C pkx
k
�

cos!x

C
�

q0 C q1x C � � � C qkx
k
�

sin!x

.A/

has a particular solution of the form

up D xm
�

u0 C u1x C � � � C ukx
k
�

cos!x C
�

v0 C v1x C � � � C vkx
k
�

sin!x:
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(b) If �C i! is a zero of p with multiplicitym � 1, then (A) can be written as

a.u00 C !2u/ D
�

p0 C p1x C � � � C pkx
k
�

cos!x C
�

q0 C q1x C � � � C qkx
k
�

sin!x;

which has a particular solution of the form

up D U.x/ cos!x C V.x/ sin!x;

where

U.x/ D u0x C u1x
2 C � � � C ukx

kC1; V .x/ D v0x C v1x
2 C � � � C vkx

kC1

and
a.U 00.x/C 2!V 0.x// D p0 C p1x C � � � C pkx

k

a.V 00.x/ � 2!U 0.x// D q0 C q1x C � � � C qkx
k:

9.4 VARIATION OF PARAMETERS FOR HIGHER ORDER EQUATIONS

Derivation of the method

We assume throughout this section that the nonhomogeneous linear equation

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D F.x/ (9.4.1)

is normal on an interval .a; b/. We’ll abbreviate this equation as Ly D F , where

Ly D P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y:

When we speak of solutions of this equation and its complementary equation Ly D 0, we mean solutions

on .a; b/. We’ll show how to use the method of variation of parameters to find a particular solution of

Ly D F , provided that we know a fundamental set of solutions fy1; y2; : : : ; yng of Ly D 0.

We seek a particular solution of Ly D F in the form

yp D u1y1 C u2y2 C � � � C unyn (9.4.2)

where fy1; y2; : : : ; yng is a known fundamental set of solutions of the complementary equation

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D 0

and u1, u2, . . . , un are functions to be determined. We begin by imposing the following n� 1 conditions

on u1; u2; : : : ; un:
u0

1y1 C u0
2y2C � � � Cu0

nyn D 0

u0
1y

0
1 C u0

2y
0
2C � � � Cu0

ny
0
n D 0

:::

u0
1y

.n�2/
1 C u0

2y
.n�2/
2 C � � � Cu0

ny
.n�2/
n D 0:

(9.4.3)

These conditions lead to simple formulas for the first n � 1 derivatives of yp :

y.r/
p D u1y

.r/
1 C u2y

.r/
2 � � � C uny

.r/
n ; 0 � r � n � 1: (9.4.4)
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These formulas are easy to remember, since they look as though we obtained them by differentiating

(9.4.2) n� 1 times while treating u1, u2, . . . , un as constants. To see that (9.4.3) implies (9.4.4), we first

differentiate (9.4.2) to obtain

y0
p D u1y

0
1 C u2y

0
2 C � � � C uny

0
n C u0

1y1 C u0
2y2 C � � � C u0

nyn;

which reduces to

y0
p D u1y

0
1 C u2y

0
2 C � � � C uny

0
n

because of the first equation in (9.4.3). Differentiating this yields

y00
p D u1y

00
1 C u2y

00
2 C � � � C uny

00
n C u0

1y
0
1 C u0

2y
0
2 C � � � C u0

ny
0
n;

which reduces to

y00
p D u1y

00
1 C u2y

00
2 C � � � C uny

00
n

because of the second equation in (9.4.3). Continuing in this way yields (9.4.4).

The last equation in (9.4.4) is

y.n�1/
p D u1y

.n�1/
1 C u2y

.n�1/
2 C � � � C uny

.n�1/
n :

Differentiating this yields

y.n/
p D u1y

.n/
1 C u2y

.n/
2 C � � � C uny

.n/
n C u0

1y
.n�1/
1 C u0

2y
.n�1/
2 C � � � C u0

ny
.n�1/
n :

Substituting this and (9.4.4) into (9.4.1) yields

u1Ly1 C u2Ly2 C � � � C unLyn C P0.x/
�

u0
1y

.n�1/
1 C u0

2y
.n�1/
2 C � � � C u0

ny
.n�1/
n

�

D F.x/:

Since Lyi D 0 .1 � i � n/, this reduces to

u0
1y

.n�1/
1 C u0

2y
.n�1/
2 C � � � C u0

ny
.n�1/
n D F.x/

P0.x/
:

Combining this equation with (9.4.3) shows that

yp D u1y1 C u2y2 C � � � C unyn

is a solution of (9.4.1) if

u0
1y1 C u0

2y2C � � � Cu0
nyn D 0

u0
1y

0
1 C u0

2y
0
2C � � � Cu0

ny
0
n D 0

:::

u0
1y

.n�2/
1 C u0

2y
.n�2/
2 C � � � Cu0

ny
.n�2/
n D 0

u0
1y

.n�1/
1 C u0

2y
.n�1/
2 C � � � Cu0

ny
.n�1/
n D F=P0;

which can be written in matrix form as
2

6

6

6

6

6

6

6

6

6

4

y1 y2 � � � yn

y0
1 y0

2 � � � y0
n

:::
:::

: : :
:::

y
.n�2/
1 y

.n�2/
2 � � � y

.n�2/
n

y
.n�1/
1 y

.n�1/
2 � � � y

.n�1/
n

3

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

4

u0
1

u0
2
:::

u0
n�1

u0
n

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

0

0
:::

0

F=P0

3

7

7

7

7

7

5

: (9.4.5)
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The determinant of this system is the Wronskian W of the fundamental set of solutions fy1; y2; : : : ; yng,

which has no zeros on .a; b/, by Theorem 9.1.4. Solving (9.4.5) by Cramer’s rule yields

u0
j D .�1/n�j FWj

P0W
; 1 � j � n; (9.4.6)

where Wj is the Wronskian of the set of functions obtained by deleting yj from fy1; y2; : : : ; yng and

keeping the remaining functions in the same order. Equivalently, Wj is the determinant obtained by
deleting the last row and j -th column of W .

Having obtained u0
1, u0

2; : : : ;u
0
n, we can integrate to obtain u1; u2; : : : ; un. As in Section 5.7, we take

the constants of integration to be zero, and we drop any linear combination of fy1; y2; : : : ; yng that may

appear in yp .

REMARK: For efficiency, it’s best to compute W1, W2, . . . , Wn first, and then compute W by expanding
in cofactors of the last row; thus,

W D
n
X

j D1

.�1/n�j y
.n�1/
j Wj :

Third Order Equations

If n D 3, then

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2 y3

y0
1 y0

2 y0
3

y00
1 y00

2 y00
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Therefore

W1 D
ˇ

ˇ

ˇ

ˇ

ˇ

y2 y3

y0
2 y0

3

ˇ

ˇ

ˇ

ˇ

ˇ

; W2 D
ˇ

ˇ

ˇ

ˇ

ˇ

y1 y3

y0
1 y0

3

ˇ

ˇ

ˇ

ˇ

ˇ

; W3 D
ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2

y0
1 y0

2

ˇ

ˇ

ˇ

ˇ

ˇ

;

and (9.4.6) becomes

u0
1 D FW1

P0W
; u0

2 D �FW2

P0W
; u0

3 D FW3

P0W
: (9.4.7)

Example 9.4.1 Find a particular solution of

xy000 � y00 � xy0 C y D 8x2ex; (9.4.8)

given that y1 D x, y2 D ex, and y3 D e�x form a fundamental set of solutions of the complementary

equation. Then find the general solution of (9.4.8).

Solution We seek a particular solution of (9.4.8) of the form

yp D u1x C u2e
x C u3e

�x:

The Wronskian of fy1; y2; y3g is

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x ex e�x

1 ex �e�x

0 ex e�x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;
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so

W1 D
ˇ

ˇ

ˇ

ˇ

ex e�x

ex �e�x

ˇ

ˇ

ˇ

ˇ

D �2;

W2 D
ˇ

ˇ

ˇ

ˇ

x e�x

1 �e�x

ˇ

ˇ

ˇ

ˇ

D �e�x.x C 1/;

W3 D
ˇ

ˇ

ˇ

ˇ

x ex

1 ex

ˇ

ˇ

ˇ

ˇ

D ex.x � 1/:

Expanding W by cofactors of the last row yields

W D 0W1 � exW2 C e�xW3 D 0.�2/ � ex .�e�x.x C 1//C e�xex.x � 1/ D 2x:

Since F.x/ D 8x2ex and P0.x/ D x,

F

P0W
D 8x2ex

x � 2x D 4ex:

Therefore, from (9.4.7)

u0
1 D 4exW1 D 4ex.�2/ D �8ex;

u0
2 D �4exW2 D �4ex .�e�x.x C 1// D 4.x C 1/;

u0
3 D 4exW3 D 4ex .ex.x � 1// D 4e2x.x � 1/:

Integrating and taking the constants of integration to be zero yields

u1 D �8ex; u2 D 2.x C 1/2; u3 D e2x.2x � 3/:

Hence,

yp D u1y1 C u2y2 C u3y3

D .�8ex/x C ex.2.x C 1/2/C e�x
�

e2x.2x � 3/
�

D ex.2x2 � 2x � 1/:

Since �ex is a solution of the complementary equation, we redefine

yp D 2xex.x � 1/:

Therefore the general solution of (9.4.8) is

y D 2xex.x � 1/C c1x C c2e
x C c3e

�x:

Fourth Order Equations

If n D 4, then

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2 y3 y4

y0
1 y0

2 y0
3 y0

4

y00
1 y00

2 y00
3 y00

4

y000
1 y000

2 y000
3 y000

4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;
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Therefore

W1 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y2 y3 y4

y0
2 y0

3 y0
4

y00
2 y00

3 y00
4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; W2 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y3 y4

y0
1 y0

3 y0
4

y00
1 y00

3 y00
4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

W3 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2 y4

y0
1 y0

2 y0
4

y00
1 y00

2 y00
4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; W4 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2 y3

y0
1 y0

2 y0
3

y00
1 y00

2 y00
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

and (9.4.6) becomes

u0
1 D �FW1

P0W
; u0

2 D FW2

P0W
; u0

3 D �FW3

P0W
; u0

4 D FW4

P0W
: (9.4.9)

Example 9.4.2 Find a particular solution of

x4y.4/ C 6x3y000 C 2x2y00 � 4xy0 C 4y D 12x2; (9.4.10)

given that y1 D x, y2 D x2, y3 D 1=x and y4 D 1=x2 form a fundamental set of solutions of the

complementary equation. Then find the general solution of (9.4.10) on .�1; 0/ and .0;1/.

Solution We seek a particular solution of (9.4.10) of the form

yp D u1x C u2x
2 C u3

x
C u4

x2
:

The Wronskian of fy1; y2; y3; y4g is

W.x/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x x2 1=x �1=x2

1 2x �1=x2 �2=x3

0 2 2=x3 6=x4

0 0 �6=x4 �24=x5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

so

W1 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x2 1=x 1=x2

2x �1=x2 �2=x3

2 2=x3 6=x4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �12
x4
;

W2 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x 1=x 1=x2

1 �1=x2 �2=x3

0 2=x3 6=x4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D � 6

x5
;

W3 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x x2 1=x2

1 2x �2=x3

0 2 6=x4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 12

x2
;

W4 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x x2 1=x

1 2x �1=x2

0 2 2=x3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 6

x
:
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Expanding W by cofactors of the last row yields

W D �0W1 C 0W2 �
�

� 6

x4

�

W3 C
�

�24
x5

�

W4

D 6

x4

12

x2
� 24

x5

6

x
D �72

x6
:

Since F.x/ D 12x2 and P0.x/ D x4,

F

P0W
D 12x2

x4

�

�x
6

72

�

D �x
4

6
:

Therefore, from (9.4.9),

u0
1 D �

�

�x
4

6

�

W1 D x4

6

�

�12
x4

�

D �2;

u0
2 D � x4

6
W2 D �x

4

6

�

� 6

x5

�

D 1

x
;

u0
3 D �

�

�x
4

6

�

W3 D x4

6

12

x2
D 2x2;

u0
4 D � x4

6
W4 D �x

4

6

6

x
D �x3:

Integrating these and taking the constants of integration to be zero yields

u1 D �2x; u2 D ln jxj; u3 D 2x3

3
; u4 D �x

4

4
:

Hence,

yp D u1y1 C u2y2 C u3y3 C u4y4

D .�2x/x C .ln jxj/x2 C 2x3

3

1

x
C
�

�x
4

4

�

1

x2

D x2 ln jxj � 19x2

12
:

Since �19x2=12 is a solution of the complementary equation, we redefine

yp D x2 ln jxj:

Therefore

y D x2 ln jxj C c1x C c2x
2 C c3

x
C c4

x2

is the general solution of (9.4.10) on .�1; 0/ and .0;1/.

9.4 Exercises

In Exercises 1–21 find a particular solution, given the fundamental set of solutions of the complementary

equation.

1. x3y000 � x2.x C 3/y00 C 2x.x C 3/y0 � 2.x C 3/y D �4x4; fx; x2; xexg



504 Chapter 9 Linear Higher Order Equations

2. y000 C 6xy00 C .6 C 12x2/y0 C .12x C 8x3/y D x1=2e�x2
; fe�x2

; xe�x2
; x2e�x2g

3. x3y000 � 3x2y00 C 6xy0 � 6y D 2x; fx; x2; x3g
4. x2y000 C 2xy00 � .x2 C 2/y0 D 2x2; f1; ex=x; e�x=xg
5. x3y000 � 3x2.x C 1/y00 C 3x.x2 C 2x C 2/y0 � .x3 C 3x2 C 6x C 6/y D x4e�3x;

fxex; x2ex; x3exg
6. x.x2 � 2/y000 C .x2 � 6/y00 C x.2 � x2/y0 C .6 � x2/y D 2.x2 � 2/2; fex; e�x ; 1=xg
7. xy000 � .x � 3/y00 � .x C 2/y0 C .x � 1/y D �4e�x; fex; ex=x; e�x=xg
8. 4x3y000 C 4x2y00 � 5xy0 C 2y D 30x2; fpx; 1=px; x2g
9. x.x2 � 1/y000 C .5x2 C 1/y00 C 2xy0 � 2y D 12x2; fx; 1=.x � 1/; 1=.x C 1/g

10. x.1 � x/y000 C .x2 � 3x C 3/y00 C xy0 � y D 2.x � 1/2; fx; 1=x; ex=xg
11. x3y000 C x2y00 � 2xy0 C 2y D x2; fx; x2; 1=xg
12. xy000 � y00 � xy0 C y D x2; fx; ex; e�xg
13. xy.4/ C 4y000 D 6 ln jxj; f1; x; x2; 1=xg
14. 16x4y.4/ C 96x3y000 C 72x2y00 � 24xy0 C 9y D 96x5=2; f

p
x; 1=

p
x; x3=2; x�3=2g

15. x.x2 � 6/y.4/ C 2.x2 � 12/y000 C x.6 � x2/y00 C 2.12 � x2/y0 D 2.x2 � 6/2;

f1; 1=x; ex; e�xg
16. x4y.4/ � 4x3y000 C 12x2y00 � 24xy0 C 24y D x4; fx; x2; x3; x4g
17. x4y.4/ � 4x3y000 C 2x2.6 � x2/y00 C 4x.x2 � 6/y0 C .x4 � 4x2 C 24/y D 4x5ex;

fxex; x2ex; xe�x; x2e�xg
18. x4y.4/ C 6x3y000 C 2x2y00 � 4xy0 C 4y D 12x2; fx; x2; 1=x; 1=x2g
19. xy.4/ C 4y000 � 2xy00 � 4y0 C xy D 4ex; fex; e�x; ex=x; e�x=xg
20. xy.4/C.4�6x/y000C.13x�18/y00C.26�12x/y0C.4x�12/y D 3ex; fex; e2x; ex=x; e2x=xg
21. x4y.4/ � 4x3y000 C x2.12� x2/y00 C 2x.x2 � 12/y0 C 2.12� x2/y D 2x5; fx; x2; xex; xe�xg

In Exercises 22–33 solve the initial value problem, given the fundamental set of solutions of the comple-

mentary equation. Where indicated by C/G , graph the solution.

22. C/G x3y000�2x2y00C3xy0�3y D 4x; y.1/ D 4; y0.1/ D 4; y00.1/ D 2; fx; x3; x lnxg
23. x3y000 �5x2y00 C14xy0 �18y D x3; y.1/ D 0; y0.1/ D 1; y00.1/ D 7; fx2; x3; x3 lnxg
24. .5 � 6x/y000 C .12x � 4/y00 C .6x � 23/y0 C .22 � 12x/y D �.6x � 5/2ex

y.0/ D �4; y0.0/ D �3
2
; y00.0/ D �19; fex; e2x; xe�xg

25. x3y000 � 6x2y00 C 16xy0 � 16y D 9x4; y.1/ D 2; y0.1/ D 1; y00.1/ D 5;

fx; x4; x4 ln jxjg
26. C/G .x2 � 2x C 2/y000 � x2y00 C 2xy0 � 2y D .x2 � 2x C 2/2; y.0/ D 0; y0.0/ D 5,

y00.0/ D 0; fx; x2; exg

27. x3y000 C x2y00 � 2xy0 C 2y D x.x C 1/; y.�1/ D �6; y0.�1/ D 43

6
; y00.�1/ D �5

2
;

fx; x2; 1=xg
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28. .3x � 1/y000 � .12x � 1/y00 C 9.x C 1/y0 � 9y D 2ex.3x � 1/2; y.0/ D 3

4
,

y0.0/ D 5

4
; y00.0/ D 1

4
; fx C 1; ex; e3xg

29. C/G .x2 � 2/y000 � 2xy00 C .2 � x2/y0 C 2xy D 2.x2 � 2/2; y.0/ D 1; y0.0/ D �5,

y00.0/ D 5; fx2; ex; e�xg
30. C/G x4y.4/C3x3y000�x2y00C2xy0�2y D 9x2; y.1/ D �7; y0.1/ D �11; y00.1/ D �5,

y000.1/ D 6I fx; x2; 1=x; x lnxg

31. .2x � 1/y.4/ � 4xy000 C .5 � 2x/y00 C 4xy0 � 4y D 6.2x � 1/2; y.0/ D 55

4
; y0.0/ D 0,

y00.0/ D 13; y000.0/ D 1; fx; ex; e�x; e2xg
32. 4x4y.4/C24x3y000C23x2y00�xy0Cy D 6x, y.1/ D 2; y0.1/ D 0; y00.1/ D 4; y000.1/ D

�37
4

; fx;px; 1=x; 1=pxg

33. x4y.4/ C 5x3y000 � 3x2y00 � 6xy0 C 6y D 40x3; y.�1/ D �1; y0.�1/ D �7,

y00.�1/ D �1; y000.�1/ D �31; fx; x3; 1=x; 1=x2g
34. Suppose the equation

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D F.x/ .A/

is normal on an interval .a; b/. Let fy1; y2; : : : ; yng be a fundamental set of solutions of its com-

plementary equation on .a; b/, let W be the Wronskian of fy1; y2; : : : ; yng, and let Wj be the

determinant obtained by deleting the last row and the j -th column of W . Suppose x0 is in .a; b/,

let

uj .x/ D .�1/.n�j /

Z x

x0

F.t/Wj .t/

P0.t/W.t/
dt; 1 � j � n;

and define
yp D u1y1 C u2y2 C � � � C unyn:

(a) Show that yp is a solution of (A) and that

y.r/
p D u1y

.r/
1 C u2y

.r/
2 � � � C uny

.r/
n ; 1 � r � n� 1;

and

y.n/
p D u1y

.n/
1 C u2y

.n/
2 C � � � C uny

.n/
n C F

P0

:

HINT: See the derivation of the method of variation of parameters at the beginning of the

section.

(b) Show that yp is the solution of the initial value problem

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D F.x/;

y.x0/ D 0; y0.x0/ D 0; : : : ; y.n�1/.x0/ D 0:

(c) Show that yp can be written as

yp.x/ D
Z x

x0

G.x; t/F.t/ dt;
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where

G.x; t/ D 1

P0.t/W.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1.t/ y2.t/ � � � yn.t/

y0
1.t/ y0

2.t/ � � � y0
n.t/

:::
:::

: : :
:::

y
.n�2/
1 .t/ y

.n�2/
2 .t/ � � � y

.n�2/
n .t/

y1.x/ y2.x/ � � � yn.x/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

;

which is called the Green’s function for (A).

(d) Show that

@jG.x; t/

@xj
D 1

P0.t/W.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1.t/ y2.t/ � � � yn.t/

y0
1.t/ y0

2.t/ � � � y0
n.t/

:::
:::

: : :
:::

y
.n�2/
1 .t/ y

.n�2/
2 .t/ � � � y

.n�2/
n .t/

y
.j /
1 .x/ y

.j /
2 .x/ � � � y

.j /
n .x/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

; 0 � j � n:

(e) Show that if a < t < b then

@jG.x; t/

@xj

ˇ

ˇ

ˇ

ˇ

xDt

D

8

ˆ

<

ˆ

:

0; 1 � j � n � 2;
1

P0.t/
; j D n� 1:

(f) Show that

y.j /
p .x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Z x

x0

@jG.x; t/

@xj
F.t/ dt ; 1 � j � n � 1;

F.x/

P0.x/
C
Z x

x0

@.n/G.x; t/

@xn
F.t/ dt ; j D n:

In Exercises 35–42 use the method suggested by Exercise 34 to find a particular solution in the form

yp D
R x

x0
G.x; t/F.t/ dt , given the indicated fundamental set of solutions. Assume that x and x0 are in

an interval on which the equation is normal.

35. y000 C 2y0 � y0 � 2y D F.x/I fex; e�x ; e�2xg
36. x3y000 C x2y00 � 2xy0 C 2y D F.x/I fx; x2; 1=xg
37. x3y000 � x2.x C 3/y00 C 2x.x C 3/y0 � 2.x C 3/y D F.x/I fx; x2; xexg
38. x.1 � x/y000 C .x2 � 3x C 3/y00 C xy0 � y D F.x/I fx; 1=x; ex=xg
39. y.4/ � 5y00 C 4y D F.x/I fex; e�x; e2x; e�2xg
40. xy.4/ C 4y000 D F.x/I f1; x; x2; 1=xg
41. x4y.4/ C 6x3y000 C 2x2y00 � 4xy0 C 4y D F.x/; fx; x2; 1=x; 1=x2g
42. xy.4/ � y000 � 4xy0 C 4y0 D F.x/I f1; x2; e2x; e�2xg

http://www-history.mcs.st-and.ac.uk/Mathematicians/Green.html


CHAPTER 10

Linear Systems of Differential
Equations

IN THIS CHAPTER we consider systems of differential equations involving more than one unknown

function. Such systems arise in many physical applications.

SECTION 10.1 presents examples of physical situations that lead to systems of differential equations.

SECTION 10.2 discusses linear systems of differential equations.

SECTION 10.3 deals with the basic theory of homogeneous linear systems.

SECTIONS 10.4, 10.5, AND 10.6 present the theory of constant coefficient homogeneous systems.

SECTION 10.7 presents the method of variation of parameters for nonhomogeneous linear systems.
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10.1 INTRODUCTION TO SYSTEMS OF DIFFERENTIAL EQUATIONS

Many physical situations are modelled by systems of n differential equations in n unknown functions,
where n � 2. The next three examples illustrate physical problems that lead to systems of differential

equations. In these examples and throughout this chapter we’ll denote the independent variable by t .

Example 10.1.1 Tanks T1 and T2 contain 100 gallons and 300 gallons of salt solutions, respectively. Salt

solutions are simultaneously added to both tanks from external sources, pumped from each tank to the

other, and drained from both tanks (Figure 10.1.1). A solution with 1 pound of salt per gallon is pumped

into T1 from an external source at 5 gal/min, and a solution with 2 pounds of salt per gallon is pumped

into T2 from an external source at 4 gal/min. The solution from T1 is pumped into T2 at 2 gal/min, and the

solution from T2 is pumped into T1 at 3 gal/min. T1 is drained at 6 gal/min and T2 is drained at 3 gal/min.
Let Q1.t/ and Q2.t/ be the number of pounds of salt in T1 and T2, respectively, at time t > 0. Derive a

system of differential equations for Q1 and Q2. Assume that both mixtures are well stirred.

6 gal/min 3 gal/min

2 gal/min

3 gal/min

 T
1

 T
2

5 gal/min; 1 lb/gal 4 gal/min; 2 lb/gal

300 gal

100 gal

Figure 10.1.1

Solution As in Section 4.2, let rate in and rate out denote the rates (lb/min) at which salt enters and

leaves a tank; thus,

Q0
1 D .rate in/1 � .rate out/1;

Q0
2 D .rate in/2 � .rate out/2:

Note that the volumes of the solutions in T1 and T2 remain constant at 100 gallons and 300 gallons,

respectively.
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T1 receives salt from the external source at the rate of

(1 lb/gal) � (5 gal/min) D 5 lb/min;

and from T2 at the rate of

(lb/gal in T2/ � (3 gal/min) D 1

300
Q2 � 3 D 1

100
Q2 lb/min:

Therefore

(rate in)1 D 5C 1

100
Q2: (10.1.1)

Solution leaves T1 at the rate of 8 gal/min, since 6 gal/min are drained and 2 gal/min are pumped to T2;

hence,

.rate out/1 D . lb/gal in T1/ � (8 gal/min) D 1

100
Q1 � 8 D 2

25
Q1: (10.1.2)

Eqns. (10.1.1) and (10.1.2) imply that

Q0
1 D 5C 1

100
Q2 � 2

25
Q1: (10.1.3)

T2 receives salt from the external source at the rate of

(2 lb/gal) � (4 gal/min) D 8 lb/min;

and from T1 at the rate of

(lb/gal in T1/ � (2 gal/min) D 1

100
Q1 � 2 D 1

50
Q1 lb/min:

Therefore

(rate in)2 D 8C 1

50
Q1: (10.1.4)

Solution leaves T2 at the rate of 6 gal/min, since 3 gal/min are drained and 3 gal/min are pumped to T1;

hence,

.rate out/2 D . lb/gal in T2/ � (6 gal/min) D 1

300
Q2 � 6 D 1

50
Q2: (10.1.5)

Eqns. (10.1.4) and (10.1.5) imply that

Q0
2 D 8C 1

50
Q1 � 1

50
Q2: (10.1.6)

We say that (10.1.3) and (10.1.6) form a system of two first order equations in two unknowns, and write

them together as

Q0
1 D 5 � 2

25
Q1 C 1

100
Q2

Q0
2 D 8C 1

50
Q1 � 1

50
Q2:

Example 10.1.2 A mass m1 is suspended from a rigid support on a spring S1 and a second mass m2

is suspended from the first on a spring S2 (Figure 10.1.2). The springs obey Hooke’s law, with spring

constants k1 and k2. Internal friction causes the springs to exert damping forces proportional to the rates

of change of their lengths, with damping constants c1 and c2. Let y1 D y1.t/ and y2 D y2.t/ be the

displacements of the two masses from their equilibrium positions at time t , measured positive upward.

Derive a system of differential equations for y1 and y2, assuming that the masses of the springs are
negligible and that vertical external forces F1 and F2 also act on the objects.
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Mass  m
1

Mass  m
2

 y
1

 y
2

Spring  S
1

Spring  S
2

Figure 10.1.2

Solution In equilibrium, S1 supports both m1 and m2 and S2 supports only m2. Therefore, if �`1 and

�`2 are the elongations of the springs in equilibrium then

.m1 Cm2/g D k1�`1 and m2g D k2�`2: (10.1.7)

Let H1 be the Hooke’s law force acting on m1, and let D1 be the damping force on m1. Similarly, let

H2 and D2 be the Hooke’s law and damping forces acting on m2. According to Newton’s second law of

motion,
m1y

00
1 D �m1g CH1 CD1 C F1;

m2y
00
2 D �m2g CH2 CD2 C F2:

(10.1.8)

When the displacements are y1 and y2, the change in length of S1 is �y1 C�`1 and the change in length
of S2 is �y2 C y1 C�`2. Both springs exert Hooke’s law forces on m1, while only S2 exerts a Hooke’s

law force on m2. These forces are in directions that tend to restore the springs to their natural lengths.

Therefore

H1 D k1.�y1 C�`1/ � k2.�y2 C y1 C�`2/ and H2 D k2.�y2 C y1 C�`2/: (10.1.9)

When the velocities are y0
1 and y0

2, S1 and S2 are changing length at the rates �y0
1 and �y0

2 C y0
1,

respectively. Both springs exert damping forces on m1, while only S2 exerts a damping force on m2.
Since the force due to damping exerted by a spring is proportional to the rate of change of length of the

spring and in a direction that opposes the change, it follows that

D1 D �c1y
0
1 C c2.y

0
2 � y0

1/ and D2 D �c2.y
0
2 � y0

1/: (10.1.10)
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From (10.1.8), (10.1.9), and (10.1.10),

m1y
00
1 D �m1g C k1.�y1 C�`1/ � k2.�y2 C y1 C�`2/

�c1y
0
1 C c2.y

0
2 � y0

1/C F1

D �.m1g � k1�`1 C k2�`2/ � k1y1 C k2.y2 � y1/

�c1y
0
1 C c2.y

0
2 � y0

1/C F1

(10.1.11)

and
m2y

00
2 D �m2g C k2.�y2 C y1 C�`2/� c2.y

0
2 � y0

1/C F2

D �.m2g � k2�`2/ � k2.y2 � y1/� c2.y
0
2 � y0

1/C F2:
(10.1.12)

From (10.1.7),

m1g � k1�`1 C k2�`2 D �m2g C k2�`2 D 0:

Therefore we can rewrite (10.1.11) and (10.1.12) as

m1y
00
1 D �.c1 C c2/y

0
1 C c2y

0
2 � .k1 C k2/y1 C k2y2 C F1

m2y
00
2 D c2y

0
1 � c2y

0
2 C k2y1 � k2y2 C F2:

Example 10.1.3 Let X D X.t/ D x.t/ i C y.t/ j C ´.t/k be the position vector at time t of an object
with mass m, relative to a rectangular coordinate system with origin at Earth’s center (Figure 10.1.3).

According to Newton’s law of gravitation, Earth’s gravitational force F D F.x; y; ´/ on the object is

inversely proportional to the square of the distance of the object from Earth’s center, and directed toward

the center; thus,

F D K

kXk2

�

� X

kXk

�

D �K x i C y j C ´k

.x2 C y2 C ´2/
3=2
; (10.1.13)

where K is a constant. To determine K, we observe that the magnitude of F is

kFk D K
kXk
kXk3

D K

kXk2
D K

.x2 C y2 C ´2/
:

Let R be Earth’s radius. Since kFk D mg when the object is at Earth’s surface,

mg D K

R2
; so K D mgR2:

Therefore we can rewrite (10.1.13) as

F D �mgR2 x i C y j C ´k

.x2 C y2 C ´2/
3=2
:

Now suppose F is the only force acting on the object. According to Newton’s second law of motion,

F D mX00; that is,

m.x00 i C y00 j C ´00 k/ D �mgR2 x i C y j C ´k

.x2 C y2 C ´2/
3=2
:

Cancelling the common factor m and equating components on the two sides of this equation yields the

system

x00 D � gR2x

.x2 C y2 C ´2/3=2

y00 D � gR2y

.x2 C y2 C ´2/3=2

´00 D � gR2´

.x2 C y2 C ´2/3=2
:

(10.1.14)
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 x

 y

 z

 X(t)

Figure 10.1.3

Rewriting Higher Order Systems as First Order Systems

A system of the form
y0

1 D g1.t; y1; y2; : : : ; yn/

y0
2 D g2.t; y1; y2; : : : ; yn/

:::

y0
n D gn.t; y1; y2; : : : ; yn/

(10.1.15)

is called a first order system, since the only derivatives occurring in it are first derivatives. The derivative

of each of the unknowns may depend upon the independent variable and all the unknowns, but not on
the derivatives of other unknowns. When we wish to emphasize the number of unknown functions in

(10.1.15) we will say that (10.1.15) is an n � n system.

Systems involving higher order derivatives can often be reformulated as first order systems by intro-

ducing additional unknowns. The next two examples illustrate this.

Example 10.1.4 Rewrite the system

m1y
00
1 D �.c1 C c2/y

0
1 C c2y

0
2 � .k1 C k2/y1 C k2y2 C F1

m2y
00
2 D c2y

0
1 � c2y

0
2 C k2y1 � k2y2 C F2:

(10.1.16)

derived in Example 10.1.2 as a system of first order equations.

Solution If we define v1 D y0
1 and v2 D y0

2, then v0
1 D y00

1 and v0
2 D y00

2 , so (10.1.16) becomes

m1v
0
1 D �.c1 C c2/v1 C c2v2 � .k1 C k2/y1 C k2y2 C F1

m2v
0
2 D c2v1 � c2v2 C k2y1 � k2y2 C F2:
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Therefore fy1; y2; v1; v2g satisfies the 4 � 4 first order system

y0
1 D v1

y0
2 D v2

v0
1 D 1

m1

Œ�.c1 C c2/v1 C c2v2 � .k1 C k2/y1 C k2y2 C F1�

v0
2 D 1

m2

Œc2v1 � c2v2 C k2y1 � k2y2 C F2� :

(10.1.17)

REMARK: The difference in form between (10.1.15) and (10.1.17), due to the way in which the unknowns

are denoted in the two systems, isn’t important; (10.1.17) is a first order system, in that each equation in

(10.1.17) expresses the first derivative of one of the unknown functions in a way that does not involve

derivatives of any of the other unknowns.

Example 10.1.5 Rewrite the system

x00 D f .t; x; x0; y; y0; y00/

y000 D g.t; x; x0; y; y0y00/

as a first order system.

Solution We regard x, x0, y, y0, and y00 as unknown functions, and rename them

x D x1; x
0 D x2; y D y1; y0 D y2; y00 D y3:

These unknowns satisfy the system

x0
1 D x2

x0
2 D f .t; x1; x2; y1; y2; y3/

y0
1 D y2

y0
2 D y3

y0
3 D g.t; x1; x2; y1; y2; y3/:

Rewriting Scalar Differential Equations as Systems

In this chapter we’ll refer to differential equations involving only one unknown function as scalar differ-

ential equations. Scalar differential equations can be rewritten as systems of first order equations by the
method illustrated in the next two examples.

Example 10.1.6 Rewrite the equation

y.4/ C 4y000 C 6y00 C 4y0 C y D 0 (10.1.18)

as a 4 � 4 first order system.

Solution We regard y, y0 , y00, and y000 as unknowns and rename them

y D y1; y0 D y2; y00 D y3; and y000 D y4:

Then y.4/ D y0
4, so (10.1.18) can be written as

y0
4 C 4y4 C 6y3 C 4y2 C y1 D 0:
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Therefore fy1; y2; y3; y4g satisfies the system

y0
1 D y2

y0
2 D y3

y0
3 D y4

y0
4 D �4y4 � 6y3 � 4y2 � y1:

Example 10.1.7 Rewrite

x000 D f .t; x; x0; x00/

as a system of first order equations.

Solution We regard x, x0, and x00 as unknowns and rename them

x D y1; x0 D y2; and x00 D y3:

Then

y0
1 D x0 D y2; y0

2 D x00 D y3; and y0
3 D x000:

Therefore fy1; y2; y3g satisfies the first order system

y0
1 D y2

y0
2 D y3

y0
3 D f .t; y1; y2; y3/:

Since systems of differential equations involving higher derivatives can be rewritten as first order sys-

tems by the method used in Examples 10.1.5 –10.1.7 , we’ll consider only first order systems.

Numerical Solution of Systems

The numerical methods that we studied in Chapter 3 can be extended to systems, and most differential

equation software packages include programs to solve systems of equations. We won’t go into detail on

numerical methods for systems; however, for illustrative purposes we’ll describe the Runge-Kutta method
for the numerical solution of the initial value problem

y0
1 D g1.t; y1; y2/; y1.t0/ D y10;

y0
2 D g2.t; y1; y2/; y2.t0/ D y20

at equally spaced points t0, t1, . . . , tn D b in an interval Œt0; b�. Thus,

ti D t0 C ih; i D 0; 1; : : : ; n;

where

h D b � t0
n

:

We’ll denote the approximate values of y1 and y2 at these points by y10; y11; : : : ; y1n and y20; y21; : : : ; y2n.
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The Runge-Kutta method computes these approximate values as follows: given y1i and y2i , compute

I1i D g1.ti ; y1i ; y2i /;

J1i D g2.ti ; y1i ; y2i /;

I2i D g1

�

ti C h

2
; y1i C h

2
I1i ; y2i C h

2
J1i

�

;

J2i D g2

�

ti C h

2
; y1i C h

2
I1i ; y2i C h

2
J1i

�

;

I3i D g1

�

ti C h

2
; y1i C h

2
I2i ; y2i C h

2
J2i

�

;

J3i D g2

�

ti C h

2
; y1i C h

2
I2i ; y2i C h

2
J2i

�

;

I4i D g1.ti C h; y1i C hI3i ; y2i C hJ3i /;

J4i D g2.ti C h; y1i C hI3i ; y2i C hJ3i /;

and

y1;iC1 D y1i C h

6
.I1i C 2I2i C 2I3i C I4i /;

y2;iC1 D y2i C h

6
.J1i C 2J2i C 2J3i C J4i/

for i D 0, . . . , n�1. Under appropriate conditions on g1 and g2, it can be shown that the global truncation

error for the Runge-Kutta method is O.h4/, as in the scalar case considered in Section 3.3.

10.1 Exercises

1. Tanks T1 and T2 contain 50 gallons and 100 gallons of salt solutions, respectively. A solution with

2 pounds of salt per gallon is pumped into T1 from an external source at 1 gal/min, and a solution

with 3 pounds of salt per gallon is pumped into T2 from an external source at 2 gal/min. The

solution from T1 is pumped into T2 at 3 gal/min, and the solution from T2 is pumped into T1 at

4 gal/min. T1 is drained at 2 gal/min and T2 is drained at 1 gal/min. Let Q1.t/ and Q2.t/ be the
number of pounds of salt in T1 and T2, respectively, at time t > 0. Derive a system of differential

equations for Q1 and Q2. Assume that both mixtures are well stirred.

2. Two 500 gallon tanks T1 and T2 initially contain 100 gallons each of salt solution. A solution

with 2 pounds of salt per gallon is pumped into T1 from an external source at 6 gal/min, and a

solution with 1 pound of salt per gallon is pumped into T2 from an external source at 5 gal/min.
The solution from T1 is pumped into T2 at 2 gal/min, and the solution from T2 is pumped into T1

at 1 gal/min. Both tanks are drained at 3 gal/min. Let Q1.t/ and Q2.t/ be the number of pounds

of salt in T1 and T2, respectively, at time t > 0. Derive a system of differential equations for Q1

and Q2 that’s valid until a tank is about to overflow. Assume that both mixtures are well stirred.

3. A mass m1 is suspended from a rigid support on a spring S1 with spring constant k1 and damping
constant c1. A second mass m2 is suspended from the first on a spring S2 with spring constant k2

and damping constant c2, and a third mass m3 is suspended from the second on a spring S3 with

spring constant k3 and damping constant c3. Let y1 D y1.t/, y2 D y2.t/, and y3 D y3.t/ be the

displacements of the three masses from their equilibrium positions at time t , measured positive

upward. Derive a system of differential equations for y1, y2 and y3, assuming that the masses of
the springs are negligible and that vertical external forces F1, F2, and F3 also act on the masses.
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4. Let X D x i C y j C ´k be the position vector of an object with mass m, expressed in terms

of a rectangular coordinate system with origin at Earth’s center (Figure 10.1.3). Derive a system

of differential equations for x, y, and ´, assuming that the object moves under Earth’s gravita-

tional force (given by Newton’s law of gravitation, as in Example 10.1.3 ) and a resistive force

proportional to the speed of the object. Let ˛ be the constant of proportionality.

5. Rewrite the given system as a first order system.

.a/
x000 D f .t; x; y; y0/

y00 D g.t; y; y0/
(b)

u0 D f .t; u; v; v0; w0/

v00 D g.t; u; v; v0; w/

w00 D h.t; u; v; v0; w; w0/

(c) y000 D f .t; y; y0; y00/ (d) y.4/ D f .t; y/

(e)
x00 D f .t; x; y/

y00 D g.t; x; y/

6. Rewrite the system (10.1.14) of differential equations derived in Example 10.1.3 as a first order

system.

7. Formulate a version of Euler’s method (Section 3.1) for the numerical solution of the initial value

problem
y0

1 D g1.t; y1; y2/; y1.t0/ D y10;

y0
2 D g2.t; y1; y2/; y2.t0/ D y20;

on an interval Œt0; b�.

8. Formulate a version of the improved Euler method (Section 3.2) for the numerical solution of the

initial value problem
y0

1 D g1.t; y1; y2/; y1.t0/ D y10;

y0
2 D g2.t; y1; y2/; y2.t0/ D y20;

on an interval Œt0; b�.

10.2 LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

A first order system of differential equations that can be written in the form

y0
1 D a11.t/y1 C a12.t/y2 C � � � C a1n.t/yn C f1.t/

y0
2 D a21.t/y1 C a22.t/y2 C � � � C a2n.t/yn C f2.t/

:::

y0
n D an1.t/y1 C an2.t/y2 C � � � C ann.t/yn C fn.t/

(10.2.1)

is called a linear system.

The linear system (10.2.1) can be written in matrix form as

2

6

6

6

4

y0
1

y0
2
:::

y0
n

3

7

7

7

5

D

2

6

6

6

4

a11.t/ a12.t/ � � � a1n.t/

a21.t/ a22.t/ � � � a2n.t/
:::

:::
: : :

:::

an1.t/ an2.t/ � � � ann.t/

3

7

7

7

5

2

6

6

6

4

y1

y2

:::

yn

3

7

7

7

5

C

2

6

6

6

4

f1.t/

f2.t/
:::

fn.t/

3

7

7

7

5

;
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or more briefly as

y0 D A.t/y C f.t/; (10.2.2)

where

y D

2

6

6

6

4

y1

y2

:::

yn

3

7

7

7

5

; A.t/ D

2

6

6

6

4

a11.t/ a12.t/ � � � a1n.t/

a21.t/ a22.t/ � � � a2n.t/
:::

:::
: : :

:::

an1.t/ an2.t/ � � � ann.t/

3

7

7

7

5

; and f.t/ D

2

6

6

6

4

f1.t/

f2.t/
:::

fn.t/

3

7

7

7

5

:

We call A the coefficient matrix of (10.2.2) and f the forcing function. We’ll say that A and f are con-

tinuous if their entries are continuous. If f D 0, then (10.2.2) is homogeneous; otherwise, (10.2.2) is

nonhomogeneous.

An initial value problem for (10.2.2) consists of finding a solution of (10.2.2) that equals a given
constant vector

k D

2

6

6

6

4

k1

k2

:::

kn

3

7

7

7

5

:

at some initial point t0. We write this initial value problem as

y0 D A.t/y C f.t/; y.t0/ D k:

The next theorem gives sufficient conditions for the existence of solutions of initial value problems for

(10.2.2). We omit the proof.

Theorem 10.2.1 Suppose the coefficient matrixA and the forcing function f are continuous on .a; b/, let

t0 be in .a; b/, and let k be an arbitrary constant n-vector. Then the initial value problem

y0 D A.t/y C f.t/; y.t0/ D k

has a unique solution on .a; b/.

Example 10.2.1

(a) Write the system
y0

1 D y1 C 2y2 C 2e4t

y0
2 D 2y1 C y2 C e4t

(10.2.3)

in matrix form and conclude from Theorem 10.2.1 that every initial value problem for (10.2.3) has

a unique solution on .�1;1/.

(b) Verify that

y D 1

5

�

8

7

�

e4t C c1

�

1

1

�

e3t C c2

�

1

�1

�

e�t (10.2.4)

is a solution of (10.2.3) for all values of the constants c1 and c2.

(c) Find the solution of the initial value problem

y0 D
�

1 2

2 1

�

y C
�

2

1

�

e4t ; y.0/ D 1

5

�

3

22

�

: (10.2.5)
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SOLUTION(a) The system (10.2.3) can be written in matrix form as

y0 D
�

1 2

2 1

�

y C
�

2

1

�

e4t :

An initial value problem for (10.2.3) can be written as

y0 D
�

1 2

2 1

�

y C
�

2

1

�

e4t ; y.t0/ D
�

k1

k2

�

:

Since the coefficient matrix and the forcing function are both continuous on .�1;1/, Theorem 10.2.1

implies that this problem has a unique solution on .�1;1/.

SOLUTION(b) If y is given by (10.2.4), then

Ay C f D 1

5

�

1 2

2 1

� �

8

7

�

e4t C c1

�

1 2

2 1

� �

1

1

�

e3t

Cc2

�

1 2

2 1

��

1

�1

�

e�t C
�

2

1

�

e4t

D 1

5

�

22

23

�

e4t C c1

�

3

3

�

e3t C c2

�

�1
1

�

e�t C
�

2

1

�

e4t

D 1

5

�

32

28

�

e4t C 3c1

�

1

1

�

e3t � c2

�

1

�1

�

e�t D y0:

SOLUTION(c) We must choose c1 and c2 in (10.2.4) so that

1

5

�

8

7

�

C c1

�

1

1

�

C c2

�

1

�1

�

D 1

5

�

3

22

�

;

which is equivalent to
�

1 1

1 �1

� �

c1

c2

�

D
�

�1
3

�

:

Solving this system yields c1 D 1, c2 D �2, so

y D 1

5

�

8

7

�

e4t C
�

1

1

�

e3t � 2

�

1

�1

�

e�t

is the solution of (10.2.5).

REMARK: The theory of n � n linear systems of differential equations is analogous to the theory of the

scalar n-th order equation

P0.t/y
.n/ C P1.t/y

.n�1/ C � � � C Pn.t/y D F.t/; (10.2.6)

as developed in Sections 9.1. For example, by rewriting (10.2.6) as an equivalent linear system it can be

shown that Theorem 10.2.1 implies Theorem 9.1.1 (Exercise 12).
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10.2 Exercises

1. Rewrite the system in matrix form and verify that the given vector function satisfies the system for
any choice of the constants c1 and c2.

(a)
y0

1 D 2y1 C 4y2

y0
2 D 4y1 C 2y2I y D c1

�

1

1

�

e6t C c2

�

1

�1

�

e�2t

(b)
y0

1 D �2y1 � 2y2

y0
2 D �5y1 C y2I y D c1

�

1

1

�

e�4t C c2

�

�2
5

�

e3t

(c)
y0

1 D �4y1 � 10y2

y0
2 D 3y1 C 7y2I y D c1

�

�5
3

�

e2t C c2

�

2

�1

�

et

(d)
y0

1 D 2y1 C y2

y0
2 D y1 C 2y2I y D c1

�

1

1

�

e3t C c2

�

1

�1

�

et

2. Rewrite the system in matrix form and verify that the given vector function satisfies the system for

any choice of the constants c1, c2, and c3.

(a)

y0
1 D �y1 C 2y2 C 3y3

y0
2 D y2 C 6y3

y0
3 D �2y3I

y D c1

2

4

1

1

0

3

5 et C c2

2

4

1

0

0

3

5 e�t C c3

2

4

1

�2
1

3

5 e�2t

(b)

y0
1 D 2y2 C 2y3

y0
2 D 2y1 C 2y3

y0
3 D 2y1 C 2y2I

y D c1

2

4

�1
0

1

3

5 e�2t C c2

2

4

0

�1
1

3

5 e�2t C c3

2

4

1

1

1

3

5 e4t

(c)

y0
1 D �y1 C 2y2 C 2y3

y0
2 D 2y1 � y2 C 2y3

y0
3 D 2y1 C 2y2 � y3I

y D c1

2

4

�1
0

1

3

5 e�3t C c2

2

4

0

�1
1

3

5 e�3t C c3

2

4

1

1

1

3

5 e3t

(d)

y0
1 D 3y1 � y2 � y3

y0
2 D �2y1 C 3y2 C 2y3

y0
3 D 4y1 � y2 � 2y3I

y D c1

2

4

1

0

1

3

5 e2t C c2

2

4

1

�1
1

3

5 e3t C c3

2

4

1

�3
7

3

5 e�t

3. Rewrite the initial value problem in matrix form and verify that the given vector function is a

solution.

(a)
y0

1 D y1 C y2

y0
2 D �2y1 C 4y2;

y1.0/ D 1

y2.0/ D 0I y D 2

�

1

1

�

e2t �
�

1

2

�

e3t

(b)
y0

1 D 5y1 C 3y2

y0
2 D �y1 C y2;

y1.0/ D 12

y2.0/ D �6I y D 3

�

1

�1

�

e2t C 3

�

3

�1

�

e4t
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4. Rewrite the initial value problem in matrix form and verify that the given vector function is a

solution.

(a)

y0
1 D 6y1 C 4y2 C 4y3

y0
2 D �7y1 � 2y2 � y3;

y0
3 D 7y1 C 4y2 C 3y3

;

y1.0/ D 3

y2.0/ D �6
y3.0/ D 4

y D

2

4

1

�1
1

3

5 e6t C 2

2

4

1

�2
1

3

5 e2t C

2

4

0

�1
1

3

5 e�t

(b)

y0
1 D 8y1 C 7y2 C 7y3

y0
2 D �5y1 � 6y2 � 9y3;

y0
3 D 5y1 C 7y2 C 10y3;

y1.0/ D 2

y2.0/ D �4
y3.0/ D 3

y D

2

4

1

�1
1

3

5 e8t C

2

4

0

�1
1

3

5 e3t C

2

4

1

�2
1

3

5 et

5. Rewrite the system in matrix form and verify that the given vector function satisfies the system for

any choice of the constants c1 and c2.

(a)
y0

1 D �3y1 C 2y2 C 3 � 2t

y0
2 D �5y1 C 3y2 C 6 � 3t

y D c1

�

2 cos t

3 cos t � sin t

�

C c2

�

2 sin t

3 sin t C cos t

�

C
�

1

t

�

(b)
y0

1 D 3y1 C y2 � 5et

y0
2 D �y1 C y2 C et

y D c1

�

�1
1

�

e2t C c2

�

1C t

�t

�

e2t C
�

1

3

�

et

(c)
y0

1 D �y1 � 4y2 C 4et C 8tet

y0
2 D �y1 � y2 C e3t C .4t C 2/et

y D c1

�

2

1

�

e�3t C c2

�

�2
1

�

et C
�

e3t

2tet

�

(d)
y0

1 D �6y1 � 3y2 C 14e2t C 12et

y0
2 D y1 � 2y2 C 7e2t � 12et

y D c1

�

�3
1

�

e�5t C c2

�

�1
1

�

e�3t C
�

e2t C 3et

2e2t � 3et

�

6. Convert the linear scalar equation

P0.t/y
.n/ C P1.t/y

.n�1/ C � � � C Pn.t/y.t/ D F.t/ .A/

into an equivalent n � n system
y0 D A.t/y C f.t/;

and show that A and f are continuous on an interval .a; b/ if and only if (A) is normal on .a; b/.

7. A matrix function

Q.t/ D

2

6

6

6

4

q11.t/ q12.t/ � � � q1s.t/

q21.t/ q22.t/ � � � q2s.t/
:::

:::
: : :

:::

qr1.t/ qr2.t/ � � � qrs.t/

3

7

7

7

5
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is said to be differentiable if its entries fqij g are differentiable. Then the derivative Q0 is defined

by

Q0.t/ D

2

6

6

6

4

q0
11.t/ q0

12.t/ � � � q0
1s.t/

q0
21.t/ q0

22.t/ � � � q0
2s.t/

:::
:::

: : :
:::

q0
r1.t/ q0

r2.t/ � � � q0
rs.t/

3

7

7

7

5

:

(a) Prove: If P and Q are differentiable matrices such that P C Q is defined and if c1 and c2

are constants, then

.c1P C c2Q/
0 D c1P

0 C c2Q
0:

(b) Prove: If P and Q are differentiable matrices such that PQ is defined, then

.PQ/0 D P 0QC PQ0:

8. Verify that Y 0 D AY .

(a) Y D
�

e6t e�2t

e6t �e�2t

�

; A D
�

2 4

4 2

�

(b) Y D
�

e�4t �2e3t

e�4t 5e3t

�

; A D
�

�2 �2
�5 1

�

(c) Y D
�

�5e2t 2et

3e2t �et

�

; A D
�

�4 �10
3 7

�

(d) Y D
�

e3t et

e3t �et

�

; A D
�

2 1

1 2

�

(e) Y D

2

4

et e�t e�2t

et 0 �2e�2t

0 0 e�2t

3

5 ; A D

2

4

�1 2 3

0 1 6

0 0 �2

3

5

(f) Y D

2

4

�e�2t �e�2t e4t

0 e�2t e4t

e�2t 0 e4t

3

5 ; A D

2

4

0 2 2

2 0 2

2 2 0

3

5

(g) Y D

2

4

e3t e�3t 0

e3t 0 �e�3t

e3t e�3t e�3t

3

5 ; A D

2

4

�9 6 6

�6 3 6

�6 6 3

3

5

(h) Y D

2

4

e2t e3t e�t

0 �e3t �3e�t

e2t e3t 7e�t

3

5 ; A D

2

4

3 �1 �1
�2 3 2

4 �1 �2

3

5

9. Suppose

y1 D
�

y11

y21

�

and y2 D
�

y12

y22

�

are solutions of the homogeneous system

y0 D A.t/y; .A/

and define

Y D
�

y11 y12

y21 y22

�

:

(a) Show that Y 0 D AY .

(b) Show that if c is a constant vector then y D Y c is a solution of (A).

(c) State generalizations of (a) and (b) for n � n systems.



522 Chapter 10 Linear Systems of Differential Equations

10. Suppose Y is a differentiable square matrix.

(a) Find a formula for the derivative of Y 2.

(b) Find a formula for the derivative of Y n, where n is any positive integer.

(c) State how the results obtained in (a) and (b) are analogous to results from calculus concerning
scalar functions.

11. It can be shown that if Y is a differentiable and invertible square matrix function, then Y �1 is
differentiable.

(a) Show that (Y �1/0 D �Y �1Y 0Y �1. (Hint: Differentiate the identity Y �1Y D I .)

(b) Find the derivative of Y �n D
�

Y �1
�n

, where n is a positive integer.

(c) State how the results obtained in (a) and (b) are analogous to results from calculus concerning
scalar functions.

12. Show that Theorem 10.2.1 implies Theorem 9.1.1. HINT: Write the scalar equation

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D F.x/

as an n � n system of linear equations.

13. Suppose y is a solution of the n � n system y0 D A.t/y on .a; b/, and that the n � n matrix P is

invertible and differentiable on .a; b/. Find a matrix B such that the function x D P y is a solution
of x0 D Bx on .a; b/.

10.3 BASIC THEORY OF HOMOGENEOUS LINEAR SYSTEMS

In this section we consider homogeneous linear systems y0 D A.t/y, where A D A.t/ is a continuous

n � n matrix function on an interval .a; b/. The theory of linear homogeneous systems has much in

common with the theory of linear homogeneous scalar equations, which we considered in Sections 2.1,
5.1, and 9.1.

Whenever we refer to solutions of y0 D A.t/y we’ll mean solutions on .a; b/. Since y � 0 is obviously

a solution of y0 D A.t/y, we call it the trivial solution. Any other solution is nontrivial.

If y1, y2, . . . , yn are vector functions defined on an interval .a; b/ and c1, c2, . . . , cn are constants, then

y D c1y1 C c2y2 C � � � C cnyn (10.3.1)

is a linear combination of y1, y2, . . . ,yn . It’s easy show that if y1, y2, . . . ,yn are solutions of y0 D A.t/y

on .a; b/, then so is any linear combination of y1, y2, . . . , yn (Exercise 1). We say that fy1; y2; : : : ; yng
is a fundamental set of solutions of y0 D A.t/y on .a; b/ on if every solution of y0 D A.t/y on .a; b/ can

be written as a linear combination of y1, y2, . . . , yn, as in (10.3.1). In this case we say that (10.3.1) is the

general solution of y0 D A.t/y on .a; b/.

It can be shown that if A is continuous on .a; b/ then y0 D A.t/y has infinitely many fundamental sets

of solutions on .a; b/ (Exercises 15 and 16). The next definition will help to characterize fundamental
sets of solutions of y0 D A.t/y.

We say that a set fy1; y2; : : : ; yng of n-vector functions is linearly independent on .a; b/ if the only

constants c1, c2, . . . , cn such that

c1y1.t/ C c2y2.t/C � � � C cnyn.t/ D 0; a < t < b; (10.3.2)

are c1 D c2 D � � � D cn D 0. If (10.3.2) holds for some set of constants c1, c2, . . . , cn that are not all

zero, then fy1; y2; : : : ; yng is linearly dependent on .a; b/
The next theorem is analogous to Theorems 5.1.3 and 9.1.2.
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Theorem 10.3.1 Suppose the n�n matrixA D A.t/ is continuous on .a; b/. Then a set fy1; y2; : : : ; yng
of n solutions of y0 D A.t/y on .a; b/ is a fundamental set if and only if it’s linearly independent on

.a; b/.

Example 10.3.1 Show that the vector functions

y1 D

2

4

et

0

e�t

3

5 ; y2 D

2

4

0

e3t

1

3

5 ; and y3 D

2

4

e2t

e3t

0

3

5

are linearly independent on every interval .a; b/.

Solution Suppose

c1

2

4

et

0

e�t

3

5C c2

2

4

0

e3t

1

3

5C c3

2

4

e2t

e3t

0

3

5 D

2

4

0

0

0

3

5 ; a < t < b:

We must show that c1 D c2 D c3 D 0. Rewriting this equation in matrix form yields
2

4

et 0 e2t

0 e3t e3t

e�t 1 0

3

5

2

4

c1

c2

c3

3

5 D

2

4

0

0

0

3

5 ; a < t < b:

Expanding the determinant of this system in cofactors of the entries of the first row yields
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

et 0 e2t

0 e3t e3t

e�t 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D et

ˇ

ˇ

ˇ

ˇ

e3t e3t

1 0

ˇ

ˇ

ˇ

ˇ

� 0
ˇ

ˇ

ˇ

ˇ

0 e3t

e�t 0

ˇ

ˇ

ˇ

ˇ

C e2t

ˇ

ˇ

ˇ

ˇ

0 e3t

e�t 1

ˇ

ˇ

ˇ

ˇ

D et.�e3t /C e2t .�e2t / D �2e4t :

Since this determinant is never zero, c1 D c2 D c3 D 0.

We can use the method in Example 10.3.1 to test n solutions fy1; y2; : : : ; yng of any n � n system
y0 D A.t/y for linear independence on an interval .a; b/ on which A is continuous. To explain this (and

for other purposes later), it’s useful to write a linear combination of y1, y2, . . . , yn in a different way. We

first write the vector functions in terms of their components as

y1 D

2

6

6

6

4

y11

y21

:::

yn1

3

7

7

7

5

; y2 D

2

6

6

6

4

y12

y22

:::

yn2

3

7

7

7

5

; : : : ; yn D

2

6

6

6

4

y1n

y2n

:::

ynn

3

7

7

7

5

:

If
y D c1y1 C c2y2 C � � � C cnyn

then

y D c1

2

6

6

6

4

y11

y21

:::

yn1

3

7

7

7

5

C c2

2

6

6

6

4

y12

y22

:::

yn2

3

7

7

7

5

C � � � C cn

2

6

6

6

4

y1n

y2n

:::

ynn

3

7

7

7

5

D

2

6

6

6

4

y11 y12 � � � y1n

y21 y22 � � � y2n

:::
:::

: : :
:::

yn1 yn2 � � � ynn

3

7

7

7

5

2

6

6

6

4

c1

c2

:::

cn

3

7

7

7

5

:
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This shows that

c1y1 C c2y2 C � � � C cnyn D Y c; (10.3.3)

where

c D

2

6

6

6

4

c1

c2

:::

cn

3

7

7

7

5

and

Y D Œy1 y2 � � � yn� D

2

6

6

6

4

y11 y12 � � � y1n

y21 y22 � � � y2n

:::
:::

: : :
:::

yn1 yn2 � � � ynn

3

7

7

7

5

I (10.3.4)

that is, the columns of Y are the vector functions y1; y2; : : : ; yn.
For reference below, note that

Y 0 D Œy0
1 y0

2 � � � y0
n�

D ŒAy1 Ay2 � � � Ayn�

D AŒy1 y2 � � � yn� D AY I

that is, Y satisfies the matrix differential equation

Y 0 D AY:

The determinant of Y ,

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y11 y12 � � � y1n

y21 y22 � � � y2n

:::
:::

: : :
:::

yn1 yn2 � � � ynn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(10.3.5)

is called the Wronskian of fy1; y2; : : : ; yng. It can be shown (Exercises 2 and 3) that this definition is

analogous to definitions of the Wronskian of scalar functions given in Sections 5.1 and 9.1. The next

theorem is analogous to Theorems 5.1.4 and 9.1.3. The proof is sketched in Exercise 4 for n D 2 and in

Exercise 5 for general n.

Theorem 10.3.2 ŒAbel’s Formula� Suppose the n�nmatrixA D A.t/ is continuous on .a; b/; let y1, y2,

. . . , yn be solutions of y0 D A.t/y on .a; b/; and let t0 be in .a; b/. Then the Wronskian of fy1; y2; : : : ; yng
is given by

W.t/ D W.t0/ exp

�Z t

t0

�

a11.s/C a22.s/C � � � C ann.s/� ds

�

; a < t < b: (10.3.6)

Therefore; eitherW has no zeros in .a; b/ orW � 0 on .a; b/:

REMARK: The sum of the diagonal entries of a square matrix A is called the trace of A, denoted by

tr.A/. Thus, for an n � n matrix A,

tr.A/ D a11 C a22 C � � � C ann;

http://www-history.mcs.st-and.ac.uk/Mathematicians/Wronski.html
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and (10.3.6) can be written as

W.t/ D W.t0/ exp

�Z t

t0

tr.A.s// ds

�

; a < t < b:

The next theorem is analogous to Theorems 5.1.6 and 9.1.4.

Theorem 10.3.3 Suppose the n � n matrix A D A.t/ is continuous on .a; b/ and let y1, y2, . . . ;yn be

solutions of y0 D A.t/y on .a; b/. Then the following statements are equivalent; that is, they are either

all true or all false:

(a) The general solution of y0 D A.t/y on .a; b/ is y D c1y1 C c2y2 C � � � C cnyn, where c1, c2, . . . , cn

are arbitrary constants.

(b) fy1; y2; : : : ; yng is a fundamental set of solutions of y0 D A.t/y on .a; b/.

(c) fy1; y2; : : : ; yng is linearly independent on .a; b/.

(d) The Wronskian of fy1; y2; : : : ; yng is nonzero at some point in .a; b/.

(e) The Wronskian of fy1; y2; : : : ; yng is nonzero at all points in .a; b/.

We say that Y in (10.3.4) is a fundamental matrix for y0 D A.t/y if any (and therefore all) of the

statements (a)-(e) of Theorem 10.3.2 are true for the columns of Y . In this case, (10.3.3) implies that the

general solution of y0 D A.t/y can be written as y D Y c, where c is an arbitrary constant n-vector.

Example 10.3.2 The vector functions

y1 D
�

�e2t

2e2t

�

and y2 D
�

�e�t

e�t

�

are solutions of the constant coefficient system

y0 D
�

�4 �3
6 5

�

y (10.3.7)

on .�1;1/. (Verify.)

(a) Compute the Wronskian of fy1; y2g directly from the definition (10.3.5)

(b) Verify Abel’s formula (10.3.6) for the Wronskian of fy1; y2g.

(c) Find the general solution of (10.3.7).

(d) Solve the initial value problem

y0 D
�

�4 �3
6 5

�

y; y.0/ D
�

4

�5

�

: (10.3.8)

SOLUTION(a) From (10.3.5)

W.t/ D
ˇ

ˇ

ˇ

ˇ

�e2t �e�t

2e2t e�t

ˇ

ˇ

ˇ

ˇ

D e2te�t

�

�1 �1
2 1

�

D et : (10.3.9)

SOLUTION(b) Here

A D
�

�4 �3
6 5

�

;
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so tr.A/ D �4C 5 D 1. If t0 is an arbitrary real number then (10.3.6) implies that

W.t/ D W.t0/ exp

�Z t

t0

1 ds

�

D
ˇ

ˇ

ˇ

ˇ

�e2t0 �e�t0

2e2t0 e�t0

ˇ

ˇ

ˇ

ˇ

e.t�t0/ D et0et�t0 D et ;

which is consistent with (10.3.9).

SOLUTION(c) Since W.t/ ¤ 0, Theorem 10.3.3 implies that fy1; y2g is a fundamental set of solutions
of (10.3.7) and

Y D
�

�e2t �e�t

2e2t e�t

�

is a fundamental matrix for (10.3.7). Therefore the general solution of (10.3.7) is

y D c1y1 C c2y2 D c1

�

�e2t

2e2t

�

C c2

�

�e�t

e�t

�

D
�

�e2t �e�t

2e2t e�t

� �

c1

c2

�

: (10.3.10)

SOLUTION(d) Setting t D 0 in (10.3.10) and imposing the initial condition in (10.3.8) yields

c1

�

�1
2

�

C c2

�

�1
1

�

D
�

4

�5

�

:

Thus,

�c1 � c2 D 4

2c1 C c2 D �5:

The solution of this system is c1 D �1, c2 D �3. Substituting these values into (10.3.10) yields

y D �
�

�e2t

2e2t

�

� 3
�

�e�t

e�t

�

D
�

e2t C 3e�t

�2e2t � 3e�t

�

as the solution of (10.3.8).

10.3 Exercises

1. Prove: If y1, y2, . . . , yn are solutions of y0 D A.t/y on .a; b/, then any linear combination of y1,

y2, . . . , yn is also a solution of y0 D A.t/y on .a; b/.

2. In Section 5.1 the Wronskian of two solutions y1 and y2 of the scalar second order equation

P0.x/y
00 C P1.x/y

0 C P2.x/y D 0 .A/

was defined to be

W D
ˇ

ˇ

ˇ

ˇ

y1 y2

y0
1 y0

2

ˇ

ˇ

ˇ

ˇ

:

(a) Rewrite (A) as a system of first order equations and show thatW is the Wronskian (as defined

in this section) of two solutions of this system.

(b) Apply Eqn. (10.3.6) to the system derived in (a), and show that

W.x/ D W.x0/ exp

�

�
Z x

x0

P1.s/

P0.s/
ds

�

;

which is the form of Abel’s formula given in Theorem 9.1.3.
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3. In Section 9.1 the Wronskian of n solutions y1, y2, . . . , yn of the n�th order equation

P0.x/y
.n/ C P1.x/y

.n�1/ C � � � C Pn.x/y D 0 .A/

was defined to be

W D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

y1 y2 � � � yn

y0
1 y0

2 � � � y0
n

:::
:::

: : :
:::

y
.n�1/
1 y

.n�1/
2 � � � y

.n�1/
n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(a) Rewrite (A) as a system of first order equations and show thatW is the Wronskian (as defined

in this section) of n solutions of this system.

(b) Apply Eqn. (10.3.6) to the system derived in (a), and show that

W.x/ D W.x0/ exp

�

�
Z x

x0

P1.s/

P0.s/
ds

�

;

which is the form of Abel’s formula given in Theorem 9.1.3.

4. Suppose

y1 D
�

y11

y21

�

and y2 D
�

y12

y22

�

are solutions of the 2 � 2 system y0 D Ay on .a; b/, and let

Y D
�

y11 y12

y21 y22

�

and W D
ˇ

ˇ

ˇ

ˇ

y11 y12

y21 y22

ˇ

ˇ

ˇ

ˇ

I

thus,W is the Wronskian of fy1; y2g.

(a) Deduce from the definition of determinant that

W 0 D
ˇ

ˇ

ˇ

ˇ

y0
11 y0

12

y21 y22

ˇ

ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

ˇ

y11 y12

y0
21 y0

22

ˇ

ˇ

ˇ

ˇ

:

(b) Use the equation Y 0 D A.t/Y and the definition of matrix multiplication to show that

Œy0
11 y0

12� D a11Œy11 y12�C a12Œy21 y22�

and

Œy0
21 y0

22� D a21Œy11 y12�C a22Œy21 y22�:

(c) Use properties of determinants to deduce from (a) and (a) that
ˇ

ˇ

ˇ

ˇ

y0
11 y0

12

y21 y22

ˇ

ˇ

ˇ

ˇ

D a11W and

ˇ

ˇ

ˇ

ˇ

y11 y12

y0
21 y0

22

ˇ

ˇ

ˇ

ˇ

D a22W:

(d) Conclude from (c) that

W 0 D .a11 C a22/W;

and use this to show that if a < t0 < b then

W.t/ D W.t0/ exp

�Z t

t0

Œa11.s/C a22.s/� ds

�

a < t < b:
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5. Suppose the n � n matrix A D A.t/ is continuous on .a; b/. Let

Y D

2

6

6

6

4

y11 y12 � � � y1n

y21 y22 � � � y2n

:::
:::

: : :
:::

yn1 yn2 � � � ynn

3

7

7

7

5

;

where the columns of Y are solutions of y0 D A.t/y. Let

ri D Œyi1 yi2 : : : yin�

be the i th row of Y , and let W be the determinant of Y .

(a) Deduce from the definition of determinant that

W 0 D W1 CW2 C � � � CWn;

where, for 1 � m � n, the i th row of Wm is ri if i ¤ m, and r 0
m if i D m.

(b) Use the equation Y 0 D AY and the definition of matrix multiplication to show that

r 0
m D am1r1 C am2r2 C � � � C amnrn:

(c) Use properties of determinants to deduce from (b) that

det.Wm/ D ammW:

(d) Conclude from (a) and (c) that

W 0 D .a11 C a22 C � � � C ann/W;

and use this to show that if a < t0 < b then

W.t/ D W.t0/ exp

�Z t

t0

�

a11.s/C a22.s/C � � � C ann.s/� ds

�

; a < t < b:

6. Suppose the n � n matrix A is continuous on .a; b/ and t0 is a point in .a; b/. Let Y be a funda-

mental matrix for y0 D A.t/y on .a; b/.

(a) Show that Y.t0/ is invertible.

(b) Show that if k is an arbitrary n-vector then the solution of the initial value problem

y0 D A.t/y; y.t0/ D k

is
y D Y.t/Y �1.t0/k:

7. Let

A D
�

2 4

4 2

�

; y1 D
�

e6t

e6t

�

; y2 D
�

e�2t

�e�2t

�

; k D
�

�3
9

�

:

(a) Verify that fy1; y2g is a fundamental set of solutions for y0 D Ay.

(b) Solve the initial value problem

y0 D Ay; y.0/ D k: .A/
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(c) Use the result of Exercise 6(b) to find a formula for the solution of (A) for an arbitrary initial

vector k.

8. Repeat Exercise 7 with

A D
�

�2 �2
�5 1

�

; y1 D
�

e�4t

e�4t

�

; y2 D
�

�2e3t

5e3t

�

; k D
�

10

�4

�

:

9. Repeat Exercise 7 with

A D
�

�4 �10
3 7

�

; y1 D
�

�5e2t

3e2t

�

; y2 D
�

2et

�et

�

; k D
�

�19
11

�

:

10. Repeat Exercise 7 with

A D
�

2 1

1 2

�

; y1 D
�

e3t

e3t

�

; y2 D
�

et

�et

�

; k D
�

2

8

�

:

11. Let

A D

2

4

3 �1 �1
�2 3 2

4 �1 �2

3

5 ;

y1 D

2

4

e2t

0

e2t

3

5 ; y2 D

2

4

e3t

�e3t

e3t

3

5 ; y3 D

2

4

e�t

�3e�t

7e�t

3

5 ; k D

2

4

2

�7
20

3

5 :

(a) Verify that fy1; y2; y3g is a fundamental set of solutions for y0 D Ay.

(b) Solve the initial value problem

y0 D Ay; y.0/ D k: .A/

(c) Use the result of Exercise 6(b) to find a formula for the solution of (A) for an arbitrary initial

vector k.

12. Repeat Exercise 11 with

A D

2

4

0 2 2

2 0 2

2 2 0

3

5 ;

y1 D

2

4

�e�2t

0

e�2t

3

5 ; y2 D

2

4

�e�2t

e�2t

0

3

5 ; y3 D

2

4

e4t

e4t

e4t

3

5 ; k D

2

4

0

�9
12

3

5 :

13. Repeat Exercise 11 with

A D

2

4

�1 2 3

0 1 6

0 0 �2

3

5 ;

y1 D

2

4

et

et

0

3

5 ; y2 D

2

4

e�t

0

0

3

5 ; y3 D

2

4

e�2t

�2e�2t

e�2t

3

5 ; k D

2

4

5

5

�1

3

5 :



530 Chapter 10 Linear Systems of Differential Equations

14. Suppose Y and Z are fundamental matrices for the n � n system y0 D A.t/y. Then some of the

four matrices YZ�1, Y �1Z, Z�1Y , ZY �1 are necessarily constant. Identify them and prove that

they are constant.

15. Suppose the columns of an n � n matrix Y are solutions of the n � n system y0 D Ay and C is an
n � n constant matrix.

(a) Show that the matrixZ D YC satisfies the differential equationZ0 D AZ.

(b) Show that Z is a fundamental matrix for y0 D A.t/y if and only if C is invertible and Y is a

fundamental matrix for y0 D A.t/y.

16. Suppose the n � n matrix A D A.t/ is continuous on .a; b/ and t0 is in .a; b/. For i D 1, 2, . . . ,

n, let yi be the solution of the initial value problem y0
i D A.t/yi ; yi.t0/ D ei , where

e1 D

2

6

6

6

4

1

0
:::

0

3

7

7

7

5

; e2 D

2

6

6

6

4

0

1
:::

0

3

7

7

7

5

; � � � en D

2

6

6

6

4

0

0
:::

1

3

7

7

7

5

I

that is, the j th component of ei is 1 if j D i , or 0 if j ¤ i .

(a) Show thatfy1; y2; : : : ; yng is a fundamental set of solutions of y0 D A.t/y on .a; b/.

(b) Conclude from (a) and Exercise 15 that y0 D A.t/y has infinitely many fundamental sets of
solutions on .a; b/.

17. Show that Y is a fundamental matrix for the system y0 D A.t/y if and only if Y �1 is a fundamental

matrix for y0 D �AT .t/y, where AT denotes the transpose of A. HINT: See Exercise 11.

18. Let Z be the fundamental matrix for the constant coefficient system y0 D Ay such thatZ.0/ D I .

(a) Show that Z.t/Z.s/ D Z.t C s/ for all s and t . HINT: For fixed s let �1.t/ D Z.t/Z.s/

and �2.t/ D Z.t C s/. Show that �1 and �2 are both solutions of the matrix initial value

problem � 0 D A�; �.0/ D Z.s/. Then conclude from Theorem 10.2.1 that �1 D �2.

(b) Show that .Z.t//�1 D Z.�t/.
(c) The matrix Z defined above is sometimes denoted by etA. Discuss the motivation for this

notation.

10.4 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS I

We’ll now begin our study of the homogeneous system

y0 D Ay; (10.4.1)

where A is an n�n constant matrix. Since A is continuous on .�1;1/, Theorem 10.2.1 implies that all

solutions of (10.4.1) are defined on .�1;1/. Therefore, when we speak of solutions of y0 D Ay, we’ll

mean solutions on .�1;1/.

In this section we assume that all the eigenvalues of A are real and that A has a set of n linearly

independent eigenvectors. In the next two sections we consider the cases where some of the eigenvalues

of A are complex, or where A does not have n linearly independent eigenvectors.
In Example 10.3.2 we showed that the vector functions

y1 D
�

�e2t

2e2t

�

and y2 D
�

�e�t

e�t

�

form a fundamental set of solutions of the system

y0 D
�

�4 �3
6 5

�

y; (10.4.2)
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but we did not show how we obtained y1 and y2 in the first place. To see how these solutions can be

obtained we write (10.4.2) as
y0

1 D �4y1 � 3y2

y0
2 D 6y1 C 5y2

(10.4.3)

and look for solutions of the form

y1 D x1e
�t and y2 D x2e

�t ; (10.4.4)

where x1, x2, and � are constants to be determined. Differentiating (10.4.4) yields

y0
1 D �x1e

�t and y0
2 D �x2e

�t :

Substituting this and (10.4.4) into (10.4.3) and canceling the common factor e�t yields

�4x1 � 3x2 D �x1

6x1 C 5x2 D �x2:

For a given �, this is a homogeneous algebraic system, since it can be rewritten as

.�4 � �/x1 � 3x2 D 0

6x1 C .5 � �/x2 D 0:
(10.4.5)

The trivial solution x1 D x2 D 0 of this system isn’t useful, since it corresponds to the trivial solution
y1 � y2 � 0 of (10.4.3), which can’t be part of a fundamental set of solutions of (10.4.2). Therefore we

consider only those values of � for which (10.4.5) has nontrivial solutions. These are the values of � for

which the determinant of (10.4.5) is zero; that is,
ˇ

ˇ

ˇ

ˇ

�4 � � �3
6 5 � �

ˇ

ˇ

ˇ

ˇ

D .�4 � �/.5 � �/ C 18

D �2 � � � 2
D .� � 2/.� C 1/ D 0;

which has the solutions �1 D 2 and �2 D �1.

Taking � D 2 in (10.4.5) yields

�6x1 � 3x2 D 0

6x1 C 3x2 D 0;

which implies that x1 D �x2=2, where x2 can be chosen arbitrarily. Choosing x2 D 2 yields the solution
y1 D �e2t , y2 D 2e2t of (10.4.3). We can write this solution in vector form as

y1 D
�

�1
2

�

e2t : (10.4.6)

Taking � D �1 in (10.4.5) yields the system

�3x1 � 3x2 D 0

6x1 C 6x2 D 0;

so x1 D �x2. Taking x2 D 1 here yields the solution y1 D �e�t , y2 D e�t of (10.4.3). We can write

this solution in vector form as

y2 D
�

�1
1

�

e�t : (10.4.7)

In (10.4.6) and (10.4.7) the constant coefficients in the arguments of the exponential functions are the

eigenvalues of the coefficient matrix in (10.4.2), and the vector coefficients of the exponential functions
are associated eigenvectors. This illustrates the next theorem.
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Theorem 10.4.1 Suppose the n�n constant matrixA has n real eigenvalues �1; �2; : : : ; �n (which need

not be distinct) with associated linearly independent eigenvectors x1; x2; : : : ; xn. Then the functions

y1 D x1e
�1t ; y2 D x2e

�2t ; : : : ; yn D xne
�nt

form a fundamental set of solutions of y0 D AyI that is; the general solution of this system is

y D c1x1e
�1t C c2x2e

�2t C � � � C cnxne
�nt :

Proof Differentiating yi D xie
�i t and recalling that Axi D �i xi yields

y0
i D �i xie

�i t D Axie
�i t D Ayi :

This shows that yi is a solution of y0 D Ay.

The Wronskian of fy1; y2; : : : ; yng is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x11e
�1t x12e

�2t � � � x1ne
�nt

x21e
�1t x22e

�2t � � � x2ne
�nt

:::
:::

: : :
:::

xn1e
�1t xn2e

�2t � � � xnne
�xnt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D e�1te�2t � � � e�nt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x11 x12 � � � x1n

x21 x22 � � � x2n

:::
:::

: : :
:::

xn1 xn2 � � � xnn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

Since the columns of the determinant on the right are x1, x2, . . . , xn, which are assumed to be linearly

independent, the determinant is nonzero. Therefore Theorem 10.3.3 implies that fy1; y2; : : : ; yng is a

fundamental set of solutions of y0 D Ay.

Example 10.4.1

(a) Find the general solution of

y0 D
�

2 4

4 2

�

y: (10.4.8)

(b) Solve the initial value problem

y0 D
�

2 4

4 2

�

y; y.0/ D
�

5

�1

�

: (10.4.9)

SOLUTION(a) The characteristic polynomial of the coefficient matrix A in (10.4.8) is
ˇ

ˇ

ˇ

ˇ

2 � � 4

4 2 � �

ˇ

ˇ

ˇ

ˇ

D .� � 2/2 � 16

D .� � 2 � 4/.� � 2C 4/

D .� � 6/.� C 2/:

Hence, �1 D 6 and �2 D �2 are eigenvalues of A. To obtain the eigenvectors, we must solve the system
�

2 � � 4

4 2 � �

��

x1

x2

�

D
�

0

0

�

(10.4.10)

with � D 6 and � D �2. Setting � D 6 in (10.4.10) yields
�

�4 4

4 �4

� �

x1

x2

�

D
�

0

0

�

;
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which implies that x1 D x2. Taking x2 D 1 yields the eigenvector

x1 D
�

1

1

�

;

so

y1 D
�

1

1

�

e6t

is a solution of (10.4.8). Setting � D �2 in (10.4.10) yields

�

4 4

4 4

� �

x1

x2

�

D
�

0

0

�

;

which implies that x1 D �x2. Taking x2 D 1 yields the eigenvector

x2 D
�

�1
1

�

;

so

y2 D
�

�1
1

�

e�2t

is a solution of (10.4.8). From Theorem 10.4.1, the general solution of (10.4.8) is

y D c1y1 C c2y2 D c1

�

1

1

�

e6t C c2

�

�1
1

�

e�2t : (10.4.11)

SOLUTION(b) To satisfy the initial condition in (10.4.9), we must choose c1 and c2 in (10.4.11) so that

c1

�

1

1

�

C c2

�

�1
1

�

D
�

5

�1

�

:

This is equivalent to the system

c1 � c2 D 5

c1 C c2 D �1;

so c1 D 2; c2 D �3. Therefore the solution of (10.4.9) is

y D 2

�

1

1

�

e6t � 3

�

�1
1

�

e�2t ;

or, in terms of components,

y1 D 2e6t C 3e�2t ; y2 D 2e6t � 3e�2t :

Example 10.4.2

(a) Find the general solution of

y0 D

2

4

3 �1 �1
�2 3 2

4 �1 �2

3

5 y: (10.4.12)
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(b) Solve the initial value problem

y0 D

2

4

3 �1 �1
�2 3 2

4 �1 �2

3

5 y; y.0/ D

2

4

2

�1
8

3

5 : (10.4.13)

SOLUTION(a) The characteristic polynomial of the coefficient matrix A in (10.4.12) is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 � � �1 �1
�2 3 � � 2

4 �1 �2 � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.� � 2/.� � 3/.�C 1/:

Hence, the eigenvalues of A are �1 D 2, �2 D 3, and �3 D �1. To find the eigenvectors, we must solve
the system

2

4

3 � � �1 �1
�2 3 � � 2

4 �1 �2 � �

3

5

2

4

x1

x2

x3

3

5 D

2

4

0

0

0

3

5 (10.4.14)

with � D 2, 3, �1. With � D 2, the augmented matrix of (10.4.14) is

2

6

6

6

4

1 �1 �1
::: 0

�2 1 2
::: 0

4 �1 �4
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �1
::: 0

0 1 0
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Hence, x1 D x3 and x2 D 0. Taking x3 D 1 yields

y1 D

2

4

1

0

1

3

5 e2t

as a solution of (10.4.12). With � D 3, the augmented matrix of (10.4.14) is

2

6

6

6

4

0 �1 �1
::: 0

�2 0 2
::: 0

4 �1 �5
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �1
::: 0

0 1 1
::: 0

0 0 0
::: 0

3

7

7

7

5

:
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Hence, x1 D x3 and x2 D �x3. Taking x3 D 1 yields

y2 D

2

4

1

�1
1

3

5 e3t

as a solution of (10.4.12). With � D �1, the augmented matrix of (10.4.14) is

2

6

6

6

4

4 �1 �1
::: 0

�2 4 2
::: 0

4 �1 �1
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 � 1
7

::: 0

0 1 3
7

::: 0

0 0 0
::: 0

3

7

7

7

5

:

Hence, x1 D x3=7 and x2 D �3x3=7. Taking x3 D 7 yields

y3 D

2

4

1

�3
7

3

5 e�t

as a solution of (10.4.12). By Theorem 10.4.1, the general solution of (10.4.12) is

y D c1

2

4

1

0

1

3

5 e2t C c2

2

4

1

�1
1

3

5 e3t C c3

2

4

1

�3
7

3

5 e�t ;

which can also be written as

y D

2

4

e2t e3t e�t

0 �e3t �3e�t

e2t e3t 7e�t

3

5

2

4

c1

c2

c3

3

5 : (10.4.15)

SOLUTION(b) To satisfy the initial condition in (10.4.13) we must choose c1, c2, c3 in (10.4.15) so that

2

4

1 1 1

0 �1 �3
1 1 7

3

5

2

4

c1

c2

c3

3

5 D

2

4

2

�1
8

3

5 :

Solving this system yields c1 D 3, c2 D �2, c3 D 1. Hence, the solution of (10.4.13) is

y D

2

4

e2t e3t e�t

0 �e3t �3e�t

e2t e3t 7e�t

3

5

2

4

3

�2
1

3

5

D 3

2

4

1

0

1

3

5 e2t � 2

2

4

1

�1
1

3

5 e3t C

2

4

1

�3
7

3

5 e�t :
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Example 10.4.3 Find the general solution of

y0 D

2

4

�3 2 2

2 �3 2

2 2 �3

3

5 y: (10.4.16)

Solution The characteristic polynomial of the coefficient matrix A in (10.4.16) is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�3 � � 2 2

2 �3 � � 2

2 2 �3 � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.� � 1/.�C 5/2:

Hence, �1 D 1 is an eigenvalue of multiplicity 1, while �2 D �5 is an eigenvalue of multiplicity 2.

Eigenvectors associated with �1 D 1 are solutions of the system with augmented matrix

2

6

6

6

4

�4 2 2
::: 0

2 �4 2
::: 0

2 2 �4
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �1
::: 0

0 1 �1
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Hence, x1 D x2 D x3, and we choose x3 D 1 to obtain the solution

y1 D

2

4

1

1

1

3

5 et (10.4.17)

of (10.4.16). Eigenvectors associated with �2 D �5 are solutions of the system with augmented matrix

2

6

6

6

4

2 2 2
::: 0

2 2 2
::: 0

2 2 2
::: 0

3

7

7

7

5

:

Hence, the components of these eigenvectors need only satisfy the single condition

x1 C x2 C x3 D 0:

Since there’s only one equation here, we can choose x2 and x3 arbitrarily. We obtain one eigenvector by

choosing x2 D 0 and x3 D 1, and another by choosing x2 D 1 and x3 D 0. In both cases x1 D �1.

Therefore
2

4

�1
0

1

3

5 and

2

4

�1
1

0

3

5
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are linearly independent eigenvectors associated with �2 D �5, and the corresponding solutions of

(10.4.16) are

y2 D

2

4

�1
0

1

3

5 e�5t and y3 D

2

4

�1
1

0

3

5 e�5t :

Because of this and (10.4.17), Theorem 10.4.1 implies that the general solution of (10.4.16) is

y D c1

2

4

1

1

1

3

5 et C c2

2

4

�1
0

1

3

5 e�5t C c3

2

4

�1
1

0

3

5 e�5t :

Geometric Properties of Solutions when n D 2

We’ll now consider the geometric properties of solutions of a 2 � 2 constant coefficient system

�

y0
1

y0
2

�

D
�

a11 a12

a21 a22

� �

y1

y2

�

: (10.4.18)

It is convenient to think of a “y1-y2 plane," where a point is identified by rectangular coordinates .y1; y2/.

If y D
�

y1

y2

�

is a non-constant solution of (10.4.18), then the point .y1.t/; y2.t// moves along a curve

C in the y1-y2 plane as t varies from �1 to 1. We call C the trajectory of y. (We also say that C

is a trajectory of the system (10.4.18).) I’s important to note that C is the trajectory of infinitely many

solutions of (10.4.18), since if � is any real number, then y.t��/ is a solution of (10.4.18) (Exercise 28(b)),
and .y1.t � �/; y2.t � �// also moves along C as t varies from �1 to 1. Moreover, Exercise 28(c)

implies that distinct trajectories of (10.4.18) can’t intersect, and that two solutions y1 and y2 of (10.4.18)

have the same trajectory if and only if y2.t/ D y1.t � �/ for some � .

From Exercise 28(a), a trajectory of a nontrivial solution of (10.4.18) can’t contain .0; 0/, which we

define to be the trajectory of the trivial solution y � 0. More generally, if y D
�

k1

k2

�

¤ 0 is a constant

solution of (10.4.18) (which could occur if zero is an eigenvalue of the matrix of (10.4.18)), we define the

trajectory of y to be the single point .k1; k2/.
To be specific, this is the question: What do the trajectories look like, and how are they traversed? In

this section we’ll answer this question, assuming that the matrix

A D
�

a11 a12

a21 a22

�

of (10.4.18) has real eigenvalues �1 and �2 with associated linearly independent eigenvectors x1 and x2.

Then the general solution of (10.4.18) is

y D c1x1e
�1t C c2x2e

�2t : (10.4.19)

We’ll consider other situations in the next two sections.
We leave it to you (Exercise 35) to classify the trajectories of (10.4.18) if zero is an eigenvalue of A.

We’ll confine our attention here to the case where both eigenvalues are nonzero. In this case the simplest

situation is where �1 D �2 ¤ 0, so (10.4.19) becomes

y D .c1x1 C c2x2/e
�1 t :

Since x1 and x2 are linearly independent, an arbitrary vector x can be written as x D c1x1 C c2x2.
Therefore the general solution of (10.4.18) can be written as y D xe�1t where x is an arbitrary 2-vector,
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and the trajectories of nontrivial solutions of (10.4.18) are half-lines through (but not including) the

origin. The direction of motion is away from the origin if �1 > 0 (Figure 10.4.1), toward it if �1 < 0

(Figure 10.4.2). (In these and the next figures an arrow through a point indicates the direction of motion

along the trajectory through the point.)

 y
1

 y
2

Figure 10.4.1 Trajectories of a 2 � 2 system with a

repeated positive eigenvalue

 y
1

 y
2

Figure 10.4.2 Trajectories of a 2 � 2 system with a

repeated negative eigenvalue

Now suppose �2 > �1, and let L1 and L2 denote lines through the origin parallel to x1 and x2,

respectively. By a half-line of L1 (or L2), we mean either of the rays obtained by removing the origin
from L1 (or L2).

Letting c2 D 0 in (10.4.19) yields y D c1x1e
�1t . If c1 ¤ 0, the trajectory defined by this solution is a

half-line of L1. The direction of motion is away from the origin if �1 > 0, toward the origin if �1 < 0.

Similarly, the trajectory of y D c2x2e
�2t with c2 ¤ 0 is a half-line of L2.

Henceforth, we assume that c1 and c2 in (10.4.19) are both nonzero. In this case, the trajectory of
(10.4.19) can’t intersect L1 or L2, since every point on these lines is on the trajectory of a solution for

which either c1 D 0 or c2 D 0. (Remember: distinct trajectories can’t intersect!). Therefore the trajectory

of (10.4.19) must lie entirely in one of the four open sectors bounded by L1 and L2, but do not any point

on L1 or L2. Since the initial point .y1.0/; y2.0// defined by

y.0/ D c1x1 C c2x2

is on the trajectory, we can determine which sector contains the trajectory from the signs of c1 and c2, as
shown in Figure 10.4.3.

The direction of y.t/ in (10.4.19) is the same as that of

e��2t y.t/ D c1x1e
�.�2��1/t C c2x2 (10.4.20)

and of

e��1t y.t/ D c1x1 C c2x2e
.�2��1/t : (10.4.21)

Since the right side of (10.4.20) approaches c2x2 as t ! 1, the trajectory is asymptotically parallel toL2

as t ! 1. Since the right side of (10.4.21) approaches c1x1 as t ! �1, the trajectory is asymptotically

parallel to L1 as t ! �1.

The shape and direction of traversal of the trajectory of (10.4.19) depend upon whether �1 and �2 are
both positive, both negative, or of opposite signs. We’ll now analyze these three cases.
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 x
2

 x
1

 c
1
 > 0, c

2
 < 0

 c
1
 > 0, c

2
 > 0

 c
1
 < 0, c

2
 > 0

 c
1
 < 0, c

2
 < 0

 L
1

 L
2

Figure 10.4.3 Four open sectors bounded by L1

and L2

 y
1

 y
2

 L
1

 L
2

Figure 10.4.4 Two positive eigenvalues; motion
away from origin

Henceforth kuk denote the length of the vector u.

Case 1: �2 > �1 > 0

Figure 10.4.4 shows some typical trajectories. In this case, limt!�1 ky.t/k D 0, so the trajectory is not

only asymptotically parallel to L1 as t ! �1, but is actually asymptotically tangent to L1 at the origin.

On the other hand, limt!1 ky.t/k D 1 and

lim
t!1









y.t/ � c2x2e

�2t








D lim

t!1
kc1x1e

�1t k D 1;

so, although the trajectory is asymptotically parallel to L2 as t ! 1, it’s not asymptotically tangent to

L2. The direction of motion along each trajectory is away from the origin.

Case 2: 0 > �2 > �1

Figure 10.4.5 shows some typical trajectories. In this case, limt!1 ky.t/k D 0, so the trajectory is

asymptotically tangent to L2 at the origin as t ! 1. On the other hand, limt!�1 ky.t/k D 1 and

lim
t!�1









y.t/ � c1x1e

�1t








D lim

t!�1
kc2x2e

�2t k D 1;

so, although the trajectory is asymptotically parallel to L1 as t ! �1, it’s not asymptotically tangent to

it. The direction of motion along each trajectory is toward the origin.

Case 3: �2 > 0 > �1

Figure 10.4.6 shows some typical trajectories. In this case,

lim
t!1

ky.t/k D 1 and lim
t!1









y.t/ � c2x2e

�2t








D lim

t!1
kc1x1e

�1t k D 0;

so the trajectory is asymptotically tangent to L2 as t ! 1. Similarly,

lim
t!�1

ky.t/k D 1 and lim
t!�1









y.t/ � c1x1e

�1t








D lim

t!�1
kc2x2e

�2t k D 0;

so the trajectory is asymptotically tangent toL1 as t ! �1. The direction of motion is toward the origin

on L1 and away from the origin on L2. The direction of motion along any other trajectory is away from
L1, toward L2.
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 y
1

 y
2

 L
1

 L
2

Figure 10.4.5 Two negative eigenvalues; motion
toward the origin

 y
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 L
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Figure 10.4.6 Eigenvalues of different signs

10.4 Exercises

In Exercises 1–15 find the general solution.

1. y0 D
�

1 2

2 1

�

y
2. y0 D 1

4

�

�5 3

3 �5

�

y

3. y0 D 1

5

�

�4 3

�2 �11

�

y 4. y0 D
�

�1 �4
�1 �1

�

y

5. y0 D
�

2 �4
�1 �1

�

y 6. y0 D
�

4 �3
2 �1

�

y

7. y0 D
�

�6 �3
1 �2

�

y
8. y0 D

2

4

1 �1 �2
1 �2 �3

�4 1 �1

3

5 y

9. y0 D

2

4

�6 �4 �8
�4 0 �4
�8 �4 �6

3

5 y 10. y0 D

2

4

3 5 8

1 �1 �2
�1 �1 �1

3

5 y

11. y0 D

2

4

1 �1 2

12 �4 10

�6 1 �7

3

5 y 12. y0 D

2

4

4 �1 �4
4 �3 �2
1 �1 �1

3

5 y

13. y0 D

2

4

�2 2 �6
2 6 2

�2 �2 2

3

5 y 14. y0 D

2

4

3 2 �2
�2 7 �2

�10 10 �5

3

5 y
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15. y0 D

2

4

3 1 �1
3 5 1

�6 2 4

3

5 y

In Exercises 16–27 solve the initial value problem.

16. y0 D
�

�7 4

�6 7

�

y; y.0/ D
�

2

�4

�

17. y0 D 1

6

�

7 2

�2 2

�

y; y.0/ D
�

0

�3

�

18. y0 D
�

21 �12
24 �15

�

y; y.0/ D
�

5

3

�

19. y0 D
�

�7 4

�6 7

�

y; y.0/ D
�

�1
7

�

20. y0 D 1

6

2

4

1 2 0

4 �1 0

0 0 3

3

5 y; y.0/ D

2

4

4

7

1

3

5

21. y0 D 1

3

2

4

2 �2 3

�4 4 3

2 1 0

3

5 y; y.0/ D

2

4

1

1

5

3

5

22. y0 D

2

4

6 �3 �8
2 1 �2
3 �3 �5

3

5 y; y.0/ D

2

4

0

�1
�1

3

5

23. y0 D 1

3

2

4

2 4 �7
1 5 �5

�4 4 �1

3

5 y; y.0/ D

2

4

4

1

3

3

5

24. y0 D

2

4

3 0 1

11 �2 7

1 0 3

3

5 y; y.0/ D

2

4

2

7

6

3

5

25. y0 D

2

4

�2 �5 �1
�4 �1 1

4 5 3

3

5 y; y.0/ D

2

4

8

�10
�4

3

5

26. y0 D

2

4

3 �1 0

4 �2 0

4 �4 2

3

5 y; y.0/ D

2

4

7

10

2

3

5

27. y0 D

2

4

�2 2 6

2 6 2

�2 �2 2

3

5 y; y.0/ D

2

4

6

�10
7

3

5

28. Let A be an n � n constant matrix. Then Theorem 10.2.1 implies that the solutions of

y0 D Ay .A/

are all defined on .�1;1/.

(a) Use Theorem 10.2.1 to show that the only solution of (A) that can ever equal the zero vector

is y � 0.
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(b) Suppose y1 is a solution of (A) and y2 is defined by y2.t/ D y1.t��/, where � is an arbitrary

real number. Show that y2 is also a solution of (A).

(c) Suppose y1 and y2 are solutions of (A) and there are real numbers t1 and t2 such that y1.t1/ D
y2.t2/. Show that y2.t/ D y1.t � �/ for all t , where � D t2 � t1. HINT: Show that y1.t � �/
and y2.t/ are solutions of the same initial value problem for (A), and apply the uniqueness

assertion of Theorem 10.2.1.

In Exercises 29- 34 describe and graph trajectories of the given system.

29. C/G y0 D
�

1 1

1 �1

�

y
30. C/G y0 D

�

�4 3

�2 �11

�

y

31. C/G y0 D
�

9 �3
�1 11

�

y 32. C/G y0 D
�

�1 �10
�5 4

�

y

33. C/G y0 D
�

5 �4
1 10

�

y 34. C/G y0 D
�

�7 1

3 �5

�

y

35. Suppose the eigenvalues of the 2 � 2 matrix A are � D 0 and � ¤ 0, with corresponding eigen-

vectors x1 and x2. Let L1 be the line through the origin parallel to x1.

(a) Show that every point on L1 is the trajectory of a constant solution of y0 D Ay.

(b) Show that the trajectories of nonconstant solutions of y0 D Ay are half-lines parallel to x2

and on either side of L1, and that the direction of motion along these trajectories is away
from L1 if � > 0, or toward L1 if � < 0.

The matrices of the systems in Exercises 36-41 are singular. Describe and graph the trajectories of

nonconstant solutions of the given systems.

36. C/G y0 D
�

�1 1

1 �1

�

y
37. C/G y0 D

�

�1 �3
2 6

�

y

38. C/G y0 D
�

1 �3
�1 3

�

y 39. C/G y0 D
�

1 �2
�1 2

�

y

40. C/G y0 D
�

�4 �4
1 1

�

y 41. C/G y0 D
�

3 �1
�3 1

�

y

42. L Let P D P.t/ and Q D Q.t/ be the populations of two species at time t , and assume

that each population would grow exponentially if the other didn’t exist; that is, in the absence of

competition,

P 0 D aP and Q0 D bQ; .A/

where a and b are positive constants. One way to model the effect of competition is to assume
that the growth rate per individual of each population is reduced by an amount proportional to the

other population, so (A) is replaced by

P 0 D aP � ˛Q
Q0 D �ˇP C bQ;
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where ˛ and ˇ are positive constants. (Since negative population doesn’t make sense, this system

holds only while P and Q are both positive.) Now suppose P.0/ D P0 > 0 and Q.0/ D Q0 > 0.

(a) For several choices of a, b, ˛, and ˇ, verify experimentally (by graphing trajectories of (A)

in the P -Q plane) that there’s a constant � > 0 (depending upon a, b, ˛, and ˇ) with the

following properties:

(i) If Q0 > �P0, then P decreases monotonically to zero in finite time, during which

Q remains positive.

(ii) If Q0 < �P0, then Q decreases monotonically to zero in finite time, during which

P remains positive.

(b) Conclude from (a) that exactly one of the species becomes extinct in finite time ifQ0 ¤ �P0.

Determine experimentally what happens ifQ0 D �P0.

(c) Confirm your experimental results and determine 
 by expressing the eigenvalues and asso-

ciated eigenvectors of

A D
�

a �˛
�ˇ b

�

in terms of a, b, ˛, and ˇ, and applying the geometric arguments developed at the end of this
section.

10.5 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS II

We saw in Section 10.4 that if an n � n constant matrix A has n real eigenvalues �1, �2, . . . , �n (which

need not be distinct) with associated linearly independent eigenvectors x1, x2, . . . , xn, then the general

solution of y0 D Ay is
y D c1x1e

�1t C c2x2e
�2t C � � � C cnxne

�nt :

In this section we consider the case where A has n real eigenvalues, but does not have n linearly indepen-
dent eigenvectors. It is shown in linear algebra that this occurs if and only if A has at least one eigenvalue

of multiplicity r > 1 such that the associated eigenspace has dimension less than r . In this case A is

said to be defective. Since it’s beyond the scope of this book to give a complete analysis of systems with

defective coefficient matrices, we will restrict our attention to some commonly occurring special cases.

Example 10.5.1 Show that the system

y0 D
�

11 �25
4 �9

�

y (10.5.1)

does not have a fundamental set of solutions of the form fx1e
�1t ; x2e

�2t g, where �1 and �2 are eigenval-

ues of the coefficient matrixA of (10.5.1) and x1, and x2 are associated linearly independent eigenvectors.

Solution The characteristic polynomial of A is
ˇ

ˇ

ˇ

ˇ

11� � �25
4 �9 � �

ˇ

ˇ

ˇ

ˇ

D .� � 11/.�C 9/C 100

D �2 � 2�C 1 D .� � 1/2:
Hence, � D 1 is the only eigenvalue of A. The augmented matrix of the system .A� I /x D 0 is

2

4

10 �25
::: 0

4 �10
::: 0

3

5 ;
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which is row equivalent to
2

6

6

4

1 �5
2

::: 0

0 0
::: 0

3

7

7

5

:

Hence, x1 D 5x2=2 where x2 is arbitrary. Therefore all eigenvectors of A are scalar multiples of x1 D
�

5

2

�

, so A does not have a set of two linearly independent eigenvectors.

From Example 10.5.1, we know that all scalar multiples of y1 D
�

5

2

�

et are solutions of (10.5.1);

however, to find the general solution we must find a second solution y2 such that fy1; y2g is linearly

independent. Based on your recollection of the procedure for solving a constant coefficient scalar equation

ay00 C by0 C cy D 0

in the case where the characteristic polynomial has a repeated root, you might expect to obtain a second

solution of (10.5.1) by multiplying the first solution by t . However, this yields y2 D
�

5

2

�

tet , which

doesn’t work, since

y0
2 D

�

5

2

�

.tet C et/; while

�

11 �25
4 �9

�

y2 D
�

5

2

�

tet :

The next theorem shows what to do in this situation.

Theorem 10.5.1 Suppose the n�nmatrixA has an eigenvalue �1 of multiplicity � 2 and the associated

eigenspace has dimension 1I that is; all �1-eigenvectors of A are scalar multiples of an eigenvector x:

Then there are infinitely many vectors u such that

.A � �1I /u D x: (10.5.2)

Moreover; if u is any such vector then

y1 D xe�1t and y2 D ue�1t C xte�1t (10.5.3)

are linearly independent solutions of y0 D Ay:

A complete proof of this theorem is beyond the scope of this book. The difficulty is in proving that

there’s a vector u satisfying (10.5.2), since det.A � �1I / D 0. We’ll take this without proof and verify

the other assertions of the theorem.
We already know that y1 in (10.5.3) is a solution of y0 D Ay. To see that y2 is also a solution, we

compute

y0
2 � Ay2 D �1ue�1t C xe�1t C �1xte�1t �Aue�1 t �Axte�1t

D .�1u C x � Au/e�1t C .�1x � Ax/te�1t :

Since Ax D �1x, this can be written as

y0
2 �Ay2 D � ..A� �1I /u � x/ e�1t ;

and now (10.5.2) implies that y0
2 D Ay2.
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To see that y1 and y2 are linearly independent, suppose c1 and c2 are constants such that

c1y1 C c2y2 D c1xe�1t C c2.ue
�1 t C xte�1t / D 0: (10.5.4)

We must show that c1 D c2 D 0. Multiplying (10.5.4) by e��1t shows that

c1x C c2.u C xt/ D 0: (10.5.5)

By differentiating this with respect to t , we see that c2x D 0, which implies c2 D 0, because x ¤ 0.

Substituting c2 D 0 into (10.5.5) yields c1x D 0, which implies that c1 D 0, again because x ¤ 0

Example 10.5.2 Use Theorem 10.5.1 to find the general solution of the system

y0 D
�

11 �25
4 �9

�

y (10.5.6)

considered in Example 10.5.1.

Solution In Example 10.5.1 we saw that �1 D 1 is an eigenvalue of multiplicity 2 of the coefficient

matrix A in (10.5.6), and that all of the eigenvectors of A are multiples of

x D
�

5

2

�

:

Therefore

y1 D
�

5

2

�

et

is a solution of (10.5.6). From Theorem 10.5.1, a second solution is given by y2 D uet C xtet , where
.A � I /u D x. The augmented matrix of this system is

2

4

10 �25
::: 5

4 �10
::: 2

3

5 ;

which is row equivalent to
2

4

1 � 5
2

::: 1
2

0 0
::: 0

3

5:

Therefore the components of u must satisfy

u1 � 5

2
u2 D 1

2
;

where u2 is arbitrary. We choose u2 D 0, so that u1 D 1=2 and

u D
�

1
2

0

�

:

Thus,

y2 D
�

1

0

�

et

2
C
�

5

2

�

tet :
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Since y1 and y2 are linearly independent by Theorem 10.5.1, they form a fundamental set of solutions of

(10.5.6). Therefore the general solution of (10.5.6) is

y D c1

�

5

2

�

et C c2

��

1

0

�

et

2
C
�

5

2

�

tet

�

:

Note that choosing the arbitrary constant u2 to be nonzero is equivalent to adding a scalar multiple of

y1 to the second solution y2 (Exercise 33).

Example 10.5.3 Find the general solution of

y0 D

2

4

3 4 �10
2 1 �2
2 2 �5

3

5 y: (10.5.7)

Solution The characteristic polynomial of the coefficient matrix A in (10.5.7) is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 � � 4 �10
2 1 � � �2
2 2 �5 � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.� � 1/.�C 1/2:

Hence, the eigenvalues are �1 D 1 with multiplicity 1 and �2 D �1 with multiplicity 2.

Eigenvectors associated with �1 D 1 must satisfy .A� I /x D 0. The augmented matrix of this system

is
2

6

6

6

4

2 4 �10
::: 0

2 0 �2
::: 0

2 2 �6
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �1
::: 0

0 1 �2
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Hence, x1 D x3 and x2 D 2x3, where x3 is arbitrary. Choosing x3 D 1 yields the eigenvector

x1 D

2

4

1

2

1

3

5 :

Therefore

y1 D

2

4

1

2

1

3

5 et

is a solution of (10.5.7).

Eigenvectors associated with �2 D �1 satisfy .AC I /x D 0. The augmented matrix of this system is

2

6

6

6

4

4 4 �10
::: 0

2 2 �2
::: 0

2 2 �4
::: 0

3

7

7

7

5

;
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which is row equivalent to
2

6

6

6

4

1 1 0
::: 0

0 0 1
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Hence, x3 D 0 and x1 D �x2, where x2 is arbitrary. Choosing x2 D 1 yields the eigenvector

x2 D

2

4

�1
1

0

3

5 ;

so

y2 D

2

4

�1
1

0

3

5 e�t

is a solution of (10.5.7).

Since all the eigenvectors of A associated with �2 D �1 are multiples of x2, we must now use Theo-

rem 10.5.1 to find a third solution of (10.5.7) in the form

y3 D ue�t C

2

4

�1
1

0

3

5 te�t ; (10.5.8)

where u is a solution of .AC I /u D x2. The augmented matrix of this system is

2

6

6

6

4

4 4 �10
::: �1

2 2 �2
::: 1

2 2 �4
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 1 0
::: 1

0 0 1
::: 1

2

0 0 0
::: 0

3

7

7

7

5

:

Hence, u3 D 1=2 and u1 D 1 � u2, where u2 is arbitrary. Choosing u2 D 0 yields

u D

2

4

1

0
1
2

3

5 ;

and substituting this into (10.5.8) yields the solution

y3 D

2

4

2

0

1

3

5

e�t

2
C

2

4

�1
1

0

3

5 te�t

of (10.5.7).
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Since the Wronskian of fy1; y2; y3g at t D 0 is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 �1 1

2 1 0

1 0 1
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 1

2
;

fy1; y2; y3g is a fundamental set of solutions of (10.5.7). Therefore the general solution of (10.5.7) is

y D c1

2

4

1

2

1

3

5 et C c2

2

4

�1
1

0

3

5 e�t C c3

0

@

2

4

2

0

1

3

5

e�t

2
C

2

4

�1
1

0

3

5 te�t

1

A :

Theorem 10.5.2 Suppose the n�nmatrixA has an eigenvalue �1 of multiplicity � 3 and the associated

eigenspace is one–dimensionalI that is; all eigenvectors associated with �1 are scalar multiples of the

eigenvector x: Then there are infinitely many vectors u such that

.A � �1I /u D x; (10.5.9)

and, if u is any such vector; there are infinitely many vectors v such that

.A � �1I /v D u: (10.5.10)

If u satisfies (10.5.9) and v satisfies (10.5.10), then

y1 D xe�1t ;

y2 D ue�1t C xte�1t ; and

y3 D ve�1t C ute�1t C x
t2e�1t

2

are linearly independent solutions of y0 D Ay.

Again, it’s beyond the scope of this book to prove that there are vectors u and v that satisfy (10.5.9)
and (10.5.10). Theorem 10.5.1 implies that y1 and y2 are solutions of y0 D Ay. We leave the rest of the

proof to you (Exercise 34).

Example 10.5.4 Use Theorem 10.5.2 to find the general solution of

y0 D

2

4

1 1 1

1 3 �1
0 2 2

3

5 y: (10.5.11)

Solution The characteristic polynomial of the coefficient matrix A in (10.5.11) is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 � � 1 1

1 3 � � �1
0 2 2 � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.� � 2/3:

Hence, �1 D 2 is an eigenvalue of multiplicity 3. The associated eigenvectors satisfy .A � 2I /x D 0.

The augmented matrix of this system is

2

6

6

6

4

�1 1 1
::: 0

1 1 �1
::: 0

0 2 0
::: 0

3

7

7

7

5

;



Section 10.5 Constant Coefficient Homogeneous Systems II 549

which is row equivalent to
2

6

6

6

4

1 0 �1
::: 0

0 1 0
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Hence, x1 D x3 and x2 D 0, so the eigenvectors are all scalar multiples of

x1 D

2

4

1

0

1

3

5 :

Therefore

y1 D

2

4

1

0

1

3

5 e2t

is a solution of (10.5.11).

We now find a second solution of (10.5.11) in the form

y2 D ue2t C

2

4

1

0

1

3

5 te2t ;

where u satisfies .A � 2I /u D x1. The augmented matrix of this system is

2

6

6

6

4

�1 1 1
::: 1

1 1 �1
::: 0

0 2 0
::: 1

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �1
::: � 1

2

0 1 0
::: 1

2

0 0 0
::: 0

3

7

7

7

5

:

Letting u3 D 0 yields u1 D �1=2 and u2 D 1=2; hence,

u D 1

2

2

4

�1
1

0

3

5

and

y2 D

2

4

�1
1

0

3

5

e2t

2
C

2

4

1

0

1

3

5 te2t

is a solution of (10.5.11).
We now find a third solution of (10.5.11) in the form

y3 D ve2t C

2

4

�1
1

0

3

5

te2t

2
C

2

4

1

0

1

3

5

t2e2t

2
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where v satisfies .A � 2I /v D u. The augmented matrix of this system is

2

6

6

6

4

�1 1 1
::: � 1

2

1 1 �1
::: 1

2

0 2 0
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �1
::: 1

2

0 1 0
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Letting v3 D 0 yields v1 D 1=2 and v2 D 0; hence,

v D 1

2

2

4

1

0

0

3

5 :

Therefore

y3 D

2

4

1

0

0

3

5

e2t

2
C

2

4

�1
1

0

3

5

te2t

2
C

2

4

1

0

1

3

5

t2e2t

2

is a solution of (10.5.11). Since y1, y2, and y3 are linearly independent by Theorem 10.5.2, they form a
fundamental set of solutions of (10.5.11). Therefore the general solution of (10.5.11) is

y D c1

2

4

1

0

1

3

5 e2t C c2

0

@

2

4

�1
1

0

3

5

e2t

2
C

2

4

1

0

1

3

5 te2t

1

A

Cc3

0

@

2

4

1

0

0

3

5

e2t

2
C

2

4

�1
1

0

3

5

te2t

2
C

2

4

1

0

1

3

5

t2e2t

2

1

A:

Theorem 10.5.3 Suppose the n�nmatrixA has an eigenvalue �1 of multiplicity � 3 and the associated

eigenspace is two–dimensional; that is, all eigenvectors of A associated with �1 are linear combinations

of two linearly independent eigenvectors x1 and x2: Then there are constants ˛ and ˇ .not both zero/

such that if

x3 D ˛x1 C ˇx2; (10.5.12)

then there are infinitely many vectors u such that

.A � �1I /u D x3: (10.5.13)

If u satisfies (10.5.13), then

y1 D x1e
�1t ;

y2 D x2e
�1t ; and

y3 D ue�1 t C x3te
�1 t ; (10.5.14)

are linearly independent solutions of y0 D Ay:

We omit the proof of this theorem.
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Example 10.5.5 Use Theorem 10.5.3 to find the general solution of

y0 D

2

4

0 0 1

�1 1 1

�1 0 2

3

5 y: (10.5.15)

Solution The characteristic polynomial of the coefficient matrix A in (10.5.15) is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�� 0 1

�1 1 � � 1

�1 0 2 � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.� � 1/3:

Hence, �1 D 1 is an eigenvalue of multiplicity 3. The associated eigenvectors satisfy .A� I /x D 0. The

augmented matrix of this system is
2

6

6

6

4

�1 0 1
::: 0

�1 0 1
::: 0

�1 0 1
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �1
::: 0

0 0 0
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Hence, x1 D x3 and x2 is arbitrary, so the eigenvectors are of the form

x1 D

2

4

x3

x2

x3

3

5 D x3

2

4

1

0

1

3

5C x2

2

4

0

1

0

3

5 :

Therefore the vectors

x1 D

2

4

1

0

1

3

5 and x2 D

2

4

0

1

0

3

5 (10.5.16)

form a basis for the eigenspace, and

y1 D

2

4

1

0

1

3

5 et and y2 D

2

4

0

1

0

3

5 et

are linearly independent solutions of (10.5.15).

To find a third linearly independent solution of (10.5.15), we must find constants ˛ and ˇ (not both

zero) such that the system

.A � I /u D ˛x1 C ˇx2 (10.5.17)

has a solution u. The augmented matrix of this system is
2

6

6

6

4

�1 0 1
::: ˛

�1 0 1
::: ˇ

�1 0 1
::: ˛

3

7

7

7

5

;
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which is row equivalent to
2

6

6

6

4

1 0 �1
::: �˛

0 0 0
::: ˇ � ˛

0 0 0
::: 0

3

7

7

7

5

: (10.5.18)

Therefore (10.5.17) has a solution if and only if ˇ D ˛, where ˛ is arbitrary. If ˛ D ˇ D 1 then (10.5.12)
and (10.5.16) yield

x3 D x1 C x2 D

2

4

1

0

1

3

5C

2

4

0

1

0

3

5 D

2

4

1

1

1

3

5 ;

and the augmented matrix (10.5.18) becomes

2

6

6

6

4

1 0 �1
::: �1

0 0 0
::: 0

0 0 0
::: 0

3

7

7

7

5

:

This implies that u1 D �1C u3, while u2 and u3 are arbitrary. Choosing u2 D u3 D 0 yields

u D

2

4

�1
0

0

3

5 :

Therefore (10.5.14) implies that

y3 D uet C x3te
t D

2

4

�1
0

0

3

5 et C

2

4

1

1

1

3

5 tet

is a solution of (10.5.15). Since y1, y2, and y3 are linearly independent by Theorem 10.5.3, they form a

fundamental set of solutions for (10.5.15). Therefore the general solution of (10.5.15) is

y D c1

2

4

1

0

1

3

5 et C c2

2

4

0

1

0

3

5 et C c3

0

@

2

4

�1
0

0

3

5 et C

2

4

1

1

1

3

5 tet

1

A :

Geometric Properties of Solutions when n D 2

We’ll now consider the geometric properties of solutions of a 2 � 2 constant coefficient system

�

y0
1

y0
2

�

D
�

a11 a12

a21 a22

� �

y1

y2

�

(10.5.19)

under the assumptions of this section; that is, when the matrix

A D
�

a11 a12

a21 a22

�

has a repeated eigenvalue �1 and the associated eigenspace is one-dimensional. In this case we know

from Theorem 10.5.1 that the general solution of (10.5.19) is

y D c1xe�1t C c2.ue
�1t C xte�1t /; (10.5.20)
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where x is an eigenvector of A and u is any one of the infinitely many solutions of

.A � �1I /u D x: (10.5.21)

We assume that �1 ¤ 0.

x

 u

 c
2
 > 0 c

2
 < 0

L

Positive Half−Plane

Negative Half−Plane

Figure 10.5.1 Positive and negative half-planes

Let L denote the line through the origin parallel to x. By a half-line of L we mean either of the rays

obtained by removing the origin from L. Eqn. (10.5.20) is a parametric equation of the half-line of L in

the direction of x if c1 > 0, or of the half-line of L in the direction of �x if c1 < 0. The origin is the

trajectory of the trivial solution y � 0.

Henceforth, we assume that c2 ¤ 0. In this case, the trajectory of (10.5.20) can’t intersect L, since
every point of L is on a trajectory obtained by setting c2 D 0. Therefore the trajectory of (10.5.20) must

lie entirely in one of the open half-planes bounded by L, but does not contain any point on L. Since the

initial point .y1.0/; y2.0// defined by y.0/ D c1x1 C c2u is on the trajectory, we can determine which

half-plane contains the trajectory from the sign of c2, as shown in Figure 553. For convenience we’ll

call the half-plane where c2 > 0 the positive half-plane. Similarly, the-half plane where c2 < 0 is the
negative half-plane. You should convince yourself (Exercise 35) that even though there are infinitely

many vectors u that satisfy (10.5.21), they all define the same positive and negative half-planes. In the

figures simply regard u as an arrow pointing to the positive half-plane, since wen’t attempted to give u

its proper length or direction in comparison with x. For our purposes here, only the relative orientation

of x and u is important; that is, whether the positive half-plane is to the right of an observer facing the

direction of x (as in Figures 10.5.2 and 10.5.5), or to the left of the observer (as in Figures 10.5.3 and
10.5.4).

Multiplying (10.5.20) by e��1t yields

e��1 ty.t/ D c1x C c2u C c2tx:

Since the last term on the right is dominant when jt j is large, this provides the following information on

the direction of y.t/:

(a) Along trajectories in the positive half-plane (c2 > 0), the direction of y.t/ approaches the direction
of x as t ! 1 and the direction of �x as t ! �1.
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(b) Along trajectories in the negative half-plane (c2 < 0), the direction of y.t/ approaches the direction

of �x as t ! 1 and the direction of x as t ! �1.

Since

lim
t!1

ky.t/k D 1 and lim
t!�1

y.t/ D 0 if �1 > 0;

or

lim
t�!1

ky.t/k D 1 and lim
t!1

y.t/ D 0 if �1 < 0;

there are four possible patterns for the trajectories of (10.5.19), depending upon the signs of c2 and �1.

Figures 10.5.2-10.5.5 illustrate these patterns, and reveal the following principle:

If �1 and c2 have the same sign then the direction of the traectory approaches the direction of �x as

kyk ! 0 and the direction of x as kyk ! 1. If �1 and c2 have opposite signs then the direction of the

trajectory approaches the direction of x as kyk ! 0 and the direction of �x as kyk ! 1.

 y
1

 y
2

 u

 x

 L

Figure 10.5.2 Positive eigenvalue; motion away

from the origin

 y
1

 y
2

 u

 x

 L

Figure 10.5.3 Positive eigenvalue; motion away

from the origin

 y
1

 y
2

 u

 x

 L

Figure 10.5.4 Negative eigenvalue; motion toward

the origin

 y
1

 y
2

 x

 L

 u

Figure 10.5.5 Negative eigenvalue; motion toward

the origin
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10.5 Exercises

In Exercises 1–12 find the general solution.

1. y0 D
�

3 4

�1 7

�

y
2. y0 D

�

0 �1
1 �2

�

y

3. y0 D
�

�7 4

�1 �11

�

y 4. y0 D
�

3 1

�1 1

�

y

5. y0 D
�

4 12

�3 �8

�

y 6. y0 D
�

�10 9

�4 2

�

y

7. y0 D
�

�13 16

�9 11

�

y
8. y0 D

2

4

0 2 1

�4 6 1

0 4 2

3

5 y

9. y0 D 1

3

2

4

1 1 �3
�4 �4 3

�2 1 0

3

5 y 10. y0 D

2

4

�1 1 �1
�2 0 2

�1 3 �1

3

5 y

11. y0 D

2

4

4 �2 �2
�2 3 �1
2 �1 3

3

5 y 12. y0 D

2

4

6 �5 3

2 �1 3

2 1 1

3

5 y

In Exercises 13–23 solve the initial value problem.

13. y0 D
�

�11 8

�2 �3

�

y; y.0/ D
�

6

2

�

14. y0 D
�

15 �9
16 �9

�

y; y.0/ D
�

5

8

�

15. y0 D
�

�3 �4
1 �7

�

y; y.0/ D
�

2

3

�

16. y0 D
�

�7 24

�6 17

�

y; y.0/ D
�

3

1

�

17. y0 D
�

�7 3

�3 �1

�

y; y.0/ D
�

0

2

�

18. y0 D

2

4

�1 1 0

1 �1 �2
�1 �1 �1

3

5 y; y.0/ D

2

4

6

5

�7

3

5

19. y0 D

2

4

�2 2 1

�2 2 1

�3 3 2

3

5 y; y.0/ D

2

4

�6
�2
0

3

5

20. y0 D

2

4

�7 �4 4

�1 0 1

�9 �5 6

3

5 y; y.0/ D

2

4

�6
9

�1

3

5
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21. y0 D

2

4

�1 �4 �1
3 6 1

�3 �2 3

3

5 y; y.0/ D

2

4

�2
1

3

3

5

22. y0 D

2

4

4 �8 �4
�3 �1 �3
1 �1 9

3

5 y; y.0/ D

2

4

�4
1

�3

3

5

23. y0 D

2

4

�5 �1 11

�7 1 13

�4 0 8

3

5 y; y.0/ D

2

4

0

2

2

3

5

The coefficient matrices in Exercises 24–32 have eigenvalues of multiplicity 3. Find the general solution.

24. y0 D

2

4

5 �1 1

�1 9 �3
�2 2 4

3

5 y
25. y0 D

2

4

1 10 �12
2 2 3

2 �1 6

3

5 y

26. y0 D

2

4

�6 �4 �4
2 �1 1

2 3 1

3

5 y 27. y0 D

2

4

0 2 �2
�1 5 �3
1 1 1

3

5 y

28. y0 D

2

4

�2 �12 10

2 �24 11

2 �24 8

3

5 y 29. y0 D

2

4

�1 �12 8

1 �9 4

1 �6 1

3

5 y

30. y0 D

2

4

�4 0 �1
�1 �3 �1
1 0 �2

3

5 y 31. y0 D

2

4

�3 �3 4

4 5 �8
2 3 �5

3

5 y

32. y0 D

2

4

�3 �1 0

1 �1 0

�1 �1 �2

3

5y

33. Under the assumptions of Theorem 10.5.1, suppose u and Ou are vectors such that

.A � �1I /u D x and .A � �1I / Ou D x;

and let
y2 D ue�1t C xte�1t and Oy2 D Oue�1t C xte�1t :

Show that y2 � Oy2 is a scalar multiple of y1 D xe�1t .

34. Under the assumptions of Theorem 10.5.2, let

y1 D xe�1t ;

y2 D ue�1t C xte�1t ; and

y3 D ve�1t C ute�1t C x
t2e�1t

2
:

Complete the proof of Theorem 10.5.2 by showing that y3 is a solution of y0 D Ay and that

fy1; y2; y3g is linearly independent.
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35. Suppose the matrix

A D
�

a11 a12

a21 a22

�

has a repeated eigenvalue �1 and the associated eigenspace is one-dimensional. Let x be a �1-

eigenvector of A. Show that if .A � �1I /u1 D x and .A � �1I /u2 D x, then u2 � u1 is parallel

to x. Conclude from this that all vectors u such that .A � �1I /u D x define the same positive and
negative half-planes with respect to the lineL through the origin parallel to x.

In Exercises 36- 45 plot trajectories of the given system.

36. C/G y0 D
�

�3 �1
4 1

�

y
37. C/G y0 D

�

2 �1
1 0

�

y

38. C/G y0 D
�

�1 �3
3 5

�

y 39. C/G y0 D
�

�5 3

�3 1

�

y

40. C/G y0 D
�

�2 �3
3 4

�

y 41. C/G y0 D
�

�4 �3
3 2

�

y

42. C/G y0 D
�

0 �1
1 �2

�

y 43. C/G y0 D
�

0 1

�1 2

�

y

44. C/G y0 D
�

�2 1

�1 0

�

y 45. C/G y0 D
�

0 �4
1 �4

�

y

10.6 CONSTANT COEFFICIENT HOMOGENEOUS SYSTEMS III

We now consider the system y0 D Ay, where A has a complex eigenvalue � D ˛ C iˇ with ˇ ¤ 0.

We continue to assume that A has real entries, so the characteristic polynomial of A has real coefficients.

This implies that � D ˛ � iˇ is also an eigenvalue of A.

An eigenvector x of A associated with � D ˛ C iˇ will have complex entries, so we’ll write

x D u C iv

where u and v have real entries; that is, u and v are the real and imaginary parts of x. Since Ax D �x,

A.u C iv/ D .˛ C iˇ/.u C iv/: (10.6.1)

Taking complex conjugates here and recalling that A has real entries yields

A.u � iv/ D .˛ � iˇ/.u � iv/;

which shows that x D u � iv is an eigenvector associated with � D ˛ � iˇ. The complex conjugate

eigenvalues � and � can be separately associated with linearly independent solutions y0 D Ay; however,

we won’t pursue this approach, since solutions obtained in this way turn out to be complex–valued.

Instead, we’ll obtain solutions of y0 D Ay in the form

y D f1u C f2v (10.6.2)

where f1 and f2 are real–valued scalar functions. The next theorem shows how to do this.
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Theorem 10.6.1 Let A be an n � n matrix with real entries: Let � D ˛ C iˇ (ˇ ¤ 0) be a complex

eigenvalue of A and let x D u C iv be an associated eigenvector; where u and v have real components:

Then u and v are both nonzero and

y1 D e˛t.u cos ˇt � v sinˇt/ and y2 D e˛t.u sinˇt C v cosˇt/;

which are the real and imaginary parts of

e˛t.cos ˇt C i sinˇt/.u C iv/; (10.6.3)

are linearly independent solutions of y0 D Ay.

Proof A function of the form (10.6.2) is a solution of y0 D Ay if and only if

f 0
1u C f 0

2v D f1Au C f2Av: (10.6.4)

Carrying out the multiplication indicated on the right side of (10.6.1) and collecting the real and imaginary

parts of the result yields

A.u C iv/ D .˛u � ˇv/C i.˛v C ˇu/:

Equating real and imaginary parts on the two sides of this equation yields

Au D ˛u � ˇv

Av D ˛v C ˇu:

We leave it to you (Exercise 25) to show from this that u and v are both nonzero. Substituting from these

equations into (10.6.4) yields

f 0
1u C f 0

2v D f1.˛u � ˇv/C f2.˛v C ˇu/

D . f̨1 C f̌2/u C .� f̌1 C f̨2/v:

This is true if

f 0
1 D f̨1 C f̌2

f 0
2 D � f̌1 C f̨2;

or, equivalently,
f 0

1 � f̨1 D f̌2

f 0
2 � f̨2 D � f̌1:

If we let f1 D g1e
˛t and f2 D g2e

˛t , where g1 and g2 are to be determined, then the last two equations

become
g0

1 D ˇg2

g0
2 D �ˇg1;

which implies that
g00

1 D ˇg0
2 D �ˇ2g1;

so

g00
1 C ˇ2g1 D 0:

The general solution of this equation is

g1 D c1 cos ˇt C c2 sinˇt:

Moreover, since g2 D g0
1=ˇ,

g2 D �c1 sinˇt C c2 cos ˇt:
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Multiplying g1 and g2 by e˛t shows that

f1 D e˛t . c1 cosˇt C c2 sinˇt/;

f2 D e˛t .�c1 sinˇt C c2 cosˇt/:

Substituting these into (10.6.2) shows that

y D e˛t Œ.c1 cosˇt C c2 sinˇt/u C .�c1 sinˇt C c2 cosˇt/v�

D c1e
˛t .u cos ˇt � v sinˇt/C c2e

˛t.u sinˇt C v cosˇt/
(10.6.5)

is a solution of y0 D Ay for any choice of the constants c1 and c2. In particular, by first taking c1 D 1

and c2 D 0 and then taking c1 D 0 and c2 D 1, we see that y1 and y2 are solutions of y0 D Ay. We leave

it to you to verify that they are, respectively, the real and imaginary parts of (10.6.3) (Exercise 26), and

that they are linearly independent (Exercise 27).

Example 10.6.1 Find the general solution of

y0 D
�

4 �5
5 �2

�

y: (10.6.6)

Solution The characteristic polynomial of the coefficient matrix A in (10.6.6) is
ˇ

ˇ

ˇ

ˇ

4 � � �5
5 �2 � �

ˇ

ˇ

ˇ

ˇ

D .� � 1/2 C 16:

Hence, � D 1 C 4i is an eigenvalue of A. The associated eigenvectors satisfy .A � .1C 4i/ I / x D 0.

The augmented matrix of this system is

2

4

3 � 4i �5
::: 0

5 �3 � 4i
::: 0

3

5 ;

which is row equivalent to
2

4

1 � 3C4i
5

::: 0

0 0
::: 0

3

5 :

Therefore x1 D .3C 4i/x2=5. Taking x2 D 5 yields x1 D 3C 4i , so

x D
�

3C 4i

5

�

is an eigenvector. The real and imaginary parts of

et.cos 4t C i sin 4t/

�

3C 4i

5

�

are

y1 D et

�

3 cos 4t � 4 sin 4t

5 cos 4t

�

and y2 D et

�

3 sin 4t C 4 cos 4t

5 sin 4t

�

;

which are linearly independent solutions of (10.6.6). The general solution of (10.6.6) is

y D c1e
t

�

3 cos 4t � 4 sin 4t

5 cos 4t

�

C c2e
t

�

3 sin 4t C 4 cos 4t

5 sin 4t

�

:
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Example 10.6.2 Find the general solution of

y0 D
�

�14 39

�6 16

�

y: (10.6.7)

Solution The characteristic polynomial of the coefficient matrix A in (10.6.7) is

ˇ

ˇ

ˇ

ˇ

�14 � � 39

�6 16 � �

ˇ

ˇ

ˇ

ˇ

D .� � 1/2 C 9:

Hence, � D 1 C 3i is an eigenvalue of A. The associated eigenvectors satisfy .A� .1 C 3i/I / x D 0.

The augmented augmented matrix of this system is

2

4

�15 � 3i 39
::: 0

�6 15 � 3i
::: 0

3

5 ;

which is row equivalent to
2

4

1 �5Ci
2

::: 0

0 0
::: 0

3

5 :

Therefore x1 D .5 � i/=2. Taking x2 D 2 yields x1 D 5 � i , so

x D
�

5 � i
2

�

is an eigenvector. The real and imaginary parts of

et.cos 3t C i sin 3t/

�

5 � i
2

�

are

y1 D et

�

sin 3t C 5 cos 3t

2 cos 3t

�

and y2 D et

�

� cos 3t C 5 sin 3t

2 sin 3t

�

;

which are linearly independent solutions of (10.6.7). The general solution of (10.6.7) is

y D c1e
t

�

sin 3t C 5 cos 3t

2 cos3t

�

C c2e
t

�

� cos 3t C 5 sin 3t

2 sin 3t

�

:

Example 10.6.3 Find the general solution of

y0 D

2

4

�5 5 4

�8 7 6

1 0 0

3

5 y: (10.6.8)

Solution The characteristic polynomial of the coefficient matrix A in (10.6.8) is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�5 � � 5 4

�8 7 � � 6

1 0 ��

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.� � 2/.�2 C 1/:
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Hence, the eigenvalues of A are �1 D 2, �2 D i , and �3 D �i . The augmented matrix of .A� 2I /x D 0

is
2

6

6

6

4

�7 5 4
::: 0

�8 5 6
::: 0

1 0 �2
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �2
::: 0

0 1 �2
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Therefore x1 D x2 D 2x3. Taking x3 D 1 yields

x1 D

2

4

2

2

1

3

5 ;

so

y1 D

2

4

2

2

1

3

5 e2t

is a solution of (10.6.8).

The augmented matrix of .A � iI /x D 0 is

2

6

6

6

4

�5 � i 5 4
::: 0

�8 7 � i 6
::: 0

1 0 �i
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 �i
::: 0

0 1 1 � i
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Therefore x1 D ix3 and x2 D �.1 � i/x3. Taking x3 D 1 yields the eigenvector

x2 D

2

4

i

�1C i

1

3

5 :

The real and imaginary parts of

.cos t C i sin t/

2

4

i

�1 C i

1

3

5

are

y2 D

2

4

� sin t
� cos t � sin t

cos t

3

5 and y3 D

2

4

cos t
cos t � sin t

sin t

3

5 ;
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which are solutions of (10.6.8). Since the Wronskian of fy1; y2; y3g at t D 0 is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 0 1

2 �1 1

1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 1;

fy1; y2; y3g is a fundamental set of solutions of (10.6.8). The general solution of (10.6.8) is

y D c1

2

4

2

2

1

3

5 e2t C c2

2

4

� sin t

� cos t � sin t

cos t

3

5C c3

2

4

cos t

cos t � sin t

sin t

3

5 :

Example 10.6.4 Find the general solution of

y0 D

2

4

1 �1 �2
1 3 2

1 �1 2

3

5 y: (10.6.9)

Solution The characteristic polynomial of the coefficient matrix A in (10.6.9) is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 � � �1 �2
1 3 � � 2

1 �1 2 � �

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �.� � 2/
�

.� � 2/2 C 4
�

:

Hence, the eigenvalues of A are �1 D 2, �2 D 2 C 2i , and �3 D 2 � 2i . The augmented matrix of

.A � 2I /x D 0 is
2

6

6

6

4

�1 �1 �2
::: 0

1 1 2
::: 0

1 �1 0
::: 0

3

7

7

7

5

;

which is row equivalent to
2

6

6

6

4

1 0 1
::: 0

0 1 1
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Therefore x1 D x2 D �x3. Taking x3 D 1 yields

x1 D

2

4

�1
�1
1

3

5 ;

so

y1 D

2

4

�1
�1
1

3

5 e2t

is a solution of (10.6.9).

The augmented matrix of .A� .2C 2i/I / x D 0 is
2

6

6

6

4

�1 � 2i �1 �2
::: 0

1 1 � 2i 2
::: 0

1 �1 �2i
::: 0

3

7

7

7

5

;
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which is row equivalent to
2

6

6

6

4

1 0 �i
::: 0

0 1 i
::: 0

0 0 0
::: 0

3

7

7

7

5

:

Therefore x1 D ix3 and x2 D �ix3. Taking x3 D 1 yields the eigenvector

x2 D

2

4

i

�i
1

3

5

The real and imaginary parts of

e2t .cos 2t C i sin 2t/

2

4

i

�i
1

3

5

are

y2 D e2t

2

4

� sin 2t

sin 2t
cos 2t

3

5 and y2 D e2t

2

4

cos 2t

� cos 2t
sin 2t

3

5 ;

which are solutions of (10.6.9). Since the Wronskian of fy1; y2; y3g at t D 0 is
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1 0 1

�1 0 �1
1 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �2;

fy1; y2; y3g is a fundamental set of solutions of (10.6.9). The general solution of (10.6.9) is

y D c1

2

4

�1
�1
1

3

5 e2t C c2e
2t

2

4

� sin 2t

sin 2t

cos 2t

3

5C c3e
2t

2

4

cos 2t

� cos 2t

sin 2t

3

5 :

Geometric Properties of Solutions when n D 2

We’ll now consider the geometric properties of solutions of a 2 � 2 constant coefficient system

�

y0
1

y0
2

�

D
�

a11 a12

a21 a22

� �

y1

y2

�

(10.6.10)

under the assumptions of this section; that is, when the matrix

A D
�

a11 a12

a21 a22

�

has a complex eigenvalue � D ˛ C iˇ (ˇ ¤ 0) and x D u C iv is an associated eigenvector, where
u and v have real components. To describe the trajectories accurately it’s necessary to introduce a new

rectangular coordinate system in the y1-y2 plane. This raises a point that hasn’t come up before: It is

always possible to choose x so that .u; v/ D 0. A special effort is required to do this, since not every

eigenvector has this property. However, if we know an eigenvector that doesn’t, we can multiply it by a

suitable complex constant to obtain one that does. To see this, note that if x is a �-eigenvector of A and k
is an arbitrary real number, then

x1 D .1 C ik/x D .1C ik/.u C iv/ D .u � kv/C i.v C ku/
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is also a �-eigenvector of A, since

Ax1 D A..1 C ik/x/ D .1C ik/Ax D .1 C ik/�x D �..1 C ik/x/ D �x1:

The real and imaginary parts of x1 are

u1 D u � kv and v1 D v C ku; (10.6.11)

so

.u1; v1/ D .u � kv; v C ku/ D �
�

.u; v/k2 C .kvk2 � kuk2/k � .u; v/
�

:

Therefore .u1; v1/ D 0 if

.u; v/k2 C .kvk2 � kuk2/k � .u; v/ D 0: (10.6.12)

If .u; v/ ¤ 0 we can use the quadratic formula to find two real values of k such that .u1; v1/ D 0

(Exercise 28).

Example 10.6.5 In Example 10.6.1 we found the eigenvector

x D
�

3C 4i

5

�

D
�

3

5

�

C i

�

4

0

�

for the matrix of the system (10.6.6). Here u D
�

3

5

�

and v D
�

4

0

�

are not orthogonal, since

.u; v/ D 12. Since kvk2 � kuk2 D �18, (10.6.12) is equivalent to

2k2 � 3k � 2 D 0:

The zeros of this equation are k1 D 2 and k2 D �1=2. Letting k D 2 in (10.6.11) yields

u1 D u � 2v D
�

�5
5

�

and v1 D v C 2u D
�

10

10

�

;

and .u1; v1/ D 0. Letting k D �1=2 in (10.6.11) yields

u1 D u C v

2
D
�

5

5

�

and v1 D v � u

2
D 1

2

�

�5
5

�

;

and again .u1; v1/ D 0.

(The numbers don’t always work out as nicely as in this example. You’ll need a calculator or computer

to do Exercises 29-40.)
Henceforth, we’ll assume that .u; v/ D 0. Let U and V be unit vectors in the directions of u and v,

respectively; that is, U D u=kuk and V D v=kvk. The new rectangular coordinate system will have the

same origin as the y1-y2 system. The coordinates of a point in this system will be denoted by .´1; ´2/,

where ´1 and ´2 are the displacements in the directions of U and V, respectively.

From (10.6.5), the solutions of (10.6.10) are given by

y D e˛t Œ.c1 cosˇt C c2 sinˇt/u C .�c1 sinˇt C c2 cosˇt/v� : (10.6.13)

For convenience, let’s call the curve traversed by e�˛t y.t/ a shadow trajectory of (10.6.10). Multiplying

(10.6.13) by e�˛t yields

e�˛t y.t/ D ´1.t/U C ´2.t/V;
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where

´1.t/ D kuk.c1 cosˇt C c2 sinˇt/

´2.t/ D kvk.�c1 sinˇt C c2 cosˇt/:

Therefore
.´1.t//

2

kuk2
C .´2.t//

2

kvk2
D c2

1 C c2
2

(verify!), which means that the shadow trajectories of (10.6.10) are ellipses centered at the origin, with

axes of symmetry parallel to U and V. Since

´0
1 D ˇkuk

kvk ´2 and ´0
2 D �ˇkvk

kuk ´1;

the vector from the origin to a point on the shadow ellipse rotates in the same direction that V would have

to be rotated by �=2 radians to bring it into coincidence with U (Figures 10.6.1 and 10.6.2).

 y
1

 y
2

 V

 U

Figure 10.6.1 Shadow trajectories traversed

clockwise

 y
1

 y
2

 U

 V

Figure 10.6.2 Shadow trajectories traversed

counterclockwise

If ˛ D 0, then any trajectory of (10.6.10) is a shadow trajectory of (10.6.10); therefore, if � is
purely imaginary, then the trajectories of (10.6.10) are ellipses traversed periodically as indicated in Fig-

ures 10.6.1 and 10.6.2.

If ˛ > 0, then

lim
t!1

ky.t/k D 1 and lim
t!�1

y.t/ D 0;

so the trajectory spirals away from the origin as t varies from �1 to 1. The direction of the spiral
depends upon the relative orientation of U and V, as shown in Figures 10.6.3 and 10.6.4.

If ˛ < 0, then

lim
t!�1

ky.t/k D 1 and lim
t!1

y.t/ D 0;

so the trajectory spirals toward the origin as t varies from �1 to 1. Again, the direction of the spiral

depends upon the relative orientation of U and V, as shown in Figures 10.6.5 and 10.6.6.
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 y
1

 y
2

 V

 U

Figure 10.6.3 ˛ > 0; shadow trajectory spiraling
outward

 y
1

 y
2

 U

 V

Figure 10.6.4 ˛ > 0; shadow trajectory spiraling
outward

 y
1

 y
2

 V

 U

Figure 10.6.5 ˛ < 0; shadow trajectory spiraling

inward

 y
1

 y
2

 U

 V

Figure 10.6.6 ˛ < 0; shadow trajectory spiraling

inward

10.6 Exercises

In Exercises 1–16 find the general solution.

1. y0 D
�

�1 2

�5 5

�

y
2. y0 D

�

�11 4

�26 9

�

y

3. y0 D
�

1 2

�4 5

�

y 4. y0 D
�

5 �6
3 �1

�

y
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5. y0 D

2

4

3 �3 1

0 2 2

5 1 1

3

5 y 6. y0 D

2

4

�3 3 1

1 �5 �3
�3 7 3

3

5 y

7. y0 D

2

4

2 1 �1
0 1 1

1 0 1

3

5 y 8. y0 D

2

4

�3 1 �3
4 �1 2

4 �2 3

3

5 y

9. y0 D
�

5 �4
10 1

�

y 10. y0 D 1

3

�

7 �5
2 5

�

y

11. y0 D
�

3 2

�5 1

�

y 12. y0 D
�

34 52

�20 �30

�

y

13. y0 D

2

4

1 1 2

1 0 �1
�1 �2 �1

3

5 y 14. y0 D

2

4

3 �4 �2
�5 7 �8

�10 13 �8

3

5 y

15. y0 D

2

4

6 0 �3
�3 3 3

1 �2 6

3

5 y0 16. y0 D

2

4

1 2 �2
0 2 �1
1 0 0

3

5 y0

In Exercises 17–24 solve the initial value problem.

17. y0 D
�

4 �6
3 �2

�

y; y.0/ D
�

5

2

�

18. y0 D
�

7 15

�3 1

�

y; y.0/ D
�

5

1

�

19. y0 D
�

7 �15
3 �5

�

y; y.0/ D
�

17

7

�

20. y0 D 1

6

�

4 �2
5 2

�

y; y.0/ D
�

1

�1

�

21. y0 D

2

4

5 2 �1
�3 2 2

1 3 2

3

5 y; y.0/ D

2

4

4

0

6

3

5

22. y0 D

2

4

4 4 0

8 10 �20
2 3 �2

3

5 y; y.0/ D

2

4

8

6

5

3

5

23. y0 D

2

4

1 15 �15
�6 18 �22
�3 11 �15

3

5 y; y.0/ D

2

4

15

17

10

3

5

24. y0 D

2

4

4 �4 4

�10 3 15

2 �3 1

3

5 y; y.0/ D

2

4

16

14

6

3

5
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25. Suppose an n � n matrix A with real entries has a complex eigenvalue � D ˛ C iˇ (ˇ ¤ 0) with

associated eigenvector x D u C iv, where u and v have real components. Show that u and v are

both nonzero.

26. Verify that

y1 D e˛t .u cosˇt � v sinˇt/ and y2 D e˛t.u sinˇt C v cosˇt/;

are the real and imaginary parts of

e˛t .cosˇt C i sinˇt/.u C iv/:

27. Show that if the vectors u and v are not both 0 and ˇ ¤ 0 then the vector functions

y1 D e˛t.u cos ˇt � v sinˇt/ and y2 D e˛t.u sinˇt C v cosˇt/

are linearly independent on every interval. HINT: There are two cases to consider: (i) fu; vg
linearly independent, and (ii) fu; vg linearly dependent. In either case, exploit the the linear

independence of fcosˇt; sinˇtg on every interval.

28. Suppose u D
�

u1

u2

�

and v D
�

v1

v2

�

are not orthogonal; that is, .u; v/ ¤ 0.

(a) Show that the quadratic equation

.u; v/k2 C .kvk2 � kuk2/k � .u; v/ D 0

has a positive root k1 and a negative root k2 D �1=k1.

(b) Let u
.1/
1 D u � k1v, v

.1/
1 D v C k1u, u

.2/
1 D u � k2v, and v

.2/
1 D v C k2u, so that

.u
.1/
1 ; v

.1/
1 / D .u

.2/
1 ; v

.2/
1 / D 0, from the discussion given above. Show that

u
.2/
1 D v

.1/
1

k1

and v
.2/
1 D �u

.1/
1

k1

:

(c) Let U1, V1, U2, and V2 be unit vectors in the directions of u
.1/
1 , v

.1/
1 , u

.2/
1 , and v

.2/
1 , respec-

tively. Conclude from (a) that U2 D V1 and V2 D �U1, and that therefore the counterclock-

wise angles from U1 to V1 and from U2 to V2 are both �=2 or both ��=2.

In Exercises 29-32 find vectors U and V parallel to the axes of symmetry of the trajectories, and plot

some typical trajectories.

29. C/G y0 D
�

3 �5
5 �3

�

y
30. C/G y0 D

�

�15 10

�25 15

�

y

31. C/G y0 D
�

�4 8

�4 4

�

y 32. C/G y0 D
�

�3 �15
3 3

�

y

In Exercises 33-40 find vectors U and V parallel to the axes of symmetry of the shadow trajectories, and

plot a typical trajectory.

33. C/G y0 D
�

�5 6

�12 7

�

y
34. C/G y0 D

�

5 �12
6 �7

�

y
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35. C/G y0 D
�

4 �5
9 �2

�

y 36. C/G y0 D
�

�4 9

�5 2

�

y

37. C/G y0 D
�

�1 10

�10 �1

�

y 38. C/G y0 D
�

�1 �5
20 �1

�

y

39. C/G y0 D
�

�7 10

�10 9

�

y 40. C/G y0 D
�

�7 6

�12 5

�

y
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10.7 VARIATION OF PARAMETERS FOR NONHOMOGENEOUS LINEAR SYSTEMS

We now consider the nonhomogeneous linear system

y0 D A.t/y C f.t/;

where A is an n � n matrix function and f is an n-vector forcing function. Associated with this system is

the complementary system y0 D A.t/y.

The next theorem is analogous to Theorems 5.3.2 and 9.1.5. It shows how to find the general solution

of y0 D A.t/y C f.t/ if we know a particular solution of y0 D A.t/y C f.t/ and a fundamental set of

solutions of the complementary system. We leave the proof as an exercise (Exercise 21).

Theorem 10.7.1 Suppose the n � n matrix function A and the n-vector function f are continuous on

.a; b/: Let yp be a particular solution of y0 D A.t/y C f.t/ on .a; b/, and let fy1; y2; : : : ; yng be a

fundamental set of solutions of the complementary equation y0 D A.t/y on .a; b/. Then y is a solution of

y0 D A.t/y C f.t/ on .a; b/ if and only if

y D yp C c1y1 C c2y2 C � � � C cnyn;

where c1; c2; . . . , cn are constants.

Finding a Particular Solution of a Nonhomogeneous System

We now discuss an extension of the method of variation of parameters to linear nonhomogeneous systems.

This method will produce a particular solution of a nonhomogenous system y0 D A.t/y C f.t/ provided

that we know a fundamental matrix for the complementary system. To derive the method, suppose Y is a

fundamental matrix for the complementary system; that is,

Y D

2

6

6

6

4

y11 y12 � � � y1n

y21 y22 � � � y2n

:::
:::

: : :
:::

yn1 yn2 � � � ynn

3

7

7

7

5

;

where

y1 D

2

6

6

6

4

y11

y21

:::

yn1

3

7

7

7

5

; y2 D

2

6

6

6

4

y12

y22

:::

yn2

3

7

7

7

5

; � � � ; yn D

2

6

6

6

4

y1n

y2n

:::

ynn

3

7

7

7

5

is a fundamental set of solutions of the complementary system. In Section 10.3 we saw that Y 0 D A.t/Y .
We seek a particular solution of

y0 D A.t/y C f.t/ (10.7.1)

of the form

yp D Y u; (10.7.2)

where u is to be determined. Differentiating (10.7.2) yields

y0
p D Y 0u C Y u0

D AY u C Y u0 (since Y 0 D AY )

D Ayp C Y u0 (since Y u D yp):
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Comparing this with (10.7.1) shows that yp D Y u is a solution of (10.7.1) if and only if

Y u0 D f:

Thus, we can find a particular solution yp by solving this equation for u0, integrating to obtain u, and

computing Y u. We can take all constants of integration to be zero, since any particular solution will

suffice.

Exercise 22 sketches a proof that this method is analogous to the method of variation of parameters
discussed in Sections 5.7 and 9.4 for scalar linear equations.

Example 10.7.1

(a) Find a particular solution of the system

y0 D
�

1 2

2 1

�

y C
�

2e4t

e4t

�

; (10.7.3)

which we considered in Example 10.2.1.

(b) Find the general solution of (10.7.3).

SOLUTION(a) The complementary system is

y0 D
�

1 2

2 1

�

y: (10.7.4)

The characteristic polynomial of the coefficient matrix is
ˇ

ˇ

ˇ

ˇ

1 � � 2

2 1 � �

ˇ

ˇ

ˇ

ˇ

D .� C 1/.� � 3/:

Using the method of Section 10.4, we find that

y1 D
�

e3t

e3t

�

and y2 D
�

e�t

�e�t

�

are linearly independent solutions of (10.7.4). Therefore

Y D
�

e3t e�t

e3t �e�t

�

is a fundamental matrix for (10.7.4). We seek a particular solution yp D Y u of (10.7.3), where Y u0 D f;

that is,
�

e3t e�t

e3t �e�t

� �

u0
1

u0
2

�

D
�

2e4t

e4t

�

:

The determinant of Y is the Wronskian
ˇ

ˇ

ˇ

ˇ

e3t e�t

e3t �e�t

ˇ

ˇ

ˇ

ˇ

D �2e2t :

By Cramer’s rule,

u0
1 D � 1

2e2t

ˇ

ˇ

ˇ

ˇ

2e4t e�t

e4t �e�t

ˇ

ˇ

ˇ

ˇ

D 3e3t

2e2t
D 3

2
et ;

u0
2 D � 1

2e2t

ˇ

ˇ

ˇ

ˇ

e3t 2e4t

e3t e4t

ˇ

ˇ

ˇ

ˇ

D e7t

2e2t
D 1

2
e5t :
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Therefore

u0 D 1

2

�

3et

e5t

�

:

Integrating and taking the constants of integration to be zero yields

u D 1

10

�

15et

e5t

�

;

so

yp D Y u D 1

10

"

e3t e�t

e3t �e�t

#

�

15et

e5t

�

D 1

5

�

8e4t

7e4t

�

is a particular solution of (10.7.3).

SOLUTION(b) From Theorem 10.7.1, the general solution of (10.7.3) is

y D yp C c1y1 C c2y2 D 1

5

�

8e4t

7e4t

�

C c1

�

e3t

e3t

�

C c2

�

e�t

�e�t

�

; (10.7.5)

which can also be written as

y D 1

5

�

8e4t

7e4t

�

C
�

e3t e�t

e3t �e�t

�

c;

where c is an arbitrary constant vector.

Writing (10.7.5) in terms of coordinates yields

y1 D 8

5
e4t C c1e

3t C c2e
�t

y2 D 7

5
e4t C c1e

3t � c2e
�t ;

so our result is consistent with Example 10.2.1. .

If A isn’t a constant matrix, it’s usually difficult to find a fundamental set of solutions for the system

y0 D A.t/y. It is beyond the scope of this text to discuss methods for doing this. Therefore, in the
following examples and in the exercises involving systems with variable coefficient matrices we’ll provide

fundamental matrices for the complementary systems without explaining how they were obtained.

Example 10.7.2 Find a particular solution of

y0 D
�

2 2e�2t

2e2t 4

�

y C
�

1

1

�

; (10.7.6)

given that

Y D
�

e4t �1
e6t e2t

�

is a fundamental matrix for the complementary system.

Solution We seek a particular solution yp D Y u of (10.7.6) where Y u0 D f; that is,

�

e4t �1
e6t e2t

��

u0
1

u0
2

�

D
�

1

1

�

:
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The determinant of Y is the Wronskian
ˇ

ˇ

ˇ

ˇ

e4t �1
e6t e2t

ˇ

ˇ

ˇ

ˇ

D 2e6t:

By Cramer’s rule,

u0
1 D 1

2e6t

ˇ

ˇ

ˇ

ˇ

1 �1
1 e2t

ˇ

ˇ

ˇ

ˇ

D e2t C 1

2e6t
D e�4t C e�6t

2

u0
2 D 1

2e6t

ˇ

ˇ

ˇ

ˇ

e4t 1

e6t 1

ˇ

ˇ

ˇ

ˇ

D e4t � e6t

2e6t
D e�2t � 1

2
:

Therefore

u0 D 1

2

�

e�4t C e�6t

e�2t � 1

�

:

Integrating and taking the constants of integration to be zero yields

u D � 1

24

�

3e�4t C 2e�6t

6e�2t C 12t

�

;

so

yp D Y u D � 1

24

�

e4t �1
e6t e2t

� �

3e�4t C 2e�6t

6e�2t C 12t

�

D 1

24

�

4e�2t C 12t � 3
�3e2t .4t C 1/� 8

�

is a particular solution of (10.7.6).

Example 10.7.3 Find a particular solution of

y0 D � 2

t2

�

t �3t2
1 �2t

�

y C t2
�

1

1

�

; (10.7.7)

given that

Y D
�

2t 3t2

1 2t

�

is a fundamental matrix for the complementary system on .�1; 0/ and .0;1/.

Solution We seek a particular solution yp D Y u of (10.7.7) where Y u0 D f; that is,

�

2t 3t2

1 2t

��

u0
1

u0
2

�

D
�

t2

t2

�

:

The determinant of Y is the Wronskian
ˇ

ˇ

ˇ

ˇ

2t 3t2

1 2t

ˇ

ˇ

ˇ

ˇ

D t2:

By Cramer’s rule,

u0
1 D 1

t2

ˇ

ˇ

ˇ

ˇ

t2 3t2

t2 2t

ˇ

ˇ

ˇ

ˇ

D 2t3 � 3t4
t2

D 2t � 3t2;

u0
2 D 1

t2

ˇ

ˇ

ˇ

ˇ

2t t2

1 t2

ˇ

ˇ

ˇ

ˇ

D 2t3 � t2
t2

D 2t � 1:
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Therefore

u0 D
�

2t � 3t2

2t � 1

�

:

Integrating and taking the constants of integration to be zero yields

u D
�

t2 � t3
t2 � t

�

;

so

yp D Y u D
�

2t 3t2

1 2t

� �

t2 � t3
t2 � t

�

D
�

t3.t � 1/

t2.t � 1/

�

is a particular solution of (10.7.7).

Example 10.7.4

(a) Find a particular solution of

y0 D

2

4

2 �1 �1
1 0 �1
1 �1 0

3

5 y C

2

4

et

0

e�t

3

5 : (10.7.8)

(b) Find the general solution of (10.7.8).

SOLUTION(a) The complementary system for (10.7.8) is

y0 D

2

4

2 �1 �1
1 0 �1
1 �1 0

3

5 y: (10.7.9)

The characteristic polynomial of the coefficient matrix is

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 � � �1 �1
1 �� �1
1 �1 ��

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D ��.� � 1/2:

Using the method of Section 10.4, we find that

y1 D

2

4

1

1

1

3

5 ; y2 D

2

4

et

et

0

3

5 ; and y3 D

2

4

et

0

et

3

5

are linearly independent solutions of (10.7.9). Therefore

Y D

2

4

1 et et

1 et 0

1 0 et

3

5

is a fundamental matrix for (10.7.9). We seek a particular solution yp D Y u of (10.7.8), where Y u0 D f;

that is,
2

4

1 et et

1 et 0

1 0 et

3

5

2

4

u0
1

u0
2

u0
3

3

5 D

2

4

et

0

e�t

3

5 :
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The determinant of Y is the Wronskian
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 et et

1 et 0

1 0 et

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �e2t :

Thus, by Cramer’s rule,

u0
1 D � 1

e2t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

et et et

0 et 0

e�t 0 et

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �e
3t � et

e2t
D e�t � et

u0
2 D � 1

e2t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 et et

1 0 0

1 e�t et

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �1 � e2t

e2t
D 1 � e�2t

u0
3 D � 1

e2t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 et et

1 et 0

1 0 e�t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D e2t

e2t
D 1:

Therefore

u0 D

2

4

e�t � et

1 � e�2t

1

3

5 :

Integrating and taking the constants of integration to be zero yields

u D

2

6

4

�et � e�t

e�2t

2
C t

t

3

7

5
;

so

yp D Y u D

2

4

1 et et

1 et 0

1 0 et

3

5

2

6

4

�et � e�t

e�2t

2
C t

t

3

7

5
D

2

6

6

6

4

et.2t � 1/ � e�t

2

et .t � 1/� e�t

2
et .t � 1/� e�t

3

7

7

7

5

is a particular solution of (10.7.8).

SOLUTION(a) From Theorem 10.7.1 the general solution of (10.7.8) is

y D yp C c1y1 C c2y2 C c3y3 D

2

6

6

6

4

et.2t � 1/� e�t

2

et.t � 1/ � e�t

2
et.t � 1/ � e�t

3

7

7

7

5

C c1

2

4

1

1

1

3

5C c2

2

4

et

et

0

3

5C c3

2

4

et

0

et

3

5 ;

which can be written as

y D yp C Y c D

2

6

6

6

4

et.2t � 1/� e�t

2

et.t � 1/ � e�t

2
et.t � 1/ � e�t

3

7

7

7

5

C

2

4

1 et et

1 et 0

1 0 et

3

5 c

where c is an arbitrary constant vector.
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Example 10.7.5 Find a particular solution of

y0 D 1

2

2

4

3 e�t �e2t

0 6 0

�e�2t e�3t �1

3

5 y C

2

4

1

et

e�t

3

5 ; (10.7.10)

given that

Y D

2

4

et 0 e2t

0 e3t e3t

e�t 1 0

3

5

is a fundamental matrix for the complementary system.

Solution We seek a particular solution of (10.7.10) in the form yp D Y u, where Y u0 D f; that is,

2

4

et 0 e2t

0 e3t e3t

e�t 1 0

3

5

2

4

u0
1

u0
2

u0
3

3

5 D

2

4

1

et

e�t

3

5 :

The determinant of Y is the Wronskian
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

et 0 e2t

0 e3t e3t

e�t 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �2e4t :

By Cramer’s rule,

u0
1 D � 1

2e4t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 e2t

et e3t e3t

e�t 1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D e4t

2e4t
D 1

2

u0
2 D � 1

2e4t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

et 1 e2t

0 et e3t

e�t e�t 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D e3t

2e4t
D 1

2
e�t

u0
3 D � 1

2e4t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

et 0 1

0 e3t et

e�t 1 e�t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �e
3t � 2e2t

2e4t
D 2e�2t � e�t

2
:

Therefore

u0 D 1

2

2

4

1

e�t

2e�2t � e�t

3

5 :

Integrating and taking the constants of integration to be zero yields

u D 1

2

2

4

t

�e�t

e�t � e�2t

3

5 ;

so

yp D Y u D 1

2

2

4

et 0 e2t

0 e3t e3t

e�t 1 0

3

5

2

4

t

�e�t

e�t � e�2t

3

5 D 1

2

2

4

et.t C 1/� 1

�et

e�t.t � 1/

3

5
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is a particular solution of (10.7.10).

10.7 Exercises

In Exercises 1–10 find a particular solution.

1. y0 D
�

�1 �4
�1 �1

�

y C
�

21e4t

8e�3t

�

2. y0 D 1

5

�

�4 3

�2 �11

�

y C
�

50e3t

10e�3t

�

3. y0 D
�

1 2

2 1

�

y C
�

1

t

�

4. y0 D
�

�4 �3
6 5

�

y C
�

2

�2et

�

5. y0 D
�

�6 �3
1 �2

�

y C
�

4e�3t

4e�5t

�

6. y0 D
�

0 1

�1 0

�

y C
�

1

t

�

7. y0 D

2

4

3 1 �1
3 5 1

�6 2 4

3

5 y C

2

4

3

6

3

3

5 8. y0 D

2

4

3 �1 �1
�2 3 2

4 �1 �2

3

5 y C

2

4

1

et

et

3

5

9. y0 D

2

4

�3 2 2

2 �3 2

2 2 �3

3

5 y C

2

4

et

e�5t

et

3

5

10. y0 D 1

3

2

4

1 1 �3
�4 �4 3

�2 1 0

3

5 y C

2

4

et

et

et

3

5

In Exercises 11–20 find a particular solution, given that Y is a fundamental matrix for the complementary

system.

11. y0 D 1

t

�

1 t

�t 1

�

y C t

�

cos t

sin t

�

I Y D t

�

cos t sin t

� sin t cos t

�

12. y0 D 1

t

�

1 t

t 1

�

y C
�

t

t2

�

I Y D t

�

et e�t

et �e�t

�

13. y0 D 1

t2 � 1

�

t �1
�1 t

�

y C t

�

1

�1

�

I Y D
�

t 1

1 t

�

14. y0 D 1

3

�

1 �2e�t

2et �1

�

y C
�

e2t

e�2t

�

I Y D
�

2 e�t

et 2

�

15. y0 D 1

2t4

�

3t3 t6

1 �3t3
�

y C 1

t

�

t2

1

�

I Y D 1

t2

�

t3 t4

�1 t

�

16. y0 D

2

6

6

4

1

t � 1 � e�t

t � 1
et

t C 1

1

t C 1

3

7

7

5

y C
�

t2 � 1
t2 � 1

�

I Y D
�

t e�t

et t

�

17. y0 D 1

t

2

4

1 1 0

0 2 1

�2 2 2

3

5 y C

2

4

1

2

1

3

5 Y D

2

4

t2 t3 1

t2 2t3 �1
0 2t3 2

3

5
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18. y0 D

2

4

3 et e2t

e�t 2 et

e�2t e�t 1

3

5 y C

2

4

e3t

0

0

3

5 I Y D

2

4

e5t e2t 0

e4t 0 et

e3t �1 �1

3

5

19. y0 D 1

t

2

4

1 t 0

0 1 t

0 �t 1

3

5 y C

2

4

t

t

t

3

5 I Y D t

2

4

1 cos t sin t

0 � sin t cos t

0 � cos t � sin t

3

5

20. y0 D �1
t

2

4

e�t �t 1 � e�t

e�t 1 �t � e�t

e�t �t 1 � e�t

3

5 y C 1

t

2

4

et

0

et

3

5 I Y D 1

t

2

4

et e�t t

et �e�t e�t

et e�t 0

3

5

21. Prove Theorem 10.7.1.

22. (a) Convert the scalar equation

P0.t/y
.n/ C P1.t/y

.n�1/ C � � � C Pn.t/y D F.t/ .A/

into an equivalent n � n system

y0 D A.t/y C f.t/: .B/

(b) Suppose (A) is normal on an interval .a; b/ and fy1; y2; : : : ; yng is a fundamental set of

solutions of

P0.t/y
.n/ C P1.t/y

.n�1/ C � � � C Pn.t/y D 0 .C/

on .a; b/. Find a corresponding fundamental matrix Y for

y0 D A.t/y .D/

on .a; b/ such that

y D c1y1 C c2y2 C � � � C cnyn

is a solution of (C) if and only if y D Y c with

c D

2

6

6

6

4

c1

c2

:::

cn

3

7

7

7

5

is a solution of (D).

(c) Let yp D u1y1 C u1y2 C � � � C unyn be a particular solution of (A), obtained by the method

of variation of parameters for scalar equations as given in Section 9.4, and define

u D

2

6

6

6

4

u1

u2

:::

un

3

7

7

7

5

:

Show that yp D Y u is a solution of (B).

(d) Let yp D Y u be a particular solution of (B), obtained by the method of variation of param-

eters for systems as given in this section. Show that yp D u1y1 C u1y2 C � � � C unyn is a
solution of (A).
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23. Suppose the n � n matrix function A and the n–vector function f are continuous on .a; b/. Let

t0 be in .a; b/, let k be an arbitrary constant vector, and let Y be a fundamental matrix for the

homogeneous system y0 D A.t/y. Use variation of parameters to show that the solution of the

initial value problem

y0 D A.t/y C f.t/; y.t0/ D k

is

y.t/ D Y.t/

�

Y �1.t0/k C
Z t

t0

Y �1.s/f.s/ ds

�

:
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A BRIEF TABLE OF INTEGRALS

Z

u˛ du D u˛C1

˛ C 1
C c, ˛ ¤ �1

Z

du

u
D ln juj C c

Z

cosu du D sinuC c

Z

sinu du D � cosuC c

Z

tanu du D � ln j cosuj C c

Z

cot u du D ln j sinuj C c

Z

sec2 u du D tanuC c

Z

csc2 u du D � cotuC c

Z

sec u du D ln j secuC tanuj C c

Z

cos2 u du D u

2
C 1

4
sin 2uC c

Z

sin2 u du D u

2
� 1

4
sin 2uC c

Z

du

1C u2
du D tan�1 uC c

Z

dup
1 � u2

du D sin�1 uC c

Z

1

u2 � 1
du D 1

2
ln

ˇ

ˇ

ˇ

ˇ

u � 1
uC 1

ˇ

ˇ

ˇ

ˇ

C c

Z

coshu du D sinhuC c

Z

sinhu du D coshuC c

Z

u dv D uv �
Z

v du

Z

u cosu du D u sinuC cosuC c
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Z

u sinu du D �u cosuC sinuC c

Z

ueu du D ueu � eu C c

Z

e�u cos!u du D e�u.� cos!uC ! sin!u/

�2 C !2
C c

Z

e�u sin!u du D e�u.� sin !u� ! cos!u/

�2 C !2
C c

Z

ln juj du D u ln juj � uC c

Z

u ln juj du D u2 ln juj
2

� u2

4
C c

Z

cos!1u cos!2udu D sin.!1 C !2/u

2.!1 C !2/
C sin.!1 � !2/u

2.!1 � !2/
C c .!1 ¤ ˙!2/

Z

sin!1u sin!2udu D � sin.!1 C !2/u

2.!1 C !2/
C sin.!1 � !2/u

2.!1 � !2/
C c .!1 ¤ ˙!2/

Z

sin!1u cos!2udu D �cos.!1 C !2/u

2.!1 C !2/
� cos.!1 � !2/u

2.!1 � !2/
C c .!1 ¤ ˙!2/





Answers to Selected

Exercises

Section 1.2 Answers, pp. 14–15

1:2:1 (p. 14) (a) 3 (b) 2 (c) 1 (d) 2

1:2:3 (p. 14) (a) y D �x
2

2
C c (b) y D x cos x � sinx C c

(c) y D x2

2
ln x � x2

4
C c (d) y D �x cos x C 2 sinx C c1 C c2x

(e) y D .2x � 4/ex C c1 C c2x (f) y D x3

3
� sinx C ex C c1 C c2x

(g) y D sinx C c1 C c2x C c3x
2 (h) y D �x

5

60
C ex C c1 C c2x C c3x

2

(i) y D 7

64
e4x C c1 C c2x C c3x

2

1:2:4 (p. 14) (a) y D �.x � 1/ex (b) y D 1 � 1

2
cos x2 (c) y D 3 � ln.

p
2 cos x/

(d) y D �47
15

� 37

5
.x � 2/C x5

30
(e) y D 1

4
xe2x � 1

4
e2x C 29

4

(f) y D x sinx C 2 cos x � 3x � 1 (g) y D .x2 � 6x C 12/ex C x2

2
� 8x � 11

(h) y D x3

3
C cos 2x

6
C 7

4
x2 � 6x C 7

8
(i) y D x4

12
C x3

6
C 1

2
.x � 2/2 � 26

3
.x � 2/ � 5

3

1:2:7 (p. 15) (a) 576 ft (b) 10 s 1:2:8 (p. 15) (b) y D 0 1:2:10 (p. 15) (a) .�2c � 2;1/ .�1;1/

583
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Section 2.1 Answers, pp. 41–44

2:1:1 (p. 41) y D e�ax 2:1:2 (p. 41) y D ce�x3
2:1:3 (p. 41) y D ce�.ln x/2=2

2:1:4 (p. 41) y D c

x3
2:1:5 (p. 41) y D ce1=x 2:1:6 (p. 41) y D e�.x�1/

x
2:1:7 (p. 41) y D e

x lnx

2:1:8 (p. 41) y D �

x sin x
2:1:9 (p. 41) y D 2.1C x2/ 2:1:10 (p. 41) y D 3x�k

2:1:11 (p. 41) y D c.cos kx/1=k 2:1:12 (p. 41) y D 1

3
C ce�3x 2:1:13 (p. 41) y D 2

x
C c

x
ex

2:1:14 (p. 41) y D e�x2

�

x2

2
C c

�

2:1:15 (p. 41) y D �e
�x C c

1C x2
2:1:16 (p. 42) y D 7 ln jxj

x
C 3

2
x C c

x

2:1:17 (p. 42) y D .x � 1/�4.ln jx � 1j � cos x C c/ 2:1:18 (p. 42) y D e�x2

�

x3

4
C c

x

�

2:1:19 (p. 42) y D 2 ln jxj
x2

C 1

2
C c

x2
2:1:20 (p. 42) y D .xC c/ cos x 2:1:21 (p. 42) y D c � cos x

.1C x/2

2:1:22 (p. 42) y D �1
2

.x � 2/3
.x � 1/

C c
.x � 2/5
.x � 1/

2:1:23 (p. 42) y D .x C c/e� sin2 x

2:1:24 (p. 42) y D ex

x2
� ex

x3
C c

x2
. y D e3x � e�7x

10
2:1:26 (p. 42)

2x C 1

.1C x2/2

2:1:27 (p. 42) y D 1

x2
ln

�

1C x2

2

�

2:1:29 (p. 42) y D 2 ln jxj
x

C x

2
� 1

2x
2:1:28 (p. 42) y D 1

2
.sin x C csc x/

2:1:29 (p. 42) y D 2 ln jxj
x

C x

2
� 1

2x
2:1:30 (p. 42) y D .x � 1/�3 Œln.1 � x/� cos x�

2:1:31 (p. 42) y D 2x2 C 1

x2
.0;1/ 2:1:32 (p. 42) y D x2.1�lnx/ 2:1:33 (p. 42) y D 1

2
C 5

2
e�x2

2:1:34 (p. 42) y D ln jx � 1j C tanx C 1

.x � 1/3 2:1:35 (p. 42) y D ln jxj C x2 C 1

.x C 2/4

2:1:36 (p. 42) y D .x2 � 1/
�

1

2
ln jx2 � 1j � 4

�

2:1:37 (p. 42) y D �.x2 � 5/
�

7C ln jx2 � 5j
�

2:1:38 (p. 42) y D e�x2

�

3C
Z x

0

t2et2

dt

�

2:1:39 (p. 42) y D 1

x

�

2C
Z x

1

sin t

t
dt

�

2:1:40 (p. 43) y D e�x

Z x

1

tan t

t
dt

2:1:41 (p. 43) y D 1

1C x2

�

1C
Z x

0

et

1C t2
dt

�

2:1:42 (p. 43) y D 1

x

�

2e�.x�1/ C e�x

Z x

1

etet2

dt

�
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2:1:43 (p. 43) G D r

�
C
�

G0 � r

�

�

e��t limt!1 G.t/ D r

�
2:1:45 (p. 43) (a) y D y0e

�a.x�x0/ C e�ax

Z x

x0

eatf .t/ dt

2:1:48 (p. 44) (a) y D tan�1

�

1

3
C ce3x

�

(b) y D ˙
�

ln

�

1

x
C c

x2

��1=2

(c) y D exp
�

x2 C c

x2

�

(d) y D �1C x

c C 3 ln jxj

Section 2.2 Answers, pp. 52–55

2:2:1 (p. 52) y D 2˙
p

2.x3 C x2 C x C c/

2:2:2 (p. 52) ln.j sinyj/ D cos x C c; y � k� , k D integer

2:2:3 (p. 52) y D c

x � c y � �1 2:2:4 (p. 52)
.ln y/2

2
D �x

3

3
C c

2:2:5 (p. 52) y3 C 3 siny C ln jyj C ln.1 C x2/C tan�1 x D c; y � 0

2:2:6 (p. 52) y D ˙
 

1C
�

x

1C cx

�2
!1=2

; y � ˙1

2:2:7 (p. 52) y D tan

�

x3

3
C c

�

2:2:8 (p. 52) y D cp
1C x2

2:2:9 (p. 52) y D 2 � ce.x�1/2=2

1 � ce.x�1/2=2
I y � 1

2:2:10 (p. 52) y D 1C
�

3x2 C 9x C c/1=3

2:2:11 (p. 52) y D 2C
r

2

3
x3 C 3x2 C 4x � 11

3
2:2:12 (p. 52) y D e�.x2�4/=2

2 � e�.x2�4/=2

2:2:13 (p. 52) y3 C 2y2 Cx2 C sinx D 3 2:2:14 (p. 53) .y C 1/.y � 1/�3.y � 2/2 D �256.x C 1/�6

2:2:15 (p. 53) y D �1C3e�x2

2:2:16 (p. 53) y D 1p
2e�2x2 � 1

2:2:17 (p. 53) y � �1I .�1;1/

2:2:18 (p. 53) y D 4 � e�x2

2 � e�x2
I .�1;1/ 2:2:19 (p. 53) y D �1C

p
4x2 � 15
2

I
 p

15

2
;1

!

2:2:20 (p. 53) y D 2

1C e�2x
.�1;1/ 2:2:21 (p. 53) y D �

p
25 � x2; .�5; 5/

2:2:22 (p. 53) y � 2; .�1;1/ 2:2:23 (p. 53) y D 3

�

x C 1

2x � 4

�1=3

; .�1; 2/

2:2:24 (p. 53) y D x C c

1 � cx
2:2:25 (p. 53) y D �x cos c C

p
1 � x2 sin cI y � 1I y � �1
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2:2:26 (p. 53) y D �x C 3�=2 2:2:28 (p. 53) P D P0

˛P0 C .1 � ˛P0/e�at
; limt!1 P.t/ D 1=˛

2:2:29 (p. 53) I D SI0

I0 C .S � I0/e�rSt

2:2:30 (p. 53) If q D rS then I D I0

1C rI0t
and limt!1 I.t/ D 0. If q ¤ Rs, then I D

˛I0

I0 C .˛ � I0/e�r˛t
. If q < rs, then limt!1 I.t/ D ˛ D S � q

r

if q > rS , then limt!1 I.t/ D 0 2:2:34 (p. 55) f D ap; where a=constant

2:2:35 (p. 55) y D e�x
�

�1˙
p
2x2 C c

�

2:2:36 (p. 55) y D x2
�

�1C
p
x2 C c

�

2:2:37 (p. 55) y D ex
�

�1C .3xex C c/1=3
�

2:2:38 (p. 55) y D e2x.1˙
p
c � x2/ 2:2:39 (p. 55) (a) y1 D 1=x; g.x/ D h.x/

(b) y1 D x; g.x/ D h.x/=x2 (c) y1 D e�x; g.x/ D exh.x/

(d) y1 D x�r ; g.x/ D xr�1h.x/ (e) y1 D 1=v.x/; g.x/ D v.x/h.x/

Section 2.3 Answers, pp. 61–62

2:3:1 (p. 61) (a), (b) x0 ¤ k� (k D integer) 2:3:2 (p. 61) (a), (b) .x0; y0/ ¤ .0; 0/

2:3:3 (p. 61) (a), (b) x0y0 ¤ .2k C 1/�
2

(k= integer) 2:3:4 (p. 61) (a), (b) x0y0 > 0 and x0y0 ¤ 1

2:3:5 (p. 61) (a) all .x0; y0/ (b) .x0; y0/ with y0 ¤ 0 2:3:6 (p. 61) (a), (b) all .x0; y0/

2:3:7 (p. 61) (a), (b) all .x0; y0/ 2:3:8 (p. 61) (a), (b) .x0; y0/ such that x0 ¤ 4y0

2:3:9 (p. 61) (a) all .x0; y0/ (b) all .x0; y0/ ¤ .0; 0/ 2:3:10 (p. 61) (a) all .x0; y0/

(b) all .x0; y0/ with y0 ¤ ˙1 2:3:11 (p. 61) (a), (b) all .x0; y0/

2:3:12 (p. 61) (a), (b) all .x0; y0/ such that x0 C y0 > 0
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2:3:13 (p. 61) (a), (b) all .x0; y0/ with x0 ¤ 1; y0 ¤ .2k C 1/
�

2
(k D integer)

2:3:16 (p. 62) y D
�

3

5
x C 1

�5=3

; �1 < x < 1; is a solution.

Also,

y D
(

0; �1 < x � � 5
3

�

3
5
x C 1

�5=3
; � 5

3
< x < 1

is a solution, For every a � 5

3
, the following function is also a solution:

y D

8

ˆ

ˆ

<

ˆ

ˆ

:

�

3
5
.x C a/

�5=3
; �1 < x < �a;

0; �a � x � � 5
3

�

3
5
x C 1

�5=3
; � 5

3
< x < 1:

2:3:17 (p. 62) (a) all .x0; y0/ (b) all .x0; y0/ with y0 ¤ 1

2:3:18 (p. 62) y1 � 1; y2 D 1C jxj3; y3 D 1 � jxj3; y4 D 1C x3; y5 D 1 � x3

y6 D
�

1C x3; x � 0;

1; x < 0
; y7 D

�

1 � x3; x � 0;

1; x < 0
;

y8 D
�

1; x � 0;

1C x3; x < 0
; y9 D

�

1; x � 0;

1 � x3; x < 0

2:3:19 (p. 62) y D 1C .x2 C 4/3=2; �1 < x < 1

2:3:20 (p. 62) (a) The solution is unique on .0;1/. It is given by

y D
�

1; 0 < x �
p
5;

1 � .x2 � 5/3=2;
p
5 < x < 1

(b)

y D
�

1; �1 < x �
p
5;

1 � .x2 � 5/3=2;
p
5 < x < 1

is a solution of (A) on .�1;1/. If ˛ � 0, then

y D

8

<

:

1C .x2 � ˛2/3=2; �1 < x < �˛;
1; �˛ � x �

p
5;

1 � .x2 � 5/3=2;
p
5 < x < 1;
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and

y D

8

<

:

1 � .x2 � ˛2/3=2; �1 < x < �˛;
1; �˛ � x �

p
5;

1 � .x2 � 5/3=2;
p
5 < x < 1;

are also solutions of (A) on .�1;1/.

Section 2.4 Answers, pp. 68–73

2:4:1 (p. 68) y D 1

1 � cex
2:4:2 (p. 68) y D x2=7.c � ln jxj/1=7 2:4:3 (p. 68) y D e2=x.c � 1=x/2

2:4:4 (p. 68) y D ˙
p
2x C c

1C x2
2:4:5 (p. 69) y D ˙.1 � x2 C ce�x2

/�1=2

2:4:6 (p. 69) y D
�

x

3.1 � x/C ce�x

�1=3

2:4:7 (p. 69) y D 2
p
2p

1 � 4x
2:4:8 (p. 69) y D

�

1 � 3

2
e�.x2�1/=4

��2

2:4:9 (p. 69) y D 1

x.11 � 3x/1=3
2:4:10 (p. 69) y D .2ex � 1/2

2:4:11 (p. 69) y D .2e12x � 1 � 12x/1=3 2:4:12 (p. 69) y D
�

5x

2.1C 4x5/

�1=2

2:4:13 (p. 69) y D .4ex=2 � x � 2/2

2:4:14 (p. 69) P D P0e
at

1C aP0

R t

0 ˛.�/e
a� d�

; limt!1 P.t/ D

8

<

:

1 if L D 0;

0 if L D 1;

1=aL if 0 < L < 1:

2:4:15 (p. 69) y D x.ln jxj C c/ 2:4:16 (p. 69) y D cx2

1 � cx y D �x

2:4:17 (p. 69) y D ˙x.4 ln jxj C c/1=4 2:4:18 (p. 69) y D x sin�1.ln jxj C c/

2:4:19 (p. 70) y D x tan.ln jxj C c/ 2:4:20 (p. 70) y D ˙x
p
cx2 � 1

2:4:21 (p. 70) y D ˙x ln.ln jxj C c/ 2:4:22 (p. 70) y D � 2x

2 ln jxj C 1

2:4:23 (p. 70) y D x.3 lnx C 27/1=3 2:4:24 (p. 70) y D 1

x

�

9 � x4

2

�1=2

2:4:25 (p. 70) y D �x

2:4:26 (p. 70) y D �x.4x � 3/
.2x � 3/ 2:4:27 (p. 70) y D x

p
4x6 � 1 2:4:28 (p. 70) tan�1 y

x
� 1

2
ln.x2 C y2/ D c

2:4:29 (p. 70) .x C y/ ln jxj C y.1 � ln jyj/C cx D 0 2:4:30 (p. 70) .y C x/3 D 3x3.ln jxj C c/
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2:4:31 (p. 70) .y C x/ D c.y � x/3I y D xI y D �x

2:4:32 (p. 70) y2.y � 3x/ D cI y � 0I y D 3x

2:4:33 (p. 70) .x�y/3.xCy/ D cy2x4I y D 0I y D xI y D �x 2:4:34 (p. 70)
y

x
C y3

x3
D ln jxjCc

2:4:40 (p. 72) Choose X0 and Y0 so that

aX0 C bY0 D ˛

cX0 C dY0 D ˇ:

2:4:41 (p. 72) .y C 2x C 1/4.2y � 6x � 3/ D cI y D 3x C 3=2I y D �2x � 1

2:4:42 (p. 72) .y C x � 1/.y � x � 5/3 D cI y D x C 5I y D �x C 1

2:4:43 (p. 72) ln jy � x � 6j � 2.x C 2/

y � x � 6 D cI y D x C 6 2:4:44 (p. 72) .y1 D x1=3/ y D

x1=3.ln jxj C c/1=3

2:4:45 (p. 72) y1 D x3; y D ˙x3
p
cx6 � 1 2:4:46 (p. 72) y1 D x2; y D x2.1C cx4/

1� cx4
y D �x2

2:4:47 (p. 72) y1 D ex; y D �e
x.1 � 2cex/

1 � cex
I y D �2ex

2:4:48 (p. 72) y1 D tan x; y D tanx tan.ln j tan xj C c/

2:4:49 (p. 72) y1 D lnx; y D
2 lnx

�

1C c.ln x/4
�

1� c.lnx/4
I y D �2 lnx

2:4:50 (p. 72) y1 D x1=2; y D x1=2.�2 ˙
p

ln jxj C c/

2:4:51 (p. 72) y1 D ex2
; y D ex2

.�1˙
p
2x2 C c/ 2:4:52 (p. 72) y D �3C

p
1C 60x

2x

2:4:53 (p. 72) y D �5 C
p
1C 48x

2x2
2:4:56 (p. 73) y D 1C 1

x C 1C cex

2:4:57 (p. 73) y D ex � 1

1C ce�x
2:4:58 (p. 73) y D 1� 1

x.1 � cx/ 2:4:59 (p. 73) y D x � 2x

x2 C c
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Section 2.5 Answers, pp. 79–83

2:5:1 (p. 79) 2x3y2 D c 2:5:2 (p. 79) 3y sinx C 2x2ex C 3y D c 2:5:3 (p. 79) Not exact

2:5:4 (p. 79) x2 � 2xy2 C 4y3 D c 2:5:5 (p. 79) x C y D c 2:5:6 (p. 79) Not exact

2:5:7 (p. 79) 2y2 cos x C 3xy3 � x2 D c 2:5:8 (p. 79) Not exact

2:5:9 (p. 79) x3Cx2yC4xy2 C9y2 D c 2:5:10 (p. 79) Not exact 2:5:11 (p. 79) ln jxyjCx2 Cy2 D c

2:5:12 (p. 79) Not exact 2:5:13 (p. 79) x2 C y2 D c 2:5:14 (p. 79) x2y2ex C 2y C 3x2 D c

2:5:15 (p. 79) x3ex2Cy � 4y3 C 2x2 D c 2:5:16 (p. 80) x4exy C 3xy D c

2:5:17 (p. 80) x3 cos xy C 4y2 C 2x2 D c 2:5:18 (p. 80) y D x C
p
2x2 C 3x � 1
x2

2:5:19 (p. 80) y D sinx �
r

1� tanx

2
2:5:20 (p. 80) y D

�

ex � 1
ex C 1

�1=3

2:5:21 (p. 80) y D 1C 2 tan x 2:5:22 (p. 80) y D x2 � x C 6

.x C 2/.x � 3/

2:5:23 (p. 80)
7x2

2
C 4xy C 3y2

2
D c 2:5:24 (p. 80) .x4y2 C 1/ex C y2 D c

2:5:29 (p. 81) (a) M.x; y/ D 2xy C f .x/ (b) M.x; y/ D 2.sin x C x cos x/.y siny C cosy/ C f .x/

(c) M.x; y/ D yex � ey cos x C f .x/

2:5:30 (p. 81) (a) N.x; y/ D x4y

2
C x2 C 6xy C g.y/ (b) N.x; y/ D x

y
C 2y sinx C g.y/

(c) N.x; y/ D x.sin y C y cosy/C g.y/

2:5:33 (p. 81) B D C 2:5:34 (p. 81) B D 2D; E D 2C

2:5:37 (p. 82) (a) 2x2 C x4y4 C y2 D c (b) x3 C 3xy2 D c (c) x3 C y2 C 2xy D c

2:5:38 (p. 82) y D �1 � 1

x2
2:5:39 (p. 82) y D x3

 

�3.x2 C 1/C
p
9x4 C 34x2 C 21

2

!
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2:5:40 (p. 82) y D �e�x2

 

2x C
p
9 � 5x2

3

!

.

2:5:44 (p. 83) (a) G.x; y/ D 2xy C c (b) G.x; y/ D ex siny C c

(c) G.x; y/ D 3x2y � y3 C c (d) G.x; y/ D � sinx sinhy C c

(e) G.x; y/ D cos x sinhy C c

Section 2.6 Answers, pp. 91–93

2:6:3 (p. 91) �.x/ D 1=x2; y D cx and �.y/ D 1=y2; x D cy

2:6:4 (p. 91) �.x/ D x�3=2; x3=2y D c 2:6:5 (p. 91) �.y/ D 1=y3; y3e2x D c

2:6:6 (p. 91) �.x/ D e5x=2; e5x=2.xy C 1/ D c 2:6:7 (p. 92) �.x/ D ex; ex.xy C y C x/ D c

2:6:8 (p. 92) �.x/ D x; x2y2.9x C 4y/ D c 2:6:9 (p. 92) �.y/ D y2; y3.3x2y C 2x C 1/ D c

2:6:10 (p. 92) �.y/ D yey ; ey.xy3 C 1/ D c 2:6:11 (p. 92) �.y/ D y2; y3.3x4 C 8x3y C y/ D c

2:6:12 (p. 92) �.x/ D xex; x2y.x C 1/ex D c

2:6:13 (p. 92) �.x/ D .x3 � 1/�4=3; xy.x3 � 1/�1=3 D c and x � 1

2:6:14 (p. 92) �.y/ D ey ; ey.sin x cosyCy�1/ D c 2:6:15 (p. 92) �.y/ D e�y2
; xye�y2

.xCy/ D c

2:6:16 (p. 92)
xy

siny
D c and y D k� (k D integer) 2:6:17 (p. 92) �.x; y/ D x4y3I x5y4 lnx D c

2:6:18 (p. 92) �.x; y/ D 1=xyI jxj˛jyjˇ e
xeıy D c and x � 0, y � 0

2:6:19 (p. 92) �.x; y/ D x�2y�3I 3x2y2 C y D 1C cxy2 and x � 0, y � 0

2:6:20 (p. 92) �.x; y/ D x�2y�1I � 2
x

C y3 C 3 ln jyj D c and x � 0, y � 0

2:6:21 (p. 92) �.x; y/ D eaxebyI eaxeby cos xy D c
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2:6:22 (p. 92) �.x; y/ D x�4y�3 (and others) xy D c 2:6:23 (p. 92) �.x; y/ D xey; x2yey sinx D c

2:6:24 (p. 92) �.x/ D 1=x2;
x3y3

3
� y

x
D c 2:6:25 (p. 92) �.x/ D x C 1; y.x C 1/2.x C y/ D c

2:6:26 (p. 92) �.x; y/ D x2y2I x3y3.3x C 2y2/ D c

2:6:27 (p. 92) �.x; y/ D x�2y�2; 3x2y D cxy C 2 and x � 0, y � 0

Section 3.1 Answers, pp. 106–108

3:1:1 (p. 106) y1 D 1:450000000; y2 D 2:085625000; y3 D 3:079099746

3:1:2 (p. 106) y1 D 1:200000000; y2 D 1:440415946; y3 D 1:729880994

3:1:3 (p. 106) y1 D 1:900000000; y2 D 1:781375000; y3 D 1:646612970

3:1:4 (p. 106) y1 D 2:962500000; y2 D 2:922635828; y3 D 2:880205639

3:1:5 (p. 106) y1 D 2:513274123; y2 D 1:814517822; y3 D 1:216364496

3:1:6 (p. 106)
x h D 0:1 h D 0:05 h D 0:025 Exact

1.0 48.298147362 51.492825643 53.076673685 54.647937102

3:1:7 (p. 106)
x h D 0:1 h D 0:05 h D 0:025 Exact

2.0 1.390242009 1.370996758 1.361921132 1.353193719

3:1:8 (p. 107)
x h D 0:05 h D 0:025 h D 0:0125 Exact

1.50 7.886170437 8.852463793 9.548039907 10.500000000

3:1:9 (p. 107)

x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025

3.0 1.469458241 1.462514486 1.459217010 0.3210 0.1537 0.0753

Approximate Solutions Residuals

3:1:10 (p. 107)

x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025

2.0 0.473456737 0.483227470 0.487986391 -0.3129 -0.1563 -0.0781

Approximate Solutions Residuals

3:1:11 (p. 107)
x h D 0:1 h D 0:05 h D 0:025 “Exact”

1.0 0.691066797 0.676269516 0.668327471 0.659957689
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3:1:12 (p. 108)
x h D 0:1 h D 0:05 h D 0:025 “Exact”

2.0 -0.772381768 -0.761510960 -0.756179726 -0.750912371

3:1:13 (p. 108)

Euler’s method

x h D 0:1 h D 0:05 h D 0:025 Exact

1.0 0.538871178 0.593002325 0.620131525 0.647231889

Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 Exact

1.0 0.647231889 0.647231889 0.647231889 0.647231889

Applying variation of parameters to the given initial value problem yields

y D ue�3x , where (A) u0 D 7; u.0/ D 6. Since u00 D 0, Euler’s method yields the exact

solution of (A). Therefore the Euler semilinear method produces the exact solution of the

given problem

.

3:1:14 (p. 108)

Euler’s method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

3.0 12.804226135 13.912944662 14.559623055 15.282004826

Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

3.0 15.354122287 15.317257705 15.299429421 15.282004826

3:1:15 (p. 108)

Euler’s method

x h D 0:2 h D 0:1 h D 0:05 “Exact”

2.0 0.867565004 0.885719263 0.895024772 0.904276722

Euler semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact”

2.0 0.569670789 0.720861858 0.808438261 0.904276722

3:1:16 (p. 108)

Euler’s method

x h D 0:2 h D 0:1 h D 0:05 “Exact”

3.0 0.922094379 0.945604800 0.956752868 0.967523153

Euler semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact”

3.0 0.993954754 0.980751307 0.974140320 0.967523153
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3:1:17 (p. 108)

Euler’s method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact”

1.50 0.319892131 0.330797109 0.337020123 0.343780513

Euler semilinear method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact”

1.50 0.305596953 0.323340268 0.333204519 0.343780513

3:1:18 (p. 108)

Euler’s method

x h D 0:2 h D 0:1 h D 0:05 “Exact”

2.0 0.754572560 0.743869878 0.738303914 0.732638628

Euler semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact”

2.0 0.722610454 0.727742966 0.730220211 0.732638628

3:1:19 (p. 108)

Euler’s method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact”

1.50 2.175959970 2.210259554 2.227207500 2.244023982

Euler semilinear method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact”

1.50 2.117953342 2.179844585 2.211647904 2.244023982

3:1:20 (p. 108)

Euler’s method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

1.0 0.032105117 0.043997045 0.050159310 0.056415515

Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

1.0 0.056020154 0.056243980 0.056336491 0.056415515

3:1:21 (p. 108)

Euler’s method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

1.0 28.987816656 38.426957516 45.367269688 54.729594761

Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

1.0 54.709134946 54.724150485 54.728228015 54.729594761

3:1:22 (p. 108)

Euler’s method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

3.0 1.361427907 1.361320824 1.361332589 1.361383810

Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact”

3.0 1.291345518 1.326535737 1.344004102 1.361383810

Section 3.2 Answers, pp. 116–108
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3:2:1 (p. 116) y1 D 1:542812500; y2 D 2:421622101; y3 D 4:208020541

3:2:2 (p. 116) y1 D 1:220207973; y2 D 1:489578775 y3 D 1:819337186

3:2:3 (p. 116) y1 D 1:890687500; y2 D 1:763784003; y3 D 1:622698378

3:2:4 (p. 116) y1 D 2:961317914 y2 D 2:920132727 y3 D 2:876213748.

3:2:5 (p. 116) y1 D 2:478055238; y2 D 1:844042564; y3 D 1:313882333

3:2:6 (p. 116)
x h D 0:1 h D 0:05 h D 0:025 Exact

1.0 56.134480009 55.003390448 54.734674836 54.647937102

3:2:7 (p. 117)
x h D 0:1 h D 0:05 h D 0:025 Exact

2.0 1.353501839 1.353288493 1.353219485 1.353193719

3:2:8 (p. 117)
x h D 0:05 h D 0:025 h D 0:0125 Exact

1.50 10.141969585 10.396770409 10.472502111 10.500000000

3:2:9 (p. 117)

x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025

3.0 1.455674816 1.455935127 1.456001289 -0.00818 -0.00207 -0.000518

Approximate Solutions Residuals

3:2:10 (p. 117)

x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025

2.0 0.492862999 0.492709931 0.492674855 0.00335 0.000777 0.000187

Approximate Solutions Residuals

3:2:11 (p. 118)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.660268159 0.660028505 0.659974464 0.659957689

3:2:12 (p. 118)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

2.0 -0.749751364 -0.750637632 -0.750845571 -0.750912371

3:2:13 (p. 118) Applying variation of parameters to the given initial value problem

y D ue�3x , where (A) u0 D 1 � 2x; u.0/ D 2. Since u000 D 0, the improved Euler method yields

the exact solution of (A). Therefore the improved Euler semilinear method produces the exact solution

of the given problem.

Improved Euler method

x h D 0:1 h D 0:05 h D 0:025 Exact

1.0 0.105660401 0.100924399 0.099893685 0.099574137

Improved Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 Exact

1.0 0.099574137 0.099574137 0.099574137 0.099574137

3:2:14 (p. 118)

Improved Euler method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 15.107600968 15.234856000 15.269755072 15.282004826

Improved Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 15.285231726 15.282812424 15.282206780 15.282004826
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3:2:15 (p. 118)

Improved Euler method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.924335375 0.907866081 0.905058201 0.904276722

Improved Euler semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.969670789 0.920861858 0.908438261 0.904276722

3:2:16 (p. 118)

Improved Euler method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

3.0 0.967473721 0.967510790 0.967520062 0.967523153

Improved Euler semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

3.0 0.967473721 0.967510790 0.967520062 0.967523153

3:2:17 (p. 118)

Improved Euler method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.50 0.349176060 0.345171664 0.344131282 0.343780513

Improved Euler semilinear method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.50 0.349350206 0.345216894 0.344142832 0.343780513

3:2:18 (p. 118)

Improved Euler method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.732679223 0.732721613 0.732667905 0.732638628

Improved Euler semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.732166678 0.732521078 0.732609267 0.732638628

3:2:19 (p. 118)

Improved Euler method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.50 2.247880315 2.244975181 2.244260143 2.244023982

Improved Euler semilinear method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.50 2.248603585 2.245169707 2.244310465 2.244023982

3:2:20 (p. 118)

Improved Euler method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.059071894 0.056999028 0.056553023 0.056415515

Improved Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.056295914 0.056385765 0.056408124 0.056415515
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3:2:21 (p. 118)

Improved Euler method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 50.534556346 53.483947013 54.391544440 54.729594761

Improved Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 54.709041434 54.724083572 54.728191366 54.729594761

3:2:22 (p. 118)

Improved Euler method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 1.361395309 1.361379259 1.361382239 1.361383810

Improved Euler semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 1.375699933 1.364730937 1.362193997 1.361383810

3:2:23 (p. 118)
x h D 0:1 h D 0:05 h D 0:025 Exact

2.0 1.349489056 1.352345900 1.352990822 1.353193719

3:2:24 (p. 119)
x h D 0:1 h D 0:05 h D 0:025 Exact

2.0 1.350890736 1.352667599 1.353067951 1.353193719

3:2:25 (p. 119)
x h D 0:05 h D 0:025 h D 0:0125 Exact

1.50 10.133021311 10.391655098 10.470731411 10.500000000

3:2:26 (p. 119)
x h D 0:05 h D 0:025 h D 0:0125 Exact

1.50 10.136329642 10.393419681 10.470731411 10.500000000

3:2:27 (p. 119)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.660846835 0.660189749 0.660016904 0.659957689

3:2:28 (p. 119)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.660658411 0.660136630 0.660002840 0.659957689

3:2:29 (p. 119)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

2.0 -0.750626284 -0.750844513 -0.750895864 -0.751331499

3:2:30 (p. 119)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

2.0 -0.750335016 -0.750775571 -0.750879100 -0.751331499

Section 3.3 Answers, pp. 124–127

3:3:1 (p. 124) y1 D 1:550598190; y2 D 2:469649729 3:3:2 (p. 124) y1 D 1:221551366; y2 D 1:492920208

3:3:3 (p. 124) y1 D 1:890339767; y2 D 1:763094323 3:3:4 (p. 124) y1 D 2:961316248 y2 D 2:920128958.

3:3:5 (p. 124) y1 D 2:475605264; y2 D 1:825992433

3:3:6 (p. 124)
x h D 0:1 h D 0:05 h D 0:025 Exact

1.0 54.654509699 54.648344019 54.647962328 54.647937102
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3:3:7 (p. 124)
x h D 0:1 h D 0:05 h D 0:025 Exact

2.0 1.353191745 1.353193606 1.353193712 1.353193719

3:3:8 (p. 125)
x h D 0:05 h D 0:025 h D 0:0125 Exact

1.50 10.498658198 10.499906266 10.499993820 10.500000000

3:3:9 (p. 125)

x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025

3.0 1.456023907 1.456023403 1.456023379 0.0000124 0.000000611 0.0000000333

Approximate Solutions Residuals

3:3:10 (p. 125)

x h D 0:1 h D 0:05 h D 0:025 h D 0:1 h D 0:05 h D 0:025

2.0 0.492663789 0.492663738 0.492663736 0.000000902 0.0000000508 0.00000000302

Approximate Solutions Residuals

3:3:11 (p. 125)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.659957046 0.659957646 0.659957686 0.659957689

3:3:12 (p. 126)
x h D 0:1 h D 0:05 h D 0:025 “Exact"

2.0 -0.750911103 -0.750912294 -0.750912367 -0.750912371

3:3:13 (p. 126) Applying variation of parameters to the given initial value problem yields

y D ue�3x , where (A) u0 D 1 � 4x C 3x2 � 4x3; u.0/ D �3. Since u.5/ D 0, the Runge-Kutta

method yields the exact solution of (A). Therefore the Euler semilinear method produces the exact

solution of the given problem.

Runge-Kutta method

x h D 0:1 h D 0:05 h D 0:025 Exact

0.0 -3.000000000 -3.000000000 -3.000000000 -3.000000000

0.1 -2.162598011 -2.162526572 -2.162522707 -2.162522468

0.2 -1.577172164 -1.577070939 -1.577065457 -1.577065117

0.3 -1.163350794 -1.163242678 -1.163236817 -1.163236453

0.4 -0.868030294 -0.867927182 -0.867921588 -0.867921241

0.5 -0.655542739 -0.655450183 -0.655445157 -0.655444845

0.6 -0.501535352 -0.501455325 -0.501450977 -0.501450707

0.7 -0.389127673 -0.389060213 -0.389056546 -0.389056318

0.8 -0.306468018 -0.306412184 -0.306409148 -0.306408959

0.9 -0.245153433 -0.245107859 -0.245105379 -0.245105226

1.0 -0.199187198 -0.199150401 -0.199148398 -0.199148273

Runge-Kutta semilinear method

x h D 0:1 h D 0:05 h D 0:025 Exact

0.0 -3.000000000 -3.000000000 -3.000000000 -3.000000000

0.1 -2.162522468 -2.162522468 -2.162522468 -2.162522468

0.2 -1.577065117 -1.577065117 -1.577065117 -1.577065117

0.3 -1.163236453 -1.163236453 -1.163236453 -1.163236453

0.4 -0.867921241 -0.867921241 -0.867921241 -0.867921241

0.5 -0.655444845 -0.655444845 -0.655444845 -0.655444845

0.6 -0.501450707 -0.501450707 -0.501450707 -0.501450707

0.7 -0.389056318 -0.389056318 -0.389056318 -0.389056318

0.8 -0.306408959 -0.306408959 -0.306408959 -0.306408959

0.9 -0.245105226 -0.245105226 -0.245105226 -0.245105226

1.0 -0.199148273 -0.199148273 -0.199148273 -0.199148273
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3:3:14 (p. 126)

Runge-Kutta method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 15.281660036 15.281981407 15.282003300 15.282004826

Runge-Kutta semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 15.282005990 15.282004899 15.282004831 15.282004826

3:3:15 (p. 126)

Runge-Kutta method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.904678156 0.904295772 0.904277759 0.904276722

Runge-Kutta semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.904592215 0.904297062 0.904278004 0.904276722

3:3:16 (p. 126)

Runge-Kutta method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

3.0 0.967523147 0.967523152 0.967523153 0.967523153

Runge-Kutta semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

3.0 0.967523147 0.967523152 0.967523153 0.967523153

3:3:17 (p. 126)

Runge-Kutta method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.50 0.343839158 0.343784814 0.343780796 0.343780513

Runge-Kutta semilinear method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.00 0.000000000 0.000000000 0.000000000 0.000000000

1.05 0.028121022 0.028121010 0.028121010 0.028121010

1.10 0.055393494 0.055393466 0.055393465 0.055393464

1.15 0.082164048 0.082163994 0.082163990 0.082163990

1.20 0.108862698 0.108862597 0.108862591 0.108862590

1.25 0.136058715 0.136058528 0.136058517 0.136058516

1.30 0.164564862 0.164564496 0.164564473 0.164564471

1.35 0.195651074 0.195650271 0.195650219 0.195650216

1.40 0.231542288 0.231540164 0.231540027 0.231540017

1.45 0.276818775 0.276811011 0.276810491 0.276810456

1.50 0.343839124 0.343784811 0.343780796 0.343780513

3:3:18 (p. 126)

Runge-Kutta method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.732633229 0.732638318 0.732638609 0.732638628

Runge-Kutta semilinear method

x h D 0:2 h D 0:1 h D 0:05 “Exact"

2.0 0.732639212 0.732638663 0.732638630 0.732638628
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3:3:19 (p. 126)

Runge-Kutta method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.50 2.244025683 2.244024088 2.244023989 2.244023982

Runge-Kutta semilinear method

x h D 0:0500 h D 0:0250 h D 0:0125 “Exact"

1.50 2.244025081 2.244024051 2.244023987 2.244023982

3:3:20 (p. 126)

Runge-Kutta method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.056426886 0.056416137 0.056415552 0.056415515

Runge-Kutta semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 0.056415185 0.056415495 0.056415514 0.056415515

3:3:21 (p. 126)

Runge-Kutta method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 54.695901186 54.727111858 54.729426250 54.729594761

Runge-Kutta semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

1.0 54.729099966 54.729561720 54.729592658 54.729594761

3:3:22 (p. 126)

Runge-Kutta method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 1.361384082 1.361383812 1.361383809 1.361383810

Runge-Kutta semilinear method

x h D 0:1 h D 0:05 h D 0:025 “Exact"

3.0 1.361456502 1.361388196 1.361384079 1.361383810

3:3:24 (p. 127)
x h D :1 h D :05 h D :025 Exact

2.00 -1.000000000 -1.000000000 -1.000000000 -1.000000000

3:3:25 (p. 127)
x h D :1 h D :05 h D :025 “Exact"

1.00 1.000000000 1.000000000 1.000000000 1.000000000

3:3:26 (p. 127)
x h D :1 h D :05 h D :025 Exact

1.50 4.142171279 4.142170553 4.142170508 4.142170505

3:3:27 (p. 127)
x h D :1 h D :05 h D :025 Exact

3.0 16.666666988 16.666666687 16.666666668 16.666666667

Section 4.1 Answers, pp. 138–140

4:1:1 (p. 138) Q D 20e�.t ln 2/=3200 g 4:1:2 (p. 138) 2 ln 10
ln 2

days 4:1:3 (p. 138) � D 10
ln 2

ln 4=3
minutes
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4:1:4 (p. 138) �
ln.p0=p1/

ln 2
4:1:5 (p. 138)

tp

tq
D ln p

ln q
4:1:6 (p. 138) k D 1

t2 � t1
ln

Q1

Q2
4:1:7 (p. 138) 20 g

4:1:8 (p. 138)
50 ln 2

3
yrs 4:1:9 (p. 138)

25

2
ln 2%

4:1:10 (p. 138) (a) D 20 ln 3 yr (b). Q0 D 100000e�:5 4:1:11 (p. 138) (a) Q.t/ D 5000 � 4750e�t=10 (b) 5000

lbs

4:1:12 (p. 138)
1

25
yrs; 4:1:13 (p. 138) V D V0et ln 10=2 4 hours

4:1:14 (p. 138)
1500 ln 4

3

ln 2
yrsI 2�4=3Q0 4:1:15 (p. 138) W.t/ D 20 � 19e�t=20; limt!1 W.t/ D 20 ounces

4:1:16 (p. 138) S.t/ D 10.1 C e�t=10/I limt!1 S.t/ D 10 g 4:1:17 (p. 139) 10 gallons

4:1:18 (p. 139) V.t/ D 15000 C 10000et=20 4:1:19 (p. 139) W.t/ D 4 � 106.t C 1/2 dollars t years from now

4:1:20 (p. 139) p D 100

25 � 24e�t=2
4:1:21 (p. 139) (a) P.t/ D 1000e:06t C 50

e:06t � 1

e:06=52 � 1
(b) 5:64 � 10�4

4:1:22 (p. 139) (a) P 0 D rP � 12M (b) P D 12M

r
.1 � ert / C P0ert (c) M � rP0

12.1 � e�rN /
(d) For (i) approximate M D $402:25, exact M D $402:80

for (ii) approximate M D $1206:05, exact M D $1206:93.

4:1:23 (p. 139) (a) T .˛/ D �1

r
ln
�

1 �
�

1 � e�rN /=˛
��

years

S.˛/ D
P0

.1 � e�rN /

h

rN C ˛ ln
�

1 � .1 � e�rN /=˛
�i

(b) T .1:05/ D 13:69 yrs, S.1:05/ D $3579:94 T .1:10/ D 12:61 yrs,

S.1:10/ D $6476:63 T .1:15/ D 11:70 yrs, S.1:15/ D $8874:98.

4:1:24 (p. 140) P0 D

8

<

:

S0.1 � e.a�r/T /

r � a
if a ¤ r;

S0T if a D r:

Section 4.2 Answers, pp. 148–150

4:2:1 (p. 148) � 15:15ıF 4:2:2 (p. 148) T D �10 C 110e�t ln 11
9 4:2:3 (p. 148) � 24:33ıF

4:2:4 (p. 148) (a) 91:30ıF (b) 8.99 minutes after being placed outside (c) never

4:2:5 (p. 148) (a) 12:11:32 (b) 12:47:33 4:2:6 (p. 148) .85=3/ıC 4:2:7 (p. 148) 32ıF 4:2:8 (p. 148) Q.t/ D 40.1 � e�3t=40/

4:2:9 (p. 148) Q.t/ D 30 � 20e�t=10 4:2:10 (p. 148) K.t/ D :3 � :2e�t=20 4:2:11 (p. 148) Q.50/ D 47:5

(pounds)

4:2:12 (p. 148) 50 gallons 4:2:13 (p. 148) min q2 D q1=c 4:2:14 (p. 149) Q D t C 300 �
234 � 105

.t C 300/2
; 0 � t � 300

4:2:15 (p. 149) (a) Q0 C 2

25
Q D 6 � 2e�t=25 (b) Q D 75 � 50e�t=25 � 25e�2t=25 (c) 75

4:2:16 (p. 149) (a) T D Tm C .T0 � Tm/e�kt C k.S0 � Tm/

.k � km/

�

e�kmt � e�kt
�

(b) T D Tm C k.S0 � Tm/te�kt C .T0 � Tm/e�kt (c) limt!1 T .t/ D limt!1 S.t/ D Tm

4:2:17 (p. 149) (a) T 0 D �k

�

1 C a

am

�

T C k

�

Tm0 C a

am
T0

�

(b) T D aT0 C amTm0

a C am
C am.T0 � Tm0/

a C am
e�k.1Ca=am/t ,

Tm D aT0 C amTm0

a C am
C a.Tm0 � T0/

a C am
e�k.1Ca=am/t ; (c) limt!1 T .t/ D limt!1 Tm.t / D aT0 C amTm0

a C am

4:2:18 (p. 150) V D a

b

V0

V0 � .V0 � a=b/ e�at
, limt!1 V.t/ D a=b

4:2:19 (p. 150) c1 D c
�

1 � e�rt=W
�

, c2 D c
�

1 � e�rt=W � r

W
te�rt=W

�

.
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4:2:20 (p. 150) (a) cn D c

0

@1 � e�rt=W
n�1
X

j D0

1

j Š

�

rt

W

�j
1

A (b) c (c) 0

4:2:21 (p. 150) Let c1 D
c1W1 C c2W2

W1 C W2
, ˛ D

c2W 2
2 � c1W 2

1

W1 C W2
, and ˇ D

W1 C W2

W1W2
. Then:

(a) c1.t / D c1 C ˛

W1
e�rˇt , c2.t / D c1 � ˛

W2
e�rˇt

(b) limt!1 c1.t / D limt!1 c2.t / D c1

Section 4.3 Answers, pp. 160–162

4:3:1 (p. 160) v D �
384

5

�

1 � e�5t=12
�

I �
384

5
ft/s 4:3:2 (p. 160) k D 12I v D �16.1 � e�2t /

4:3:3 (p. 160) v D 25.1 � e�t /I25 ft/s 4:3:4 (p. 160) v D 20 � 27e�t=40 4:3:5 (p. 160) � 17:10 ft

4:3:6 (p. 160) v D �40.13 C 3e�4t=5/

13 � 3e�4t=5
; -40 ft/s 4:3:7 (p. 160) v D �128.1 � e�t=4/

4:3:9 (p. 161) T D m

k
ln

�

1 C v0k

mg

�

I ym D y0 C m

k

�

v0 � mg

k
ln

�

1 C v0k

mg

��

4:3:10 (p. 161) v D �64.1 � e�t /

1 C e�t
; -64 ft/s

4:3:11 (p. 161) v D ˛
v0.1 C e�ˇt / � ˛.1 � e�ˇt /

˛.1 C e�ˇt / � v0.1 � e�ˇt /
I �˛, where ˛ D

r

mg

k
and ˇ D 2

r

kg

m
.

4:3:12 (p. 161) T D
r

m

kg
tan�1

 

v0

s

k

mg

!

v D �
r

mg

k
I 1 � e

�2

q

gk
m .t�T /

1 C e
�2

q

gk
m .t�T /

4:3:13 (p. 161) s0 D mg � as

s C 1
; a0 D mg. 4:3:14 (p. 161) (a) ms0 D mg � f .s/

4:3:15 (p. 161) (a) v0 D �9:8 C v4=81 (b) vT � �5:308 m/s

4:3:16 (p. 161) (a) v0 D �32 C 8
p

jvj; vT D �16 ft/s (b) From Exercise 4.3.14(c), vT is the negative

number such that �32 C 8
p

jvT j D 0; thus, vT D �16 ft/s.

4:3:17 (p. 162) � 6:76 miles/s 4:3:18 (p. 162) � 1:47 miles/s 4:3:20 (p. 162) ˛ D gR2

.ym C R/2

Section 4.4 Answers, pp. 176–177

4:4:1 (p. 176) y D 0 is a stable equilibrium; trajectories are v2 C y4

4
D c

4:4:2 (p. 176) y D 0 is an unstable equilibrium; trajectories are v2 C 2y3

3
D c

4:4:3 (p. 176) y D 0 is a stable equilibrium; trajectories are v2 C 2jyj3
3

D c

4:4:4 (p. 176) y D 0 is a stable equilibrium; trajectories are v2 � e�y .y C 1/ D c

4:4:5 (p. 176) equilibria: 0 (stable) and �2; 2 (unstable); trajectories: 2v2 � y4 C 8y2 D c;

separatrix: 2v2 � y4 C 8y2 D 16

4:4:6 (p. 176) equilibria: 0 (unstable) and �2; 2 (stable); trajectories: 2v2 C y4 � 8y2 D c;

separatrix: 2v2 C y4 � 8y2 D 0

4:4:7 (p. 176) equilibria: 0; �2; 2 (stable), �1; 1 (unstable); trajectories:

6v2 C y2.2y4 � 15y2 C 24/ D c; separatrix: 6v2 C y2.2y4 � 15y2 C 24/ D 11

4:4:8 (p. 176) equilibria: 0; 2 (stable) and �2; 1 (unstable);

trajectories: 30v2 C y2.12y3 � 15y2 � 80y C 120/ D c;

separatrices: 30v2 C y2.12y3 � 15y2 � 80y C 120/ D 496 and
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30v2 C y2.12y3 � 15y2 � 80y C 120/ D 37

4:4:9 (p. 176) No equilibria if a < 0; 0 is unstable if a D 0;
p

a is stable and

�
p

a is unstable if a > 0.

* 4:4:10 (p. 176) 0 is a stable equilibrium if a � 0; �
p

a and
p

a are stable and 0 is unstable if a > 0.

4:4:11 (p. 176) 0 is unstable if a � 0; �
p

a and
p

a are unstable and 0 is stable if a > 0.

4:4:12 (p. 176) 0 is stable if a � 0; 0 is stable and �
p

a and
p

a are unstable if a � 0.

4:4:22 (p. 178) An equilibrium solution y of y00 C p.y/ D 0 is unstable if there’s an � > 0

such that, for every ı > 0, there’s a solution of (A) with
p

.y.0/ � y/2 C v2.0/ < ı, but
p

.y.t / � y/2 C v2.t / �
� for some t > 0.

Section 4.5 Answers, pp. 190–192

4:5:1 (p. 190) y0 D � 2xy

x2 C 3y2
4:5:2 (p. 190) y0 D � y2

.xy � 1/
4:5:3 (p. 190) y0 D �y.x2 C y2 � 2x2 ln jxyj/

x.x2 C y2 � 2y2 ln jxyj/
.

4:5:4 (p. 190) xy0 � y D �x1=2

2
4:5:5 (p. 190) y0 C 2xy D 4xex2

4:5:6 (p. 190) xy0 C y D 4x3

4:5:7 (p. 190) y0 � y D cos x � sin x 4:5:8 (p. 190) .1 C x2/y0 � 2xy D .1 � x/2ex

4:5:10 (p. 190) y0g � yg0 D f 0g � fg0. 4:5:11 (p. 190) .x � x0/y0 D y � y0 4:5:12 (p. 190) y0.y2 � x2 C 1/ C
2xy D 0 4:5:13 (p. 190) 2x.y � 1/y0 � y2 C x2 C 2y D 0

4:5:14 (p. 190) (a) y D �81 C 18x; .9; 81/ y D �1 C 2x; .1; 1/

(b) y D �121 C 22x; .11; 121/ y D �1 C 2x; .1; 1/

(c) y D �100 � 20x; .�10; 100/ y D �4 � 4x; .�2; 4/

(d) y D �25 � 10x; .�5; 25/ y D �1 � 2x; .�1; 1/

4:5:15 (p. 190) (e) y D 5 C 3x

4
, .�3=5;4=5/ y D �5 � 4x

3
, .4=5; �3=5/

4:5:17 (p. 191) (a) y D �1

2
.1 C x/; .1; �1/I y D 5

2
C x

10
; .25; 5/

(b) y D
1

4
.4 C x/; .4; 2/ y D �

1

4
.4 C x/; .4; �2/;

(c) y D 1

2
.1 C x/; .1; 1/ y D 7

2
C x

14
; .49; 7/

(d) y D �1

2
.1 C x/; .1; �1/ y D �5

2
� x

10
; .25; �5/

4:5:18 (p. 191) y D 2x2 4:5:19 (p. 192) y D cx
p

jx2 � 1j
4:5:20 (p. 192) y D y1 C c.x � x1/

4:5:21 (p. 192) y D �x3

2
� x

2
4:5:22 (p. 192) y D �x ln jxj C cx 4:5:23 (p. 192) y D

p
2x C 4

4:5:24 (p. 192) y D
p

x2 � 3 4:5:25 (p. 192) y D kx2 4:5:26 (p. 192) .y � x/3.y C x/ D k

4:5:27 (p. 192) y2 D �x C k 4:5:28 (p. 192) y2 D �1

2
ln.1 C 2x2/ C k

4:5:29 (p. 192) y2 D �2x � ln.x � 1/2 C k 4:5:30 (p. 192) y D 1 C

s

9 � x2

2
I those with c > 0

4:5:33 (p. 192) tan�1 y

x
� 1

2
ln.x2 C y2/ D k 4:5:34 (p. 192)

1

2
ln.x2 C y2/ C .tan ˛/ tan�1 y

x
D k

Section 5.1 Answers, pp. 203–210

5:1:1 (p. 203) (c) y D �2e2x C e5x (d) y D .5k0 � k1/
e2x

3
C .k1 � 2k0/

e5x

3
.

5:1:2 (p. 203) (c) y D ex.3 cos x � 5 sin x/ (d) y D ex .k0 cos x C .k1 � k0/ sin x/
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5:1:3 (p. 204) (c) y D ex.7 � 3x/ (d) y D ex .k0 C .k1 � k0/x/

5:1:4 (p. 204) (a) y D c1

x � 1
C c2

x C 1
(b) y D 2

x � 1
� 3

x C 1
I .�1; 1/

5:1:5 (p. 204) (a) ex (b) e2x cos x (c) x2 C 2x � 2 (d) �5

6
x�5=6 (e) � 1

x2
(f) .x ln jxj/2 (g)

e2x

2
p

x

5:1:6 (p. 204) 0 5:1:7 (p. 205) W.x/ D .1 � x2/�1 5:1:8 (p. 205) W.x/ D 1

x
5:1:10 (p. 205) y2 D e�x

5:1:11 (p. 205) y2 D xe3x 5:1:12 (p. 205) y2 D xeax 5:1:13 (p. 205) y2 D 1

x
5:1:14 (p. 205) y2 D x ln x

5:1:15 (p. 205) y2 D xa ln x 5:1:16 (p. 205) y2 D x1=2e�2x 5:1:17 (p. 205) y2 D x 5:1:18 (p. 205) y2 D
x sin x 5:1:19 (p. 205) y2 D x1=2 cos x 5:1:20 (p. 205) y2 D xe�x 5:1:21 (p. 205) y2 D 1

x2 � 4
5:1:22

(p. 205) y2 D e2x

5:1:23 (p. 205) y2 D x2 5:1:35 (p. 207) (a) y00�2y0C5y D 0 (b) .2x�1/y00�4xy0C4y D 0 (c) x2y00�xy0Cy D
0

(d) x2y00 C xy0 C y D 0 (e) y00 � y D 0 (f) xy00 � y0 D 0

5:1:37 (p. 208) (c) y D k0y1 C k1y2 5:1:38 (p. 208) y1 D 1, y2 D x � x0; y D k0 C k1.x � x0/

5:1:39 (p. 208) y1 D cosh.x � x0/, y2 D sinh.x � x0/; y D k0 cosh.x � x0/ C k1 sinh.x � x0/

5:1:40 (p. 208) y1 D cos !.x � x0/, y2 D 1

!
sin !.x � x0/ y D k0 cos !.x � x0/ C k1

!
sin !.x � x0/

5:1:41 (p. 209) y1 D 1

1 � x2
, y2 D x

1 � x2
y D k0 C k1x

1 � x2

5:1:42 (p. 209) (c) k0 D k1 D 0; y D
�

c1x2 C c2x3; x � 0;

c1x2 C c3x3; x < 0

(d) .0; 1/ if x0 > 0, .�1; 0/ if x0 < 0

5:1:43 (p. 209) (c) k0 D 0, k1 arbitrary y D k1x C c2x2

5:1:44 (p. 210) (c) k0 D k1 D 0 y D
�

a1x3 C a2x4; x � 0;

b1x3 C b2x4; x < 0

(d) .0; 1/ if x0 > 0, .�1; 0/ if x0 < 0

Section 5.2 Answers, pp. 217–220

5:2:1 (p. 217) y D c1e�6x C c2ex 5:2:2 (p. 217) y D e2x.c1 cos x C c2 sin x/ 5:2:3 (p. 217) y D c1e�7x C
c2e�x

5:2:4 (p. 217) y D e2x.c1 C c2x/ 5:2:5 (p. 217) y D e�x.c1 cos 3x C c2 sin 3x/

5:2:6 (p. 217) y D e�3x.c1 cos x C c2 sin x/ 5:2:7 (p. 218) y D e4x.c1 C c2x/ 5:2:8 (p. 218) y D c1 C c2e�x

5:2:9 (p. 218) y D ex.c1 cos
p

2x C c2 sin
p

2x/ 5:2:10 (p. 218) y D e�3x.c1 cos 2x C c2 sin 2x/

5:2:11 (p. 218) y D e�x=2

�

c1 cos
3x

2
C c2 sin

3x

2

�

5:2:12 (p. 218) y D c1e�x=5 C c2ex=2

5:2:13 (p. 218) y D e�7x.2 cos x � 3 sin x/ 5:2:14 (p. 218) y D 4ex=2 C 6e�x=3 5:2:15 (p. 218) y D 3ex=3 �
4e�x=2

5:2:16 (p. 218) y D e�x=2

3
C 3e3x=2

4
5:2:17 (p. 218) y D e3x=2.3 � 2x/ 5:2:18 (p. 218) y D 3e�4x � 4e�3x

5:2:19 (p. 218) y D 2xe3x 5:2:20 (p. 218) y D ex=6.3C2x/ 5:2:21 (p. 218) y D e�2x

 

3 cos
p

6x C 2
p

6

3
sin

p
6x

!

5:2:23 (p. 218) y D 2e�.x�1/ � 3e�2.x�1/ 5:2:24 (p. 219) y D 1

3
e�.x�2/ � 2

3
e7.x�2/

5:2:25 (p. 219) y D e7.x�1/ .2 � 3.x � 1// 5:2:26 (p. 219) y D e�.x�2/=3 .2 � 4.x � 2//

5:2:27 (p. 219) y D 2 cos
2

3

�

x � �

4

�

� 3 sin
2

3

�

x � �

4

�

5:2:28 (p. 219) y D 2 cos
p

3
�

x � �

3

�

� 1p
3

sin
p

3
�

x � �

3

�
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5:2:30 (p. 219) y D k0

r2 � r1

�

r2er1.x�x0/ � r1er2.x�x0/
�

C k1

r2 � r1

�

er2.x�x0/ � er1.x�x0/
�

5:2:31 (p. 219) y D er1.x�x0/ Œk0 C .k1 � r1k0/.x � x0/�

5:2:32 (p. 219) y D e�.x�x0/

�

k0 cos !.x � x0/ C
�

k1 � �k0

!

�

sin !.x � x0/

�

Section 5.3 Answers, pp. 227–229

5:3:1 (p. 227) yp D �1 C 2x C 3x2; y D �1 C 2x C 3x2 C c1e�6x C c2ex

5:3:2 (p. 227) yp D 1 C x; y D 1 C x C e2x.c1 cos x C c2 sin x/

5:3:3 (p. 227) yp D �x C x3; y D �x C x3 C c1e�7x C c2e�x

5:3:4 (p. 227) yp D 1 � x2; y D 1 � x2 C e2x.c1 C c2x/

5:3:5 (p. 227) yp D 2x C x3; y D 2x C x3 C e�x.c1 cos 3x C c2 sin 3x/;

y D 2x C x3 C e�x.2 cos 3x C 3 sin 3x/

5:3:6 (p. 227) yp D 1 C 2x; y D 1 C 2x C e�3x.c1 cos x C c2 sin x/; y D 1 C 2x C e�3x.cos x � sin x/

5:3:8 (p. 227) yp D 2

x
5:3:9 (p. 227) yp D 4x1=2 5:3:10 (p. 227) yp D x3

2
5:3:11 (p. 227) yp D 1

x3

5:3:12 (p. 227) yp D 9x1=3 5:3:13 (p. 227) yp D 2x4

13
5:3:16 (p. 228) yp D e3x

3
; y D e3x

3
C c1e�6x C c2ex

5:3:17 (p. 228) yp D e2x ; y D e2x.1 C c1 cos x C c2 sin x/

5:3:18 (p. 228) y D �2e�2x ; y D �2e�2x C c1e�7x C c2e�x ; y D �2e�2x � e�7x C e�x

5:3:19 (p. 228) yp D ex ; y D ex C e2x.c1 C c2x/; y D ex C e2x.1 � 3x/

5:3:20 (p. 228) yp D
4

45
ex=2; y D

4

45
ex=2 C e�x.c1 cos 3x C c2 sin 3x/

5:3:21 (p. 228) yp D e�3x ; y D e�3x.1 C c1 cos x C c2 sin x/

5:3:24 (p. 228) yp D cos x � sin x; y D cos x � sin x C e4x.c1 C c2x/

5:3:25 (p. 228) yp D cos 2x � 2 sin 2x; y D cos 2x � 2 sin 2x C c1 C c2e�x

5:3:26 (p. 228) yp D cos 3x; y D cos 3x C ex.c1 cos
p

2x C c2 sin
p

2x/

5:3:27 (p. 228) yp D cos x C sin x; y D cos x C sin x C e�3x .c1 cos 2x C c2 sin 2x/

5:3:28 (p. 228) yp D �2 cos 2x C sin 2x; y D �2 cos 2x C sin 2x C c1e�4x C c2e�3x

y D �2 cos 2x C sin 2x C 2e�4x � 3e�3x

5:3:29 (p. 228) yp D cos 3x � sin 3x; y D cos 3x � sin 3x C e3x.c1 C c2x/

y D cos 3x � sin 3x C e3x.1 C 2x/

5:3:30 (p. 228) y D 1

!2
0 � !2

.M cos !x C N sin !x/ C c1 cos !0x C c2 sin !0x

5:3:33 (p. 229) yp D �1 C 2x C 3x2 C e3x

3
; y D �1 C 2x C 3x2 C e3x

3
C c1e�6x C c2ex

5:3:34 (p. 229) yp D 1 C x C e2x ; y D 1 C x C e2x.1 C c1 cos x C c2 sin x/

5:3:35 (p. 229) yp D �x C x3 � 2e�2x ; y D �x C x3 � 2e�2x C c1e�7x C c2e�x

5:3:36 (p. 229) yp D 1 � x2 C ex ; y D 1 � x2 C ex C e2x.c1 C c2x/

5:3:37 (p. 229) yp D 2x C x3 C
4

45
ex=2; y D 2x C x3 C

4

45
ex=2 C e�x.c1 cos 3x C c2 sin 3x/

5:3:38 (p. 229) yp D 1 C 2x C e�3x ; y D 1 C 2x C e�3x.1 C c1 cos x C c2 sin x/

Section 5.4 Answers, pp. 235–238

5:4:1 (p. 235) yp D e3x

�

�1

4
C x

2

�

5:4:2 (p. 235) yp D e�3x
�

1 � x

4

�

5:4:3 (p. 235) yp D ex

�

2 � 3x

4

�

5:4:4 (p. 235) yp D e2x.1 �3x Cx2/ 5:4:5 (p. 235) yp D e�x.1 Cx2/ 5:4:6 (p. 235) yp D ex.�2 Cx C2x2/
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5:4:7 (p. 235) yp D xe�x

�

1

6
C x

2

�

5:4:8 (p. 235) yp D xex .1 C 2x/ 5:4:9 (p. 235) yp D xe3x
�

�1 C x

2

�

5:4:10 (p. 235) yp D xe2x.�2Cx/ 5:4:11 (p. 235) yp D x2e�x
�

1 C x

2

�

5:4:12 (p. 235) yp D x2ex

�

1

2
� x

�

5:4:13 (p. 235) yp D x2e2x

2
.1 � x C x2/ 5:4:14 (p. 235) yp D x2e�x=3

27
.3 � 2x C x2/

5:4:15 (p. 235) y D
e3x

4
.�1 C 2x/ C c1ex C c2e2x 5:4:16 (p. 235) y D ex.1 � 2x/ C c1e2x C c2e4x

5:4:17 (p. 235) y D e2x

5
.1 � x/ C e�3x.c1 C c2x/ 5:4:18 (p. 235) y D xex.1 � 2x/ C c1ex C c2e�3x

5:4:19 (p. 235) y D ex
�

x2.1 � 2x/ C c1 C c2x
�

5:4:20 (p. 236) y D �e2x.1 C x/ C 2e�x � e5x

5:4:21 (p. 236) y D xe2x C 3ex � e�4x 5:4:22 (p. 236) y D e�x.2 C x � 2x2/ � e�3x

5:4:23 (p. 236) y D e�2x.3 � x/ � 2e5x 5:4:24 (p. 236) yp D �ex

3
.1 � x/ C e�x.3 C 2x/

5:4:25 (p. 236) yp D ex.3 C 7x/ C xe3x 5:4:26 (p. 236) yp D x3e4x C 1 C 2x C x2

5:4:27 (p. 236) yp D xe2x .1 � 2x/ C xex 5:4:28 (p. 236) yp D ex.1 C x/ C x2e�x

5:4:29 (p. 236) yp D x2e�x C e3x.1 � x2/ 5:4:31 (p. 237) yp D 2e2x 5:4:32 (p. 237) yp D 5xe4x

5:4:33 (p. 237) yp D x2e4x 5:4:34 (p. 237) yp D �
e3x

4
.1C2x�2x2/ 5:4:35 (p. 237) yp D xe3x.4�xC2x2/

5:4:36 (p. 237) yp D x2e�x=2.�1 C 2x C 3x2/

5:4:37 (p. 237) (a) y D e�x

�

4

3
x3=2 C c1x C c2

�

(b) y D e�3x

"

x2

4
.2 ln x � 3/ C c1x C c2

#

(c) y D e2x Œ.x C 1/ ln jx C 1j C c1x C c2� (d) y D e�x=2

 

x ln jxj C x3

6
C c1x C c2

!

5:4:39 (p. 238) (a) ex.3 C x/ C c (b) �e�x.1 C x/2 C c (c) �e�2x

8
.3 C 6x C 6x2 C 4x3/ C c

(d) ex.1 C x2/ C c (e) e3x.�6 C 4x C 9x2/ C c (f) �e�x.1 � 2x3 C 3x4/ C c

5:4:40 (p. 238)
.�1/kkŠe˛x

˛kC1

k
X

rD0

.�˛x/r

rŠ
C c

Section 5.5 Answers, pp. 244–248

5:5:1 (p. 244) yp D cos x C 2 sin x 5:5:2 (p. 244) yp D cos x C .2 � 2x/ sin x

5:5:3 (p. 244) yp D ex.�2 cos x C 3 sin x/

5:5:4 (p. 244) yp D e2x

2
.cos2x � sin 2x/ 5:5:5 (p. 244) yp D �ex.x cos x � sin x/

5:5:6 (p. 244) yp D e�2x.1 � 2x/.cos 3x � sin 3x/ 5:5:7 (p. 245) yp D x.cos 2x � 3 sin 2x/

5:5:8 (p. 245) yp D �x Œ.2 � x/ cos x C .3 � 2x/ sin x� 5:5:9 (p. 245) yp D x
h

x cos
�x

2

�

� 3 sin
�x

2

�i

5:5:10 (p. 245) yp D xe�x .3 cos x C 4 sin x/ 5:5:11 (p. 245) yp D xex Œ.�1 C x/ cos 2x C .1 C x/ sin 2x�

5:5:12 (p. 245) yp D �.14 � 10x/ cos x � .2 C 8x � 4x2/ sin x.

5:5:13 (p. 245) yp D .1 C 2x C x2/ cos x C .1 C 3x2/ sin x 5:5:14 (p. 245) yp D x2

2
.cos 2x � sin 2x/

5:5:15 (p. 245) yp D ex.x2 cos x C 2 sin x/ 5:5:16 (p. 245) yp D ex.1 � x2/.cos x C sin x/

5:5:17 (p. 245) yp D ex.x2 � x3/.cosx C sin x/ 5:5:18 (p. 245) yp D e�x Œ.1 C 2x/ cos x � .1 � 3x/ sin x�

5:5:19 (p. 245) yp D x.2 cos 3x � sin 3x/ 5:5:20 (p. 245) yp D �x3 cos x C .x C 2x2/ sin x

5:5:21 (p. 245) yp D �e�x
�

.x C x2/ cos x � .1 C 2x/ sin x
�
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5:5:22 (p. 245) y D ex.2 cos x C 3 sin x/ C 3ex � e6x 5:5:23 (p. 245) y D ex Œ.1 C 2x/ cos x C .1 � 3x/ sin x�

5:5:24 (p. 245) y D ex.cos x�2 sin x/Ce�3x .cos xCsin x/ 5:5:25 (p. 245) y D e3x Œ.2 C 2x/ cos x � .1 C 3x/ sin x�

5:5:26 (p. 245) y D e3x Œ.2 C 3x/ cos x C .4 � x/ sin x�C3ex�5e2x 5:5:27 (p. 245) yp D xe3x � ex

5
.cos x � 2 sin x/

5:5:28 (p. 245) yp D x.cos x C 2 sin x/ � ex

2
.1 � x/ C e�x

2

5:5:29 (p. 245) yp D �xex

2
.2 C x/ C 2xe2x C 1

10
.3 cos x C sin x/

5:5:30 (p. 245) yp D xex.cos x C x sin x/ C
e�x

25
.4 C 5x/ C 1 C x C

x2

2

5:5:31 (p. 245) yp D x2e2x

6
.3 C x/ � e2x.cos x � sin x/ C 3e3x C 1

4
.2 C x/

5:5:32 (p. 245) y D .1 � 2x C 3x2/e2x C 4 cos x C 3 sin x 5:5:33 (p. 245) y D xe�2x cos x C 3 cos 2x

5:5:34 (p. 245) y D �3

8
cos 2x C 1

4
sin 2x C e�x � 13

8
e�2x � 3

4
xe�2x

5:5:40 (p. 248) (a) 2x cos x � .2 � x2/ sin x C c (b) �ex

2

h

.1 � x2/ cos x � .1 � x/2 sin x
i

C c

(c) �e�x

25
Œ.4 C 10x/ cos 2x � .3 � 5x/ sin 2x� C c

(d) �
e�x

2

h

.1 C x/2 cos x � .1 � x2/ sin x
i

C c

(e) �ex

2

h

x.3 � 3x C x2/ cos x � .3 � 3x C x3/ sin x
i

C c

(f) �ex Œ.1 � 2x/ cos x C .1 C x/ sin x� C c (g) e�x Œx cos x C x.1 C x/ sin x� C c

Section 5.6 Answers, pp. 253–255

5:6:1 (p. 253) y D 1 � 2x C c1e�x C c2xex ; fe�x ; xexg 5:6:2 (p. 253) y D
4

3x2
C c1x C

c2

x
; fx; 1=xg

5:6:3 (p. 253) y D x.ln jxj/2

2
C c1x C c2x ln jxj; fx; x ln jxjg

5:6:4 (p. 253) y D .e2x C ex/ ln.1 C e�x/ C c1e2x C c2ex ; fe2x ; exg

5:6:5 (p. 253) y D ex

�

4

5
x7=2 C c1 C c2x

�

; fex ; xexg

5:6:6 (p. 253) y D ex.2x3=2 C x1=2 ln x C c1x1=2 C c2x�1=2/; fx1=2ex ; x�1=2e�xg
5:6:7 (p. 253) y D ex.x sin x C cos x ln j cos xj C c1 cos x C c2 sin x/; fex cos x; ex sin xg
5:6:8 (p. 253) y D e�x2

.2e�2x C c1 C c2x/; fe�x2
; xe�x2 g

5:6:9 (p. 253) y D 2x C 1 C c1x2 C c2

x2
; fx2; 1=x2g

5:6:10 (p. 253) y D
xe2x

9
C xe�x.c1 C c2x/; fxe�x ; x2e�xg

5:6:11 (p. 253) y D xex
�x

3
C c1 C c2

x2

�

; fxex ; ex=xg

5:6:12 (p. 253) y D � .2x � 1/2ex

8
C c1ex C c2xe�x ; fex ; xe�xg

5:6:13 (p. 253) y D x4 C c1x2 C c2x2 ln jxj; fx2; x2 ln jxjg
5:6:14 (p. 253) y D e�x.x3=2 C c1 C c2x1=2/; fe�x ; x1=2e�xg

5:6:15 (p. 253) y D ex.xCc1Cc2x2/; fex ; x2exg 5:6:16 (p. 253) y D x1=2

 

e2x

2
C c1 C c2ex

!

; fx1=2; x1=2exg

5:6:17 (p. 253) y D �2x2 ln x C c1x2 C c2x4; fx2; x4g 5:6:18 (p. 253) fex ; ex=xg 5:6:19 (p. 253) fx2; x3g
5:6:20 (p. 253) fln jxj; x ln jxjg 5:6:21 (p. 253) fsin

p
x; cos

p
xg 5:6:22 (p. 253) fex ; x3exg 5:6:23 (p. 253)
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fxa ; xa ln xg
5:6:24 (p. 253) fx sin x; x cos xg 5:6:25 (p. 253) fe2x ; x2e2xg 5:6:26 (p. 253) fx1=2; x1=2 cos xg
5:6:27 (p. 253) fx1=2e2x ; x1=2e�2xg 5:6:28 (p. 253) f1=x; e2xg 5:6:29 (p. 253) fex ; x2g 5:6:30 (p. 254)

fe2x ; x2e2xg 5:6:31 (p. 254) y D x4 C 6x2 � 8x2 ln jxj

5:6:32 (p. 254) y D 2e2x � xe�x 5:6:33 (p. 254) y D .x C 1/

4

�

�ex.3 � 2x/ C 7e�x
�

5:6:34 (p. 254) y D x2

4
C x 5:6:35 (p. 254) y D .x C 2/2

6.x � 2/
C 2x

x2 � 4

5:6:38 (p. 254) (a) y D �kc1 sin kx C kc2 cos kx

c1 cos kx C c2 sin kx
(b) y D c1 C 2c2ex

c1 C c2ex

(c) y D �6c1 C c2e7x

c1 C c2e7x
(d) y D �7c1 C c2e6x

c1 C c2e6x

(e) y D � .7c1 � c2/ cos x C .c1 C 7c2/ sin x

c1 cos x C c2 sin x

(f) y D �2c1 C 3c2e5x=6

6.c1 C c2e5x=6/
(g) y D c1 C c2.x C 6/

6.c1 C c2x/

5:6:39 (p. 255) (a) y D
c1 C c2ex.1 C x/

x.c1 C c2ex/
(b) y D

�2c1x C c2.1 � 2x2/

c1 C c2x

(c) y D
�c1 C c2e2x.x C 1/

c1 C c2xe2x
(d) y D

2c1 C c2e�3x.1 � x/

c1 C c2xe�3x

(e) y D .2c2x � c1/ cos x � .2c1x C c2/ sin x

2x.c1 cos x C c2 sin x/
(f) y D c1 C 7c2x6

x.c1 C c2x6/

Section 5.7 Answers, pp. 262–264

5:7:1 (p. 262) yp D � cos 3x ln j sec 3x C tan 3xj
9

5:7:2 (p. 262) yp D � sin 2x ln j cos 2xj
4

C x cos 2x

2
5:7:3 (p. 262) yp D 4ex.1 C ex/ ln.1 C e�x/ 5:7:4 (p. 262) yp D 3ex.cos x ln j cos xj C x sin x/

5:7:5 (p. 262) yp D 8

5
x7=2ex 5:7:6 (p. 262) yp D ex ln.1 � e�2x/ � e�x ln.e2x � 1/ 5:7:7 (p. 263) yp D

2.x2 � 3/

3

5:7:8 (p. 263) yp D e2x

x
5:7:9 (p. 263) yp D x1=2ex ln x 5:7:10 (p. 263) yp D e�x.xC2/

5:7:11 (p. 263) yp D �4x5=2 5:7:12 (p. 263) yp D �2x2 sin x �2x cos x 5:7:13 (p. 263) yp D �xe�x .x C 1/

2

5:7:14 (p. 263) yp D �
p

x cos
p

x

2
5:7:15 (p. 263) yp D 3x4ex

2
5:7:16 (p. 263) yp D xaC1

5:7:17 (p. 263) yp D x2 sin x

2
5:7:18 (p. 263) yp D �2x2 5:7:19 (p. 263) yp D �e�x sin x

5:7:20 (p. 263) yp D �
p

x

2
5:7:21 (p. 263) yp D x3=2

4
5:7:22 (p. 263) yp D �3x2

5:7:23 (p. 263) yp D x3ex

2
5:7:24 (p. 263) yp D �4x3=2

15
5:7:25 (p. 263) yp D x3ex 5:7:26 (p. 263)

yp D xex

5:7:27 (p. 263) yp D x2 5:7:28 (p. 263) yp D xex .x � 2/ 5:7:29 (p. 263) yp D
p

xex.x � 1/=4

5:7:30 (p. 263) y D e2x.3x2 � 2x C 6/

6
C xe�x

3
5:7:31 (p. 263) y D .x � 1/2 ln.1 � x/ C 2x2 � 5x C 3
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5:7:32 (p. 263) y D .x2 �1/ex �5.x�1/ 5:7:33 (p. 264) y D x.x2 C 6/

3.x2 � 1/
5:7:34 (p. 264) y D �x2

2
C x C 1

2x2

5:7:35 (p. 264) y D x2.4x C 9/

6.x C 1/

5:7:38 (p. 264) (a) y D k0 cosh x C k1 sinh x C
Z x

0
sinh.x � t /f .t /dt

(b) y0 D k0 sinh x C k1 cosh x C
Z x

0
cosh.x � t /f .t /dt

5:7:39 (p. 264) (a) y.x/ D k0 cos x C k1 sin x C
Z x

0
sin.x � t /f .t /dt

(b) y0.x/ D �k0 sin x C k1 cos x C
R x

0 cos.x � t /f .t /dt

Section 6.1 Answers, pp. 277–279

6:1:1 (p. 277) y D 3 cos 4
p

6t � 1

2
p

6
sin 4

p
6t ft 6:1:2 (p. 278) y D �1

4
cos 8

p
5t � 1

4
p

5
sin 8

p
5t ft

6:1:3 (p. 278) y D 1:5 cos 14
p

10t cm

6:1:4 (p. 278) y D 1

4
cos 8t � 1

16
sin 8t ft; R D

p
17

16
ft; !0 D 8 rad/s; T D �=4 s;

� � �:245 rad � �14:04ı;

6:1:5 (p. 278) y D 10 cos 14t C 25

14
sin 14t cm; R D 5

14

p
809 cm; !0 D 14 rad/s; T D �=7 s;

� � :177 rad � 10:12ı

6:1:6 (p. 278) y D �1

4
cos

p
70 t C 2p

70
sin

p
70 t m; R D 1

4

r

67

35
m !0 D

p
70 rad/s;

T D 2�=
p

70 s; � � 2:38 rad � 136:28ı

6:1:7 (p. 278) y D 2

3
cos 16t � 1

4
sin 16t ft 6:1:8 (p. 278) y D 1

2
cos 8t � 3

8
sin 8t ft 6:1:9 (p. 278) :72 m

6:1:10 (p. 278) y D 1

3
sin t C 1

2
cos 2t C 5

6
sin 2t ft 6:1:11 (p. 278) y D 16

5

�

4 sin
t

4
� sin t

�

6:1:12 (p. 278) y D � 1

16
sin 8t C 1

3
cos 4

p
2t � 1

8
p

2
sin 4

p
2t

6:1:13 (p. 278) y D �t cos 8t � 1

6
cos 8t C 1

8
sin 8t ft 6:1:14 (p. 278) T D 4

p
2 s

6:1:15 (p. 278) ! D 8 rad/s y D � t

16
.� cos 8t C 2 sin 8t/ C 1

128
sin 8t ft

6:1:16 (p. 278) ! D 4
p

6 rad/sI y D � tp
6

�

8

3
cos 4

p
6t C 4 sin 4

p
6t

�

C 1

9
sin 4

p
6t ft

6:1:17 (p. 278) y D t

2
cos 2t � t

4
sin 2t C 3 cos 2t C 2 sin 2t m

6:1:18 (p. 279) y D y0 cos !0t C v0

!0
sin !0t I R D 1

!0

q

.!0y0/2 C .v0/2;

cos � D y0!0
p

.!0y0/2 C .v0/2
; sin � D v0

p

.!0y0/2 C .v0/2

6:1:19 (p. 279) The object with the longer period weighs four times as much as the other.

6:1:20 (p. 279) T2 D
p

2T1 , where T1 is the period of the smaller object.

6:1:21 (p. 279) k1 D 9k2, where k1 is the spring constant of the system with the shorter period.

Section 6.2 Answers, pp. 288–290

6:2:1 (p. 288) y D e�2t

2
.3 cos 2t � sin 2t/ ftI

r

5

2
e�2t ft
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6:2:2 (p. 288) y D �e�t

�

3 cos 3t C 1

3
sin 3t

�

ft

p
82

3
e�t ft

6:2:3 (p. 288) y D e�16t

�

1

4
C 10t

�

ft 6:2:4 (p. 288) y D �e�3t

4
.5 cos t C 63 sin t / ft

6:2:5 (p. 288) 0 � c < 8 lb-sec/ft 6:2:6 (p. 288) y D
1

2
e�3t

�

cos
p

91t C
11

p
91

sin
p

91t

�

ft

6:2:7 (p. 288) y D �e�4t

3
.2 C 8t/ ft 6:2:8 (p. 288) y D e�10t

�

9 cos 4
p

6t C 45

2
p

6
sin 4

p
6t

�

cm

6:2:9 (p. 288) y D e�3t=2

 

3

2
cos

p
41

2
t C 9

2
p

41
sin

p
41

2
t

!

ft

6:2:10 (p. 288) y D e� 3
2 t

 

1

2
cos

p
119

2
t �

9

2
p

119
sin

p
119

2
t

!

ft

6:2:11 (p. 288) y D e�8t

�

1

4
cos 8

p
2t �

1

4
p

2
sin 8

p
2t

�

ft

6:2:12 (p. 288) y D e�t

�

�1

3
cos 3

p
11t C 14

9
p

11
sin 3

p
11t

�

ft

6:2:13 (p. 288) yp D 22

61
cos 2t C 2

61
sin 2t ft 6:2:14 (p. 289) y D �2

3
.e�8t � 2e�4t /

6:2:15 (p. 289) y D e�2t

�

1

10
cos 4t � 1

5
sin 4t

�

m 6:2:16 (p. 289) y D e�3t .10 cos t � 70 sin t / cm

6:2:17 (p. 289) yp D � 2

15
cos 3t C 1

15
sin 3t ft

6:2:18 (p. 289) yp D 11

100
cos 4t C 27

100
sin 4t cm 6:2:19 (p. 289) yp D 42

73
cos t C 39

73
sin t ft

6:2:20 (p. 289) y D �1

2
cos 2t C 1

4
sin 2t m 6:2:21 (p. 289) yp D 1

c!0
.�ˇ cos !0t C ˛ sin !0t /

6:2:24 (p. 289) y D e�ct=2m

�

y0 cos !1t C 1

!1
.v0 C cy0

2m
/ sin !1t

�

6:2:25 (p. 289) y D r2y0 � v0

r2 � r1
er1t C v0 � r1y0

r2 � r1
er2t 6:2:26 (p. 290) y D er1t .y0 C .v0 � r1y0/t /

Section 6.3 Answers, pp. 295–296

6:3:1 (p. 295) I D e�15t

�

2 cos 5
p

15t � 6p
31

sin 5
p

31t

�

6:3:2 (p. 295) I D e�20t .2 cos 40t � 101 sin 40t/ 6:3:3 (p. 295) I D �200

3
e�10t sin 30t

6:3:4 (p. 295) I D �10e�30t .cos 40t C 18 sin 40t/ 6:3:5 (p. 295) I D �e�40t .2 cos 30t � 86 sin 30t/

6:3:6 (p. 295) Ip D �1

3
.cos 10t C 2 sin 10t/ 6:3:7 (p. 295) Ip D 20

37
.cos 25t � 6 sin 25t/

6:3:8 (p. 295) Ip D 3

13
.8 cos 50t � sin 50t/ 6:3:9 (p. 295) Ip D 20

123
.17 sin 100t � 11 cos 100t/

6:3:10 (p. 295) Ip D �45

52
.cos 30t C 8 sin 30t/

6:3:12 (p. 296) !0 D 1=
p

LC maximum amplitude D
p

U 2 C V 2=R

Section 6.4 Answers, pp. 302–303

6:4:1 (p. 302) If e D 1, then Y 2 D �.� � 2X/; if e ¤ 1
�

X C
e�

1 � e2

�2
C

Y 2

1 � e2
D

�2

.1 � e2/2
if ;

e < 1 let X0 D �
e�

1 � e2
, a D

�

1 � e2
, b D

�
p

1 � e2
.
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6:4:2 (p. 303) Let h D r2
0 � 0

0; then � D h2

k
, e D

"

�

�

r0
� 1

�2

C
�

�r 0
0

h

�2
#1=2

. If e D 0, then

�0 is undefined,but also irrelevant if e ¤ 0 then � D �0�˛, where �� � ˛ < � , cos ˛ D 1

e

�

�

r0
� 1

�

and sin ˛ D
�r 0

0

eh
.

6:4:3 (p. 303) (a) e D 
2 � 
1


1 C 
2
(b) r0 D R
1, r 0

0 D 0, �0 arbitrary, � 0
0 D

"

2g
2

R
3
1 .
1 C 
2/

#1=2

6:4:4 (p. 303) f .r/ D �mh2

�

6c

r4
C 1

r3

�

6:4:5 (p. 303) f .r/ D �mh2.
2 C 1/

r3

6:4:6 (p. 303) (a)
d2u

d�2
C
�

1 � k

h2

�

u D 0; u.�0/ D 1

r0
;

du.�0/

d�
D �

r 0
0

h
. (b) with 
 D

ˇ

ˇ

ˇ

ˇ

1 � k

h2

ˇ

ˇ

ˇ

ˇ

1=2

: (i) r D r0

�

cosh 
.� � �0/ �
r0r 0

0


h
sinh 
.� � �0/

��1

(ii) r D r0

�

1 �
r0r 0

0

h
.� � �0/

��1

;

(iii) r D r0

�

cos 
.� � �0/ �
r0r 0

0


h
sin 
.� � �0/

��1

Section 7.1 Answers, pp. 317–320

7:1:1 (p. 317) (a) R D 2; I D .�1; 3/; (b) R D 1=2; I D .3=2; 5=2/ (c) R D 0; (d) R D 16;

I D .�14; 18/ (e) R D 1; I D .�1; 1/ (f) R D 4=3; I D .�25=3;�17=3/

7:1:3 (p. 317) (a) R D 1; I D .0; 2/ (b) R D
p

2; I D .�2 �
p

2; �2 C
p

2/; (c) R D 1;

I D .�1; 1/ (d) R D 0 (e) R D
p

3; I D .�
p

3;
p

3/ (f) R D 1 I D .0; 2/

7:1:5 (p. 318) (a) R D 3; I D .0; 6/ (b) R D 1; I D .�1; 1/ (c) R D 1=
p

3

I D .3 � 1=
p

3; 3 C 1=
p

3/ (d) R D 1; I D .�1; 1/ (e) R D 0 (f) R D 2;

I D .�1; 3/

7:1:11 (p. 319) bn D 2.n C 2/.n C 1/anC2 C .n C 1/nanC1 C .n C 3/an

7:1:12 (p. 319) b0 D 2a2 � 2a0 bn D .n C 2/.n C 1/anC2 C Œ3n.n � 1/ � 2�an C 3.n � 1/an�1; n � 1

7:1:13 (p. 319) bn D .n C 2/.n C 1/anC2 C 2.n C 1/anC1 C .2n2 � 5n C 4/an

7:1:14 (p. 319) bn D .n C 2/.n C 1/anC2 C 2.n C 1/anC1 C .n2 � 2n C 3/an

7:1:15 (p. 319) bn D .n C 2/.n C 1/anC2 C .3n2 � 5n C 4/an

7:1:16 (p. 319) b0 D �2a2 C 2a1 C a0,

bn D �.n C 2/.n C 1/anC2 C .n C 1/.n C 2/anC1 C .2n C 1/an C an�1 , n � 2

7:1:17 (p. 319) b0 D 8a2 C 4a1 � 6a0,

bn D 4.n C 2/.n C 1/anC2 C 4.n C 1/2anC1 C .n2 C n � 6/an � 3an�1, n � 1

7:1:21 (p. 320) b0 D .r C 1/.r C 2/a0,

bn D .n C r C 1/.n C r C 2/an � .n C r � 2/2an�1 , n � 1.

7:1:22 (p. 320) b0 D .r � 2/.r C 2/a0,

bn D .n C r � 2/.n C r C 2/an C .n C r C 2/.n C r � 3/an�1 , n � 14

7:1:23 (p. 320) b0 D .r � 1/2a0 , b1 D r2a1 C .r C 2/.r C 3/a0,

bn D .n C r � 1/2an C .n C r C 1/.n C r C 2/an�1 C .n C r � 1/an�2, n � 2

7:1:24 (p. 320) b0 D r.r C 1/a0, b1 D .r C 1/.r C 2/a1 C 3.r C 1/.r C 2/a0,

bn D .n C r/.n C r C 1/an C 3.n C r/.n C r C 1/an�1 C .n C r/an�2 , n � 2

7:1:25 (p. 320) b0 D .r C 2/.r C 1/a0 b1 D .r C 3/.r C 2/a1,

bn D .n C r C 2/.n C r C 1/an C 2.n C r � 1/.n C r � 3/an�2, n � 2

7:1:26 (p. 320) b0 D 2.r C 1/.r C 3/a0, b1 D 2.r C 2/.r C 4/a1,

bn D 2.n C r C 1/.n C r C 3/an C .n C r � 3/.n C r/an�2 , n � 2

Section 7.2 Answers, pp. 329–334
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7:2:1 (p. 329) y D a0

1
X

mD0

.�1/m.2m C 1/x2m C a1

1
X

mD0

.�1/m.m C 1/x2mC1

7:2:2 (p. 329) y D a0

1
X

mD0

.�1/mC1 x2m

2m � 1
C a1x

7:2:3 (p. 329) y D a0.1 � 10x2 C 5x4/ C a1

�

x � 2x3 C 1

5
x5

�

7:2:4 (p. 329) y D a0

1
X

mD0

.m C 1/.2m C 1/x2m C a1

3

1
X

mD0

.m C 1/.2m C 3/x2mC1

7:2:5 (p. 329) y D a0

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

4j C 1

2j C 1

3

5x2m C a1

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

.4j C 3/

3

5

x2mC1

2mmŠ

7:2:6 (p. 329) y D a0

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

.4j C 1/2

2j C 1

3

5

x2m

8mmŠ
C a1

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

.4j C 3/2

2j C 3

3

5

x2mC1

8mmŠ

7:2:7 (p. 329) y D a0

1
X

mD0

2mmŠ
Qm�1

j D0 .2j C 1/
x2m C a1

1
X

mD0

Qm�1
j D0 .2j C 3/

2mmŠ
x2mC1

7:2:8 (p. 329) y D a0

�

1 � 14x2 C
35

3
x4

�

C a1

�

x � 3x3 C
3

5
x5 C

1

35
x7

�

7:2:9 (p. 330) (a) y D a0

1
X

mD0

.�1/m x2m

Qm�1
j D0 .2j C 1/

C a1

1
X

mD0

.�1/m x2mC1

2mmŠ

7:2:10 (p. 330) (a) y D a0

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

4j C 3

2j C 1

3

5

x2m

2mmŠ
C a1

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

4j C 5

2j C 3

3

5

x2mC1

2mmŠ

7:2:11 (p. 330) y D 2 � x � x2 C 1

3
x3 C 5

12
x4 � 1

6
x5 � 17

72
x6 C 13

126
x7 C � � �

7:2:12 (p. 330) y D 1 � x C 3x2 �
5

2
x3 C 5x4 �

21

8
x5 C 3x6 �

11

16
x7 C � � �

7:2:13 (p. 330) y D 2 � x � 2x2 C 1

3
x3 C 3x4 � 5

6
x5 � 49

5
x6 C 45

14
x7 C � � �

7:2:16 (p. 331) y D a0

1
X

mD0

.x � 3/2m

.2m/Š
C a1

1
X

mD0

.x � 3/2mC1

.2m C 1/Š

7:2:17 (p. 331) y D a0

1
X

mD0

.x � 3/2m

2mmŠ
C a1

1
X

mD0

.x � 3/2mC1

Qm�1
j D0 .2j C 3/

7:2:18 (p. 331) y D a0

1
X

mD0

2

4

m�1
Y

j D0

.2j C 3/

3

5

.x � 1/2m

mŠ
C a1

1
X

mD0

4m.m C 1/Š
Qm�1

j D0 .2j C 3/
.x � 1/2mC1

7:2:19 (p. 331) y D a0

�

1 � 6.x � 2/2 C 4

3
.x � 2/4 C 8

135
.x � 2/6

�

C a1

�

.x � 2/ � 10

9
.x � 2/3

�

7:2:20 (p. 331) y D a0

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

.2j C 1/

3

5

3m

4mmŠ
.x C 1/2m C a1

1
X

mD0

.�1/m 3mmŠ
Qm�1

j D0 .2j C 3/
.x C 1/2mC1

7:2:21 (p. 331) y D �1 C 2x C 3

8
x2 � 1

3
x3 � 3

128
x4 � 1

1024
x6 C � � �

7:2:22 (p. 331) y D �2 C 3.x � 3/ C 3.x � 3/2 � 2.x � 3/3 � 5

4
.x � 3/4 C 3

5
.x � 3/5 C 7

24
.x � 3/6 � 4

35
.x � 3/7 C � � �
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7:2:23 (p. 331) y D �1 C .x � 1/ C 3.x � 1/2 � 5

2
.x � 1/3 � 27

4
.x � 1/4 C 21

4
.x � 1/5 C 27

2
.x � 1/6 � 81

8
.x � 1/7 C � � �

7:2:24 (p. 331) y D 4 � 6.x � 3/ � 2.x � 3/2 C .x � 3/3 C 3

2
.x � 3/4 � 5

4
.x � 3/5 � 49

20
.x � 3/6 C 135

56
.x � 3/7 C � � �

7:2:25 (p. 331) y D 3 � 4.x � 4/ C 15.x � 4/2 � 4.x � 4/3 C 15

4
.x � 4/4 � 1

5
.x � 4/5

7:2:26 (p. 331) y D 3 � 3.x C 1/ � 30.x C 1/2 C 20

3
.x C 1/3 C 20.x C 1/4 � 4

3
.x C 1/5 � 8

9
.x C 1/6

7:2:27 (p. 331) (a)y D a0

1
X

mD0

.�1/mx2m C a1

1
X

mD0

.�1/mx2mC1 (b)y D a0 C a1x

1 C x2

7:2:33 (p. 334) y D a0

1
X

mD0

x3m

3mmŠ
Qm�1

j D0 .3j C 2/
C a1

1
X

mD0

x3mC1

3mmŠ
Qm�1

j D0 .3j C 4/

7:2:34 (p. 334) y D a0

1
X

mD0

�

2

3

�m
2

4

m�1
Y

j D0

.3j C 2/

3

5

x3m

mŠ
C a1

1
X

mD0

6mmŠ
Qm�1

j D0 .3j C 4/
x3mC1

7:2:35 (p. 334) y D a0

1
X

mD0

.�1/m 3mmŠ
Qm�1

j D0 .3j C 2/
x3m C a1

1
X

mD0

.�1/m

2

4

m�1
Y

j D0

.3j C 4/

3

5

x3mC1

3mmŠ

7:2:36 (p. 334) y D a0.1 � 4x3 C 4x6/ C a1

1
X

mD0

2m

2

4

m�1
Y

j D0

3j � 5

3j C 4

3

5 x3mC1

7:2:37 (p. 334) y D a0

�

1 C 21

2
x3 C 42

5
x6 C 7

20
x9

�

C a1

�

x C 4x4 C 10

7
x7

�

7:2:39 (p. 334) y D a0

1
X

mD0

.�2/m

2

4

m�1
Y

j D0

5j C 1

5j C 4

3

5 x5m C a1

1
X

mD0

�

�2

5

�m
2

4

m�1
Y

j D0

.5j C 2/

3

5

x5mC1

mŠ

7:2:40 (p. 334) y D a0

1
X

mD0

.�1/m x4m

4mmŠ
Qm�1

j D0 .4j C 3/
C a1

1
X

mD0

.�1/m x4mC1

4mmŠ
Qm�1

j D0 .4j C 5/

7:2:41 (p. 334) y D a0

1
X

mD0

.�1/m x7m

Qm�1
j D0 .7j C 6/

C a1

1
X

mD0

.�1/m x7mC1

7mmŠ

7:2:42 (p. 334) y D a0

�

1 � 9

7
x8

�

C a1

�

x � 7

9
x9

�

7:2:43 (p. 334) y D a0

1
X

mD0

x6m C a1

1
X

mD0

x6mC1

7:2:44 (p. 334) y D a0

1
X

mD0

.�1/m x6m

Qm�1
j D0 .6j C 5/

C a1

1
X

mD0

.�1/m x6mC1

6mmŠ

Section 7.3 Answers, pp. 338–342

7:3:1 (p. 338) y D 2 � 3x � 2x2 C 7

2
x3 � 55

12
x4 C 59

8
x5 � 83

6
x6 C 9547

336
x7 C � � �

7:3:2 (p. 338) y D �1 C 2x � 4x3 C 4x4 C 4x5 � 12x6 C 4x7 C � � �

7:3:3 (p. 338) y D 1 C x2 � 2

3
x3 C 11

6
x4 � 9

5
x5 C 329

90
x6 � 1301

315
x7 C � � �

7:3:4 (p. 338) y D x � x2 � 7

2
x3 C 15

2
x4 C 45

8
x5 � 261

8
x6 C 207

16
x7 C � � �

7:3:5 (p. 338) y D 4 C 3x � 15

4
x2 C 1

4
x3 C 11

16
x4 � 5

16
x5 C 1

20
x6 C 1

120
x7 C � � �



614 Answers to Selected Exercises

7:3:6 (p. 338) y D 7 C 3x � 16

3
x2 C 13

3
x3 � 23

9
x4 C 10

9
x5 � 7

27
x6 � 1

9
x7 C � � �

7:3:7 (p. 338) y D 2 C 5x � 7

4
x2 � 3

16
x3 C 37

192
x4 � 7

192
x5 � 1

1920
x6 C 19

11520
x7 C � � �

7:3:8 (p. 338) y D 1 � .x � 1/ C 4

3
.x � 1/3 � 4

3
.x � 1/4 � 4

5
.x � 1/5 C 136

45
.x � 1/6 � 104

63
.x � 1/7 C � � �

7:3:9 (p. 338) y D 1 � .x C 1/ C 4.x C 1/2 � 13

3
.x C 1/3 C 77

6
.x C 1/4 � 278

15
.x C 1/5 C 1942

45
.x C 1/6 � 23332

315
.x C 1/7 C � � �

7:3:10 (p. 338) y D 2 � .x � 1/ � 1

2
.x � 1/2 C 5

3
.x � 1/3 � 19

12
.x � 1/4 C 7

30
.x � 1/5 C 59

45
.x � 1/6 � 1091

630
.x � 1/7 C � � �

7:3:11 (p. 338) y D �2 C 3.x C 1/ �
1

2
.x C 1/2 �

2

3
.x C 1/3 C

5

8
.x C 1/4 �

11

30
.x C 1/5 C

29

144
.x C 1/6 �

101

840
.x C 1/7 C � � �

7:3:12 (p. 339) y D 1 � 2.x � 1/ � 3.x � 1/2 C 8.x � 1/3 � 4.x � 1/4 � 42

5
.x � 1/5 C 19.x � 1/6 � 604

35
.x � 1/7 C � � �

7:3:19 (p. 340) y D 2 � 7x � 4x2 �
17

6
x3 �

3

4
x4 �

9

40
x5 C � � �

7:3:20 (p. 340) y D 1 � 2.x � 1/ C 1

2
.x � 1/2 � 1

6
.x � 1/3 C 5

36
.x � 1/4 � 73

1080
.x � 1/5 C � � �

7:3:21 (p. 340) y D 2 � .x C 2/ � 7

2
.x C 2/2 C 4

3
.x C 2/3 � 1

24
.x C 2/4 C 1

60
.x C 2/5 C � � �

7:3:22 (p. 340) y D 2 � 2.x C 3/ � .x C 3/2 C .x C 3/3 � 11

12
.x C 3/4 C 67

60
.x C 3/5 C � � �

7:3:23 (p. 340) y D �1 C 2x C 1

3
x3 � 5

12
x4 C 2

5
x5 C � � �

7:3:24 (p. 340) y D 2 � 3.x C 1/ C 7

2
.x C 1/2 � 5.x C 1/3 C 197

24
.x C 1/4 � 287

20
.x C 1/5 C � � �

7:3:25 (p. 340) y D �2 C 3.x C 2/ � 9

2
.x C 2/2 C 11

6
.x C 2/3 C 5

24
.x C 2/4 C 7

20
.x C 2/5 C � � �

7:3:26 (p. 340) y D 2 � 4.x � 2/ � 1

2
.x � 2/2 C 2

9
.x � 2/3 C 49

432
.x � 2/4 C 23

1080
.x � 2/5 C � � �

7:3:27 (p. 340) y D 1 C 2.x C 4/ � 1

6
.x C 4/2 � 10

27
.x C 4/3 C 19

648
.x C 4/4 C 13

324
.x C 4/5 C � � �

7:3:28 (p. 340) y D �1 C 2.x C 1/ � 1

4
.x C 1/2 C 1

2
.x C 1/3 � 65

96
.x C 1/4 C 67

80
.x C 1/5 C � � �

7:3:31 (p. 342) (a) y D c1

1 C x
C c2

1 C 2x
(b) y D c1

1 � 2x
C c2

1 � 3x
(c) y D c1

1 � 2x
C c2x

.1 � 2x/2

(d) y D c1

2 C x
C c2x

.2 C x/2
(e) y D c1

2 C x
C c2

2 C 3x

7:3:32 (p. 342) y D 1 � 2x � 3

2
x2 C 5

3
x3 C 17

24
x4 � 11

20
x5 C � � �

7:3:33 (p. 342) y D 1 � 2x � 5

2
x2 C 2

3
x3 � 3

8
x4 C 1

3
x5 C � � �

7:3:34 (p. 342) y D 6 � 2x C 9x2 C 2

3
x3 � 23

4
x4 � 3

10
x5 C � � �

7:3:35 (p. 342) y D 2 � 5x C 2x2 � 10

3
x3 C 3

2
x4 � 25

12
x5 C � � �

7:3:36 (p. 342) y D 3 C 6x � 3x2 C x3 � 2x4 � 17

20
x5 C � � �

7:3:37 (p. 342) y D 3 � 2x � 3x2 C
3

2
x3 C

3

2
x4 �

49

80
x5 C � � �

7:3:38 (p. 342) y D �2 C 3x C 4

3
x2 � x3 � 19

54
x4 C 13

60
x5 C � � �
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7:3:39 (p. 342) y1 D
1
X

mD0

.�1/mx2m

mŠ
D e�x2

; y2 D
1
X

mD0

.�1/mx2mC1

mŠ
D xe�x2

7:3:40 (p. 342) y D �2 C 3x C x2 � 1

6
x3 � 3

4
x4 C 31

120
x5 C � � �

7:3:41 (p. 342) y D 2 C 3x � 7

2
x2 � 5

6
x3 C 41

24
x4 C 41

120
x5 C � � �

7:3:42 (p. 342) y D �3 C 5x � 5x2 C 23

6
x3 � 23

12
x4 C 11

30
x5 C � � �

7:3:43 (p. 342) y D �2 C 3.x � 1/ C 3

2
.x � 1/2 � 17

12
.x � 1/3 � 1

12
.x � 1/4 C 1

8
.x � 1/5 C � � �

7:3:44 (p. 342) y D 2 � 3.x C 2/ C 1

2
.x C 2/2 � 1

3
.x C 2/3 C 31

24
.x C 2/4 � 53

120
.x C 2/5 C � � �

7:3:45 (p. 342) y D 1 � 2x C 3

2
x2 � 11

6
x3 C 15

8
x4 � 71

60
x5 C � � �

7:3:46 (p. 342) y D 2 � .x C 2/ �
7

2
.x C 2/2 �

43

6
.x C 2/3 �

203

24
.x C 2/4 �

167

30
.x C 2/5 C � � �

7:3:47 (p. 342) y D 2 � x � x2 C 7

6
x3 � x4 C 89

120
x5 C � � �

7:3:48 (p. 342) y D 1 C
3

2
.x � 1/2 C

1

6
.x � 1/3 �

1

8
.x � 1/5 C � � �

7:3:49 (p. 342) y D 1 � 2.x � 3/ C 1

2
.x � 3/2 � 1

6
.x � 3/3 C 1

4
.x � 3/4 � 1

6
.x � 3/5 C � � �

Section 7.4 Answers, pp. 347–348

7:4:1 (p. 347) y D c1x�4 C c2x�2 7:4:2 (p. 347) y D c1x C c2x7

7:4:3 (p. 347) y D x.c1 C c2 ln x/ 7:4:4 (p. 347) y D x�2.c1 C c2 ln x/

7:4:5 (p. 347) y D c1 cos.ln x/ C c2 sin.ln x/ 7:4:6 (p. 347) y D x2Œc1 cos.3 ln x/ C c2 sin.3 ln x/�

7:4:7 (p. 347) y D c1x C c2

x3
7:4:8 (p. 347) y D c1x2=3 C c2x3=4 7:4:9 (p. 347) y D x�1=2.c1 C c2 ln x/

7:4:10 (p. 347) y D c1xCc2x1=3 7:4:11 (p. 347) y D c1x2Cc2x1=2 7:4:12 (p. 347) y D 1

x
Œc1 cos.2 ln x/ C c2 sin.2 ln x�

7:4:13 (p. 347) y D x�1=3.c1 C c2 ln x/ 7:4:14 (p. 347) y D x Œc1 cos.3 ln x/ C c2 sin.3 ln x/�

7:4:15 (p. 347) y D c1x3 C c2

x2
7:4:16 (p. 347) y D c1

x
C c2x1=2 7:4:17 (p. 347) y D x2.c1 C c2 ln x/

7:4:18 (p. 347) y D 1

x2

�

c1 cos

�

1p
2

ln x

�

C c2 sin

�

1p
2

ln x

��

Section 7.5 Answers, pp. 358–365

7:5:1 (p. 358) y1 D x1=2

�

1 �
1

5
x �

2

35
x2 C

31

315
x3 C � � �

�

y2 D x�1

�

1 C x C
1

2
x2 �

1

6
x3 C � � �

�

;

7:5:2 (p. 358) y1 D x1=3

�

1 � 2

3
x C 8

9
x2 � 40

81
x3 C � � �

�

; y2 D 1 � x C 6

5
x2 � 4

5
x3 C � � �

7:5:3 (p. 358) y1 D x1=3

�

1 � 4

7
x � 7

45
x2 C 970

2457
x3 C � � �

�

; y2 D x�1

�

1 � x2 C 2

3
x3 C � � �

�

7:5:4 (p. 358) y1 D x1=4

�

1 � 1

2
x � 19

104
x2 C 1571

10608
x3 C � � �

�

; y2 D x�1

�

1 C 2x � 11

6
x2 � 1

7
x3 C � � �

�

7:5:5 (p. 358) y1 D x1=3

�

1 � x C 28

31
x2 � 1111

1333
x3 C � � �

�

; y2 D x�1=4

�

1 � x C 7

8
x2 � 19

24
x3 C � � �

�

;

7:5:6 (p. 358) y1 D x1=5

�

1 �
6

25
x �

1217

625
x2 C

41972

46875
x3 C � � �

�

; y2 D x �
1

4
x2 �

35

18
x3 C

11

12
x4 C � � �
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7:5:7 (p. 358) y1 D x3=2

�

1 � x C 11

26
x2 � 109

1326
x3 C � � �

�

; y2 D x1=4

�

1 C 4x � 131

24
x2 C 39

14
x3 C � � �

�

7:5:8 (p. 358) y1 D x1=3

�

1 � 1

3
x C 2

15
x2 � 5

63
x3 C � � �

�

; y2 D x�1=6

�

1 � 1

12
x2 C 1

18
x3 C � � �

�

7:5:9 (p. 358) y1 D 1 � 1

14
x2 C 1

105
x3 C � � �; y2 D x�1=3

�

1 � 1

18
x � 71

405
x2 C 719

34992
x3 C � � �

�

7:5:10 (p. 359) y1 D x1=5

�

1 C
3

17
x �

7

153
x2 �

547

5661
x3 C � � �

�

; y2 D x�1=2

�

1 C x C
14

13
x2 �

556

897
x3 C � � �

�

7:5:14 (p. 359) y1 D x1=2
1
X

nD0

.�2/n

Qn
j D1.2j C 3/

xn; y2 D x�1
1
X

nD0

.�1/n

nŠ
xn

7:5:15 (p. 359) y1 D x1=3
1
X

nD0

.�1/n
Qn

j D1.3j C 1/

9nnŠ
xn; x�1

7:5:16 (p. 359) y1 D x1=2
1
X

nD0

.�1/n

2nnŠ
xn; y2 D 1

x2

1
X

nD0

.�1/n

Qn
j D1.2j � 5/

xn

7:5:17 (p. 359) y1 D x

1
X

nD0

.�1/n

Qn
j D1.3j C 4/

xn; y2 D x�1=3
1
X

nD0

.�1/n

3nnŠ
xn

7:5:18 (p. 359) y1 D x

1
X

nD0

2n

nŠ
Qn

j D1.2j C 1/
xn; y2 D x1=2

1
X

nD0

2n

nŠ
Qn

j D1.2j � 1/
xn

7:5:19 (p. 359) y1 D x1=3
1
X

nD0

1

nŠ
Qn

j D1.3j C 2/
xn; y2 D x�1=3

1
X

nD0

1

nŠ
Qn

j D1.3j � 2/
xn

7:5:20 (p. 359) y1 D x

�

1 C 2

7
x C 1

70
x2

�

; y2 D x�1=3
1
X

nD0

.�1/n

3nnŠ

0

@

n
Y

j D1

3j � 13

3j � 4

1

A xn

7:5:21 (p. 359) y1 D x1=2
1
X

nD0

.�1/n

0

@

n
Y

j D1

2j C 1

6j C 1

1

A I xn y2 D x1=3
1
X

nD0

.�1/n

9nnŠ

0

@

n
Y

j D1

.3j C 1/

1

Axn

7:5:22 (p. 359) y1 D x

1
X

nD0

.�1/n.n C 2/Š

2
Qn

j D1.4j C 3/
I xn y2 D x1=4

1
X

nD0

.�1/n

16nnŠ

n
Y

j D1

.4j C 5/xn

7:5:23 (p. 359) y1 D x�1=2
1
X

nD0

.�1/n

nŠ
Qn

j D1.2j C 1/
xn; y2 D x�1

1
X

nD0

.�1/n

nŠ
Qn

j D1.2j � 1/
xn

7:5:24 (p. 359) y1 D x1=3
1
X

nD0

.�1/n

nŠ

�

2

9

�n
0

@

n
Y

j D1

.6j C 5/

1

Axn; y2 D x�1
1
X

nD0

.�1/n2n

0

@

n
Y

j D1

2j � 1

3j � 4

1

A xn

7:5:25 (p. 359) y1 D 4x1=3
1
X

nD0

1

6nnŠ.3n C 4/
xn; x�1

7:5:28 (p. 360) y1 D x1=2

�

1 � 9

40
x C 5

128
x2 � 245

39936
x3 C � � �

�

; y2 D x1=4

�

1 � 25

96
x C 675

14336
x2 � 38025

5046272
x3 C � � �

�

7:5:29 (p. 360) y1 D x1=3

�

1 C 32

117
x � 28

1053
x2 C 4480

540189
x3 C � � �

�

; y2 D x�3

�

1 C 32

7
x C 48

7
x2

�

7:5:30 (p. 360) y1 D x1=2

�

1 � 5

8
x C 55

96
x2 � 935

1536
x3 C � � �

�

; y2 D x�1=2

�

1 C 1

4
x � 5

32
x2 � 55

384
x3 C � � �

�

.

7:5:31 (p. 360) y1 D x1=2

�

1 �
3

4
x C

5

96
x2 C

5

4224
x3 C � � �

�

; y2 D x�2
�

1 C 8x C 60x2 � 160x3 C � � �
�
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7:5:32 (p. 360) y1 D x�1=3

�

1 � 10

63
x C 200

7371
x2 � 17600

3781323
x3I C � � �

�

; y2 D x�1=2

�

1 � 3

20
x C 9

352
x2 � 105

23936
x3 C � � �

�

7:5:33 (p. 360) y1 D x1=2
1
X

mD0

.�1/m

8mmŠ

0

@

m
Y

j D1

4j � 3

8j C 1

1

A x2m; y2 D x1=4
1
X

mD0

.�1/m

16mmŠ

0

@

m
Y

j D1

8j � 7

8j � 1

1

A x2m

7:5:34 (p. 360) y1 D x1=2
1
X

mD0

0

@

m
Y

j D1

8j � 3

8j C 1

1

A x2m; y2 D x1=4
1
X

mD0

1

2mmŠ

0

@

m
Y

j D1

.2j � 1/

1

A x2m

7:5:35 (p. 360) y1 D x4
1
X

mD0

.�1/m.m C 1/x2m; y2 D �x

1
X

mD0

.�1/m.2m � 1/x2m

7:5:36 (p. 360) y1 D x1=3
1
X

mD0

.�1/m

18mmŠ

0

@

m
Y

j D1

.6j � 17/

1

A x2m; y2 D 1 C 4

5
x2 C 8

55
x4

7:5:37 (p. 360) y1 D x1=4
1
X

mD0

0

@

m
Y

j D1

8j C 1

8j C 5

1

Ax2m; y2 D x�1
1
X

mD0

Qm
j D1.2j � 1/

2mmŠ
x2m

7:5:38 (p. 360) y1 D x1=2
1
X

mD0

1

8mmŠ

0

@

m
Y

j D1

.4j � 1/

1

A x2m; y2 D x1=3
1
X

mD0

2m

0

@

m
Y

j D1

3j � 1

12j � 1

1

Ax2m

7:5:39 (p. 360) y1 D x7=2
1
X

mD0

.�1/m

Qm
j D1.4j C 5/

8mmŠ
x2m; y2 D x1=2

1
X

mD0

.�1/m

4m

0

@

m
Y

j D1

4j � 1

2j � 3

1

A x2m

7:5:40 (p. 360) y1 D x1=2
1
X

mD0

.�1/m

4m

0

@

m
Y

j D1

4j � 1

2j C 1

1

A x2m; y2 D x�1=2
1
X

mD0

.�1/m

8mmŠ

0

@

m
Y

j D1

.4j � 3/

1

Ax2m

7:5:41 (p. 360) y1 D x1=2
1
X

mD0

.�1/m

mŠ

0

@

m
Y

j D1

.2j C 1/

1

Ax2m; y2 D 1

x2

1
X

mD0

.�2/m

0

@

m
Y

j D1

4j � 3

4j � 5

1

Ax2m

7:5:42 (p. 360) y1 D x1=3
1
X

mD0

.�1/m

0

@

m
Y

j D1

3j � 4

3j C 2

1

A x2m; y2 D x�1.1 C x2/

7:5:43 (p. 360) y1 D
1
X

mD0

.�1/m 2m.m C 1/Š
Qm

j D1.2j C 3/
x2m; y2 D 1

x3

1
X

mD0

.�1/m

Qm
j D1.2j � 1/

2mmŠ
x2m

7:5:44 (p. 360) y1 D x1=2
1
X

mD0

.�1/m

8mmŠ

0

@

m
Y

j D1

.4j � 3/2

4j C 3

1

A x2m; y2 D x�1
1
X

mD0

.�1/m

2mmŠ

0

@

m
Y

j D1

.2j � 3/2

4j � 3

1

A x2m

7:5:45 (p. 360) y1 D x

1
X

mD0

.�2/m

0

@

m
Y

j D1

2j C 1

4j C 5

1

A x2m; y2 D x�3=2
1
X

mD0

.�1/m

4mmŠ

0

@

m
Y

j D1

.4j � 3/

1

Ax2m

7:5:46 (p. 360) y1 D x1=3
1
X

mD0

.�1/m

2m
Qm

j D1.3j C 1/
x2m; y2 D x�1=3

1
X

mD0

.�1/m

6mmŠ
x2m

7:5:47 (p. 360) y1 D x1=2

�

1 � 6

13
x2 C 36

325
x4 � 216

12025
x6 C � � �

�

; y2 D x1=3

�

1 � 1

2
x2 C 1

8
x4 � 1

48
x6 C � � �

�

7:5:48 (p. 360) y1 D x1=4

�

1 � 13

64
x2 C 273

8192
x4 � 2639

524288
x6 C � � �

�

; y2 D x�1

�

1 � 1

3
x2 C 2

33
x4 � 2

209
x6 C � � �

�

7:5:49 (p. 360) y1 D x1=3

�

1 � 3

4
x2 C 9

14
x4 � 81

140
x6 C � � �

�

; y2 D x�1=3

�

1 � 2

3
x2 C 5

9
x4 � 40

81
x6 C � � �

�
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7:5:50 (p. 360) y1 D x1=2

�

1 � 3

2
x2 C 15

8
x4 � 35

16
x6 C � � �

�

; y2 D x�1=2

�

1 � 2x2 C 8

3
x4 � 16

5
x6 C � � �

�

7:5:51 (p. 360) y1 D x1=4

�

1 � x2 C 3

2
x4 � 5

2
x6 C � � �

�

; y2 D x�1=2

�

1 � 2

5
x2 C 36

65
x4 � 408

455
x6 C � � �

�

7:5:53 (p. 361) (a) y1 D x�
1
X

mD0

.�1/m

4mmŠ
Qm

j D1.j C �/
x2m; y2 D x��

1
X

mD0

.�1/m

4mmŠ
Qm

j D1.j � �/
x2m

y1 D sin xp
x

; y2 D cos xp
x

7:5:61 (p. 365) y1 D x1=2

1 C x
; y2 D x

1 C x
7:5:62 (p. 365) y1 D x1=3

1 C 2x2
; y2 D x1=2

1 C 2x2

7:5:63 (p. 365) y1 D
x1=4

1 � 3x
; y2 D

x2

1 � 3x
7:5:64 (p. 365) y1 D

x1=3

5 C x
; y2 D

x�1=3

5 C x

7:5:65 (p. 365) y1 D x1=4

2 � x2
; y2 D x�1=2

2 � x2
7:5:66 (p. 365) y1 D x1=2

1 C 3x C x2
; y2 D x3=2

1 C 3x C x2

7:5:67 (p. 365) y1 D x

.1 C x/2
; y2 D x1=3

.1 C x/2
7:5:68 (p. 365) y1 D x

3 C 2x C x2
; y2 D x1=4

3 C 2x C x2

Section 7.6 Answers, pp. 374–379

7:6:1 (p. 374) y1 D x

�

1 � x C 3

4
x2 � 13

36
x3 C � � �

�

; y2 D y1 ln x C x2

�

1 � x C 65

108
x2 C � � �

�

7:6:2 (p. 374) y1 D x�1

�

1 � 2x C
9

2
x2 �

20

3
x3 C � � �

�

; y2 D y1 ln x C 1 �
15

4
x C

133

18
x2 C � � �

7:6:3 (p. 374) y1 D 1 C x � x2 C 1

3
x3 C � � �; y2 D y1 ln x � x

�

3 � 1

2
x � 31

18
x2 C � � �

�

7:6:4 (p. 374) y1 D x1=2

�

1 � 2x C 5

2
x2 � 2x3 C � � �

�

; y2 D y1 ln x C x3=2

�

1 � 9

4
x C 17

6
x2 C � � �

�

7:6:5 (p. 374) y1 D x

�

1 � 4x C 19

2
x2 � 49

3
x3 C � � �

�

; y2 D y1 ln x C x2

�

3 � 43

4
x C 208

9
x2 C � � �

�

7:6:6 (p. 374) y1 D x�1=3

�

1 � x C 5

6
x2 � 1

2
x3 C � � �

�

; y2 D y1 ln x C x2=3

�

1 � 11

12
x C 25

36
x2 C � � �

�

7:6:7 (p. 374) y1 D 1 � 2x C
7

4
x2 �

7

9
x3 C � � �; y2 D y1 ln x C x

�

3 �
15

4
x C

239

108
x2 C � � �

�

7:6:8 (p. 374) y1 D x�2

�

1 � 2x C 5

2
x2 � 3x3 C � � �

�

; y2 D y1 ln x C 3

4
� 13

6
x C � � �

7:6:9 (p. 374) y1 D x�1=2

�

1 � x C 1

4
x2 C 1

18
x3 C � � �

�

; y2 D y1 ln x C x1=2

�

3

2
� 13

16
x C 1

54
x2 C � � �

�

7:6:10 (p. 374) y1 D x�1=4

�

1 � 1

4
x � 7

32
x2 C 23

384
x3 C � � �

�

; y2 D y1 ln x C x3=4

�

1

4
C 5

64
x � 157

2304
x2 C � � �

�

7:6:11 (p. 375) y1 D x�1=3

�

1 � x C 7

6
x2 � 23

18
x3 C � � �

�

; y2 D y1 ln x � x5=3

�

1

12
� 13

108
x � � �

�

7:6:12 (p. 375) y1 D x1=2
1
X

nD0

.�1/n

.nŠ/2
xn; y2 D y1 ln x � 2x1=2

1
X

nD1

.�1/n

.nŠ/2

0

@

n
X

j D1

1

j

1

A xn;

7:6:13 (p. 375) y1 D x1=6
1
X

nD0

�

2

3

�n
Qn

j D1.3j C 1/

nŠ
xn;

y2 D y1 ln x � x1=6
1
X

nD1

�

2

3

�n
Qn

j D1.3j C 1/

nŠ

0

@

n
X

j D1

1

j.3j C 1/

1

A xn
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7:6:14 (p. 375) y1 D x2
1
X

nD0

.�1/n.n C 1/2xn; y2 D y1 ln x � 2x2
1
X

nD1

.�1/nn.n C 1/xn

7:6:15 (p. 375) y1 D x3
1
X

nD0

2n.n C 1/xn; y2 D y1 ln x � x3
1
X

nD1

2nnxn

7:6:16 (p. 375) y1 D x1=5
1
X

nD0

.�1/n
Qn

j D1.5j C 1/

125n.nŠ/2
xn;

y2 D y1 ln x � x1=5
1
X

nD1

.�1/n
Qn

j D1.5j C 1/

125n.nŠ/2

0

@

n
X

j D1

5j C 2

j.5j C 1/

1

A xn

7:6:17 (p. 375) y1 D x1=2
1
X

nD0

.�1/n
Qn

j D1.2j � 3/

4nnŠ
xn;

y2 D y1 ln x C 3x1=2
1
X

nD1

.�1/n
Qn

j D1.2j � 3/

4nnŠ

0

@

n
X

j D1

1

j.2j � 3/

1

A xn

7:6:18 (p. 375) y1 D x1=3
1
X

nD0

.�1/n
Qn

j D1.6j � 7/2

81n.nŠ/2
xn;

y2 D y1 ln x C 14x1=3
1
X

nD1

.�1/n
Qn

j D1.6j � 7/2

81n.nŠ/2

0

@

n
X

j D1

1

j.6j � 7/
/

1

A xn

7:6:19 (p. 375) y1 D x2
1
X

nD0

.�1/n
Qn

j D1.2j C 5/

.nŠ/2
xn;

y2 D y1 ln x � 2x2
1
X

nD1

.�1/n
Qn

j D1.2j C 5/

.nŠ/2

0

@

n
X

j D1

.j C 5/

j.2j C 5/

1

A xn

7:6:20 (p. 375) y1 D 1

x

1
X

nD0

2n
Qn

j D1.2j � 1/

nŠ
xn;

y2 D y1 ln x C 1

x

1
X

nD1

2n
Qn

j D1.2j � 1/

nŠ

0

@

n
X

j D1

1

j.2j � 1/

1

A xn

7:6:21 (p. 375) y1 D 1

x

1
X

nD0

.�1/n
Qn

j D1.2j � 5/

nŠ
xn;

y2 D y1 ln x C
5

x

1
X

nD1

.�1/n
Qn

j D1.2j � 5/

nŠ

0

@

n
X

j D1

1

j.2j � 5/

1

A xn

7:6:22 (p. 375) y1 D x2
1
X

nD0

.�1/n
Qn

j D1.2j C 3/

2nnŠ
xn;

y2 D y1 ln x � 3x2
1
X

nD0

.�1/n
Qn

j D1.2j C 3/

2nnŠ

0

@

n
X

j D1

1

j.2j C 3/

1

A xn

7:6:23 (p. 375) y1 D x�2

�

1 C 3x C 3

2
x2 � 1

2
x3 C � � �

�

; y2 D y1 ln x � 5x�1

�

1 C 5

4
x � 1

4
x2 C � � �

�

7:6:24 (p. 375) y1 D x3.1 C 20x C 180x2 C 1120x3 C � � �; y2 D y1 ln x � x4

�

26 C 324x C 6968

3
x2 C � � �

�

7:6:25 (p. 375) y1 D x

�

1 � 5x C 85

4
x2 � 3145

36
x3 C � � �

�

; y2 D y1 ln x C x2

�

2 � 39

4
x C 4499

108
x2 C � � �

�



620 Answers to Selected Exercises

7:6:26 (p. 375) y1 D 1 � x C 3

4
x2 � 7

12
x3 C � � �; y2 D y1 ln x C x

�

1 � 3

4
x C 5

9
x2 C � � �

�

7:6:27 (p. 375) y1 D x�3.1 C 16x C 36x2 C 16x3 C � � � /; y2 D y1 ln x � x�2

�

40 C 150x C 280

3
x2 C � � �

�

7:6:28 (p. 375) y1 D x

1
X

mD0

.�1/m

2mmŠ
x2m; y2 D y1 ln x � x

2

1
X

mD1

.�1/m

2mmŠ

0

@

m
X

j D1

1

j

1

A x2m

7:6:29 (p. 375) y1 D x2
1
X

mD0

.�1/m.m C 1/x2m; y2 D y1 ln x � x2

2

1
X

mD1

.�1/mmx2m

7:6:30 (p. 375) y1 D x1=2
1
X

mD0

.�1/m

4mmŠ
x2m; y2 D y1 ln x � x1=2

2

1
X

mD1

.�1/m

4mmŠ

0

@

m
X

j D1

1

j

1

A x2m

7:6:31 (p. 375) y1 D x

1
X

mD0

.�1/m
Qm

j D1.2j � 1/

2mmŠ
x2m;

y2 D y1 ln x C
x

2

1
X

mD1

.�1/m
Qm

j D1.2j � 1/

2mmŠ

0

@

m
X

j D1

1

j.2j � 1/

1

Ax2m

7:6:32 (p. 375) y1 D x1=2
1
X

mD0

.�1/m
Qm

j D1.4j � 1/

8mmŠ
x2m;

y2 D y1 ln x C
x1=2

2

1
X

mD1

.�1/m
Qm

j D1.4j � 1/

8mmŠ

0

@

m
X

j D1

1

j.4j � 1/

1

A x2m

7:6:33 (p. 375) y1 D x

1
X

mD0

.�1/m
Qm

j D1.2j C 1/

2mmŠ
x2m;

y2 D y1 ln x � x

2

1
X

mD1

.�1/m
Qm

j D1.2j C 1/

2mmŠ

0

@

m
X

j D1

1

j.2j C 1/

1

A x2m

7:6:34 (p. 375) y1 D x�1=4
1
X

mD0

.�1/m
Qm

j D1.8j � 13/

.32/mmŠ
x2m;

y2 D y1 ln x C 13

2
x�1=4

1
X

mD1

.�1/m
Qm

j D1.8j � 13/

.32/mmŠ

0

@

m
X

j D1

1

j.8j � 13/

1

A x2m

7:6:35 (p. 375) y1 D x1=3
1
X

mD0

.�1/m
Qm

j D1.3j � 1/

9mmŠ
x2m;

y2 D y1 ln x C x1=3

2

1
X

mD1

.�1/m
Qm

j D1.3j � 1/

9mmŠ

0

@

m
X

j D1

1

j.3j � 1/

1

A x2m

7:6:36 (p. 375) y1 D x1=2
1
X

mD0

.�1/m
Qm

j D1.4j � 3/.4j � 1/

4m.mŠ/2
x2m;

y2 D y1 ln x C x1=2
1
X

mD1

.�1/m
Qm

j D1.4j � 3/.4j � 1/

4m.mŠ/2

0

@

m
X

j D1

8j � 3

j.4j � 3/.4j � 1/

1

A x2m

7:6:37 (p. 375) y1 D x5=3
1
X

mD0

.�1/m

3mmŠ
x2m; y2 D y21 ln x � x5=3

2

1
X

mD1

.�1/m

3mmŠ

0

@

m
X

j D1

1

j

1

A x2m
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7:6:38 (p. 375) y1 D 1

x

1
X

mD0

.�1/m
Qm

j D1.4j � 7/

2mmŠ
x2m;

y2 D y1 ln x C 7

2x

1
X

mD1

.�1/m
Qm

j D1.4j � 7/

2mmŠ

0

@

m
X

j D1

1

j.4j � 7/

1

A x2m

7:6:39 (p. 376) y1 D x�1

�

1 � 3

2
x2 C 15

8
x4 � 35

16
x6 C � � �

�

; y2 D y1 ln x C x

�

1

4
� 13

32
x2 C 101

192
x4 C � � �

�

7:6:40 (p. 376) y1 D x

�

1 � 1

2
x2 C 1

8
x4 � 1

48
x6 C � � �

�

; y2 D y1 ln x C x3

�

1

4
� 3

32
x2 C 11

576
x4 C � � �

�

7:6:41 (p. 376) y1 D x�2

�

1 � 3

4
x2 � 9

64
x4 � 25

256
x6 C � � �

�

; y2 D y1 ln x C 1

2
� 21

128
x2 � 215

1536
x4 C � � �

7:6:42 (p. 376) y1 D x�3

�

1 � 17

8
x2 C 85

256
x4 � 85

18432
x6 C � � �

�

; y2 D y1 ln x C x�1

�

25

8
� 471

512
x2 C 1583

110592
x4 C � � �

�

7:6:43 (p. 376) y1 D x�1

�

1 �
3

4
x2 C

45

64
x4 �

175

256
x6 C � � �

�

; y2 D y1 ln x � x

�

1

4
�

33

128
x2 C

395

1536
x4 C � � �

�

7:6:44 (p. 376) y1 D 1

x
; y2 D y1 ln x � 6 C 6x � 8

3
x2

7:6:45 (p. 376) y1 D 1 � x; y2 D y1 ln x C 4x

7:6:46 (p. 376) y1 D .x � 1/2

x
; y2 D y1 ln x C 3 � 3x C 2

1
X

nD2

1

n.n2 � 1/
xn

7:6:47 (p. 376) y1 D x1=2.x C 1/2; y2 D y1 ln x � x3=2

 

3 C 3x C 2

1
X

nD2

.�1/n

n.n2 � 1/
xn

!

7:6:48 (p. 376) y1 D x2.1 � x/3; y2 D y1 ln x C x3

 

4 � 7x C 11

3
x2 � 6

1
X

nD3

1

n.n � 2/.n2 � 1/
xn

!

7:6:49 (p. 376) y1 D x � 4x3 C x5; y2 D y1 ln x C 6x3 � 3x5

7:6:50 (p. 376) y1 D x1=3

�

1 � 1

6
x2

�

; y2 D y1 ln x C x7=3

 

1

4
� 1

12

1
X

mD1

1

6mm.m C 1/.m C 1/Š
x2m

!

7:6:51 (p. 376) y1 D .1 C x2/2; y2 D y1 ln x � 3

2
x2 � 3

2
x4 C

1
X

mD3

.�1/m

m.m � 1/.m � 2/
x2m

7:6:52 (p. 376) y1 D x�1=2

�

1 �
1

2
x2 C

1

32
x4

�

; y2 D y1 ln x C x3=2

 

5

8
�

9

128
x2 C

1
X

mD2

1

4mC1.m � 1/m.m C 1/.m C 1/Š
x2m

!

.

7:6:56 (p. 378) y1 D
1
X

mD0

.�1/m

4m.mŠ/2
x2m; y2 D y1 ln x �

1
X

mD1

.�1/m

4m.mŠ/2

0

@

m
X

j D1

1

j

1

A x2m

7:6:58 (p. 379)
x1=2

1 C x
;

x1=2 ln x

1 C x
7:6:59 (p. 379)

x1=3

3 C x
;

x1=3 ln x

3 C x

7:6:60 (p. 379)
x

2 � x2
;

x ln x

2 � x2
7:6:61 (p. 379)

x1=4

1 C x2
;

x1=4 ln x

1 C x2

7:6:62 (p. 379)
x

4 C 3x
;

x ln x

4 C 3x
7:6:63 (p. 379)

x1=2

1 C 3x C x2
;

x1=2 ln x

1 C 3x C x2

7:6:64 (p. 379)
x

.1 � x/2
;

x ln x

.1 � x/2
7:6:65 (p. 379)

x1=3

1 C x C x2
;

x1=3 ln x

1 C x C x2
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Section 7.7 Answers, pp. 389–391

7:7:1 (p. 389) y1 D 2x3
1
X

nD0

.�4/n

nŠ.n C 2/Š
xn; y2 D x C 4x2 � 8

0

@y1 ln x � 4

1
X

nD1

.�4/n

nŠ.n C 2/Š

0

@

n
X

j D1

j C 1

j.j C 2/

1

A xn

1

A

7:7:2 (p. 389) y1 D x

1
X

nD0

.�1/n

nŠ.n C 1/Š
xn; y2 D 1 � y1 ln x C x

1
X

nD1

.�1/n

nŠ.n C 1/Š

0

@

n
X

j D1

2j C 1

j.j C 1/

1

A xn

7:7:3 (p. 389) y1 D x1=2; y2 D x�1=2 C y1 ln x C x1=2
1
X

nD1

.�1/n

n
xn

7:7:4 (p. 389) y1 D x

1
X

nD0

.�1/n

nŠ
xn D xe�x ; y2 D 1 � y1 ln x C x

1
X

nD1

.�1/n

nŠ

0

@

n
X

j D1

1

j

1

A xn

7:7:5 (p. 389) y1 D x1=2
1
X

nD0

�

�3

4

�n
Qn

j D1.2j C 1/

nŠ
xn;

y2 D x�1=2 � 3

4

0

@y1 ln x � x1=2
1
X

nD1

�

�3

4

�n
Qn

j D1.2j C 1/

nŠ

0

@

n
X

j D1

1

j.2j C 1/

1

A xn

1

A

7:7:6 (p. 389) y1 D x

1
X

nD0

.�1/n

nŠ
xn D xe�x ; y2 D x�2

�

1 C 1

2
x C 1

2
x2

�

� 1

2

0

@y1 ln x � x

1
X

nD1

.�1/n

nŠ

0

@

n
X

j D1

1

j

1

A xn

1

A

7:7:7 (p. 389) y1 D 6x3=2
1
X

nD0

.�1/n

4nnŠ.n C 3/Š
xn;

y2 D x�3=2

�

1 C 1

8
x C 1

64
x2

�

� 1

768

0

@y1 ln x � 6x3=2
1
X

nD1

.�1/n

4nnŠ.n C 3/Š

0

@

n
X

j D1

2j C 3

j.j C 3/

1

A xn

1

A

7:7:8 (p. 389) y1 D
120

x2

1
X

nD0

.�1/n

nŠ.n C 5/Š
xn;

y2 D x�7

�

1 C 1

4
x C 1

24
x2 C 1

144
x3 C 1

576
x4

�

� 1

2880

0

@y1 ln x � 120

x2

1
X

nD1

.�1/n

nŠ.n C 5/Š

0

@

n
X

j D1

2j C 5

j.j C 5/

1

Axn

1

A

7:7:9 (p. 389) y1 D x1=2

6

1
X

nD0

.�1/n.n C 1/.n C 2/.n C 3/xn;

y2 D x�5=2

�

1 C 1

2
x C x2

�

� 3y1 ln x C 3

2
x1=2

1
X

nD1

.�1/n.n C 1/.n C 2/.n C 3/

0

@

n
X

j D1

1

j.j C 3/

1

A xn

7:7:10 (p. 389) y1 D x4

�

1 � 2

5
x

�

y2 D 1 C 10x C 50x2 C 200x3 � 300

�

y1 ln x C 27

25
x5 � 1

30
x6

�

7:7:11 (p. 389) y1 D x3; y2 D x�3

�

1 � 6

5
x C 3

4
x2 � 1

3
x3 C 1

8
x4 � 1

20
x5

�

� 1

120

 

y1 ln x C x3
1
X

nD1

.�1/n6Š

n.n C 6/Š
xn

!

7:7:12 (p. 389) y1 D x2
1
X

nD0

1

nŠ

0

@

n
Y

j D1

2j C 3

j C 4

1

A xn;

y2 D x�2

�

1 C x C
1

4
x2 �

1

12
x3

�

�
1

16
y1 ln x C

x2

8

1
X

nD1

1

nŠ

0

@

n
Y

j D1

2j C 3

j C 4

1

A

0

@

n
X

j D1

.j 2 C 3j C 6/

j.j C 4/.2j C 3/

1

A xn
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7:7:13 (p. 389) y1 D x5
1
X

nD0

.�1/n.n C 1/.n C 2/xn; y2 D 1 � x

2
C x2

6

7:7:14 (p. 389) y1 D 1

x

1
X

nD0

.�1/n

nŠ

0

@

n
Y

j D1

.j C 3/.2j � 3/

j C 6

1

A xn; y2 D x�7

�

1 C 26

5
x C 143

20
x2

�

7:7:15 (p. 389) y1 D x7=2
1
X

nD0

.�1/n

2n.n C 4/Š
xn; y2 D x�1=2

�

1 �
1

2
x C

1

8
x2 �

1

48
x3

�

7:7:16 (p. 389) y1 D x10=3
1
X

nD0

.�1/n.n C 1/

9n

0

@

n
Y

j D1

3j C 7

j C 4

1

A xn; y2 D x�2=3

�

1 C
4

27
x �

1

243
x2

�

7:7:17 (p. 389) y1 D x3
7
X

nD0

.�1/n.n C 1/

0

@

n
Y

j D1

j � 8

j C 6

1

A xn; y2 D x�3

�

1 C 52

5
x C 234

5
x2 C 572

5
x3 C 143x4

�

7:7:18 (p. 389) y1 D x3
1
X

nD0

.�1/n

nŠ

0

@

n
Y

j D1

.j C 3/2

j C 5

1

A xn; y2 D x�2

�

1 C 1

4
x

�

7:7:19 (p. 389) y1 D x6
4
X

nD0

.�1/n2n

0

@

n
Y

j D1

j � 5

j C 5

1

A xn; y2 D x.1 C 18x C 144x2 C 672x3 C 2016x4/

7:7:20 (p. 389) y1 D x6

�

1 C 2

3
x C 1

7
x2

�

; y2 D x

�

1 C 21

4
x C 21

2
x2 C 35

4
x3

�

7:7:21 (p. 389) y1 D x7=2
1
X

nD0

.�1/n.n C 1/xn; y2 D x�7=2

�

1 � 5

6
x C 2

3
x2 � 1

2
x3 C 1

3
x4 � 1

6
x5

�

7:7:22 (p. 389) y1 D x10

6

1
X

nD0

.�1/n2n.n C 1/.n C 2/.n C 3/xn;

y2 D
�

1 � 4

3
x C 5

3
x2 � 40

21
x3 C 40

21
x4 � 32

21
x5 C 16

21
x6

�

7:7:23 (p. 389) y1 D x6
1
X

mD0

.�1/m
Qm

j D1.2j C 5/

2mmŠ
x2m;

y2 D x2

�

1 C 3

2
x2

�

� 15

2
y1 ln x C 75

2
x6

1
X

mD1

.�1/m
Qm

j D1.2j C 5/

2mC1mŠ

0

@

m
X

j D1

1

j.2j C 5/

1

A x2m

7:7:24 (p. 389) y1 D x6
1
X

mD0

.�1/m

2mmŠ
x2m D x6e�x2=2;

y2 D x2

�

1 C 1

2
x2

�

� 1

2
y1 ln x C x6

4

1
X

mD1

.�1/m

2mmŠ

0

@

m
X

j D1

1

j

1

A x2m

7:7:25 (p. 389) y1 D 6x6
1
X

mD0

.�1/m

4mmŠ.m C 3/Š
x2m;

y2 D 1 C 1

8
x2 C 1

64
x4 � 1

384

0

@y1 ln x � 3x6
1
X

mD1

.�1/m

4mmŠ.m C 3/Š

0

@

m
X

j D1

2j C 3

j.j C 3/

1

Ax2m

1

A

7:7:26 (p. 389) y1 D
x

2

1
X

mD0

.�1/m.m C 2/

mŠ
x2m;
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y2 D x�1 � 4y1 ln x C x

1
X

mD1

.�1/m.m C 2/

mŠ

0

@

m
X

j D1

j 2 C 4j C 2

j.j C 1/.j C 2/

1

A x2m

7:7:27 (p. 389) y1 D 2x3
1
X

mD0

.�1/m

4mmŠ.m C 2/Š
x2m;

y2 D x�1

�

1 C 1

4
x2

�

� 1

16

0

@y1 ln x � 2x3
1
X

mD1

.�1/m

4mmŠ.m C 2/Š

0

@

m
X

j D1

j C 1

j.j C 2/

1

A x2m

1

A

7:7:28 (p. 390) y1 D x�1=2
1
X

mD0

.�1/m
Qm

j D1.2j � 1/

8mmŠ.m C 1/Š
x2m;

y2 D x�5=2 C 1

4
y1 ln x � x�1=2

1
X

mD1

.�1/m
Qm

j D1.2j � 1/

8mC1mŠ.m C 1/Š

0

@

m
X

j D1

2j 2 � 2j � 1

j.j C 1/.2j � 1/

1

Ax2m

7:7:29 (p. 390) y1 D x

1
X

mD0

.�1/m

2mmŠ
x2m D xe�x2 =2; y2 D x�1 � y1 ln x C x

2

1
X

mD1

.�1/m

2mmŠ

0

@

m
X

j D1

1

j

1

A x2m

7:7:30 (p. 390) y1 D x2
1
X

mD0

1

mŠ
x2m D x2ex2

; y2 D x�2.1 � x2/ � 2y1 ln x C x2
1
X

mD1

1

mŠ

0

@

m
X

j D1

1

j

1

A x2m

7:7:31 (p. 390) y1 D 6x5=2
1
X

mD0

.�1/m

16mmŠ.m C 3/Š
x2m;

y2 D x�7=2

�

1 C 1

32
x2 C 1

1024
x4

�

� 1

24576

0

@y1 ln x � 3x5=2
1
X

mD1

.�1/m

16mmŠ.m C 3/Š

0

@

m
X

j D1

2j C 3

j.j C 3/

1

A x2m

1

A

7:7:32 (p. 390) y1 D 2x13=3
1
X

mD0

Qm
j D1.3j C 1/

9mmŠ.m C 2/Š
x2m;

y2 D x1=3

�

1 C 2

9
x2

�

C 2

81

0

@y1 ln x � x13=3
1
X

mD0

Qm
j D1.3j C 1/

9mmŠ.m C 2/Š

0

@

m
X

j D1

3j 2 C 2j C 2

j.j C 2/.3j C 1/

1

A x2m

1

A

7:7:33 (p. 390) y1 D x2; y2 D x�2.1 C 2x2/ � 2

 

y1 ln x C x2
1
X

mD1

1

m.m C 2/Š
x2m

!

7:7:34 (p. 390) y1 D x2

�

1 � 1

2
x2

�

; y2 D x�2

�

1 C 9

2
x2

�

� 27

2

0

B

@
y1 ln x C 7

12
x4 � x2

1
X

mD2

�

3
2

�m

m.m � 1/.m C 2/Š
x2m

1

C

A

7:7:35 (p. 390) y1 D
1
X

mD0

.�1/m.m C 1/x2m; y2 D x�4

7:7:36 (p. 390) y1 D x5=2
1
X

mD0

.�1/m

.m C 1/.m C 2/.m C 3/
x2m; y2 D x�7=2.1 C x2/2

7:7:37 (p. 390) y1 D x7

5

1
X

mD0

.�1/m.m C 5/x2m; y2 D x�1
�

1 � 2x2 C 3x4 � 4x6
�

7:7:38 (p. 390) y1 D x3
1
X

mD0

.�1/m m C 1

2m

0

@

m
Y

j D1

2j C 1

j C 5

1

Ax2m; y2 D x�7

�

1 C 21

8
x2 C 35

16
x4 C 35

64
x6

�
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7:7:39 (p. 390) y1 D 2x4
1
X

mD0

.�1/m

Qm
j D1.4j C 5/

2m.m C 2/Š
x2m; y2 D 1 � 1

2
x2

7:7:40 (p. 390) y1 D x3=2
1
X

mD0

.�1/m
Qm

j D1.2j � 1/

2m�1.m C 2/Š
x2m; y2 D x�5=2

�

1 C
3

2
x2

�

7:7:42 (p. 390) y1 D x�
1
X

mD0

.�1/m

4mmŠ
Qm

j D1.j C �/
x2m;

y2 D x��
��1
X

mD0

.�1/m

4mmŠ
Qm

j D1.j � �/
x2m � 2

4��Š.� � 1/Š

0

@y1 ln x � x�

2

1
X

mD1

.�1/m

4mmŠ
Qm

j D1.j C �/

0

@

m
X

j D1

2j C �

j.j C �/

1

Ax2m

1

A

Section 8.1 Answers, pp. 403–405

8:1:1 (p. 403) (a)
1

s2
(b)

1

.s C 1/2
(c)

b

s2 � b2
(d)

�2s C 5

.s � 1/.s � 2/
(e)

2

s3

8:1:2 (p. 403) (a)
s2 C 2

�

.s � 1/2 C 1
� �

.s C 1/2 C 1
� (b)

2

s.s2 C 4/
(c)

s2 C 8

s.s2 C 16/
(d)

s2 � 2

s.s2 � 4/

(e)
4s

.s2 � 4/2
(f)

1

s2 C 4
(g)

1p
2

s C 1

s2 C 1
(h)

5s

.s2 C 4/.s2 C 9/
(i)

s3 C 2s2 C 4s C 32

.s2 C 4/.s2 C 16/

8:1:4 (p. 403) (a) f .3�/ D �1; f .3/ D f .3C/ D 1 (b) f .1�/ D 3; f .1/ D 4; f .1C/ D 1

(c) f
��

2
�
�

D 1; f
��

2

�

D f
��

2
C
�

D 2; f .��/ D 0; f .�/ D f .�C/ D �1

(d) f .1�/ D 1; f .1/ D 2; f .1C/ D 1; f .2�/ D 0; f .2/ D 3; f .2C/ D 6

8:1:5 (p. 403) (a)
1 � e�.sC1/

s C 1
C e�.sC2/

s C 2
(b)

1

s
C e�4s

�

1

s2
C 3

s

�

(c)
1 � e�s

s2
(d)

1 � e�.s�1/

.s � 1/2

8:1:7 (p. 403) L.e�t cos !t/ D .s � �/2 � !2

�

.s � �/2 C !2
�2

L.e�t sin !t/ D 2!.s � �/
�

.s � �/2 C !2
�2

8:1:15 (p. 404) (a) tan�1 !

s
; s > 0 (b)

1

2
ln

s2

s2 C !2
; s > 0 (c) ln

s � b

s � a
; s > max.a; b/

(d)
1

2
ln

s2

s2 � 1
; s > 1 (e)

1

4
ln

s2

s2 � 4
; s > 2

8:1:18 (p. 405) (a)
1

s2
tanh

s

2
(b)

1

s
tanh

s

4
(c)

1

s2 C 1
coth

�s

2
(d)

1

.s2 C 1/.1 � e��s/

Section 8.2 Answers, pp. 412–414

8:2:1 (p. 412) (a)
t3e7t

2
(b) 2e2t cos 3t (c)

e�2t

4
sin 4t (d)

2

3
sin 3t (e) t cos t

(f)
e2t

2
sinh 2t (g)

2te2t

3
sin 9t (h)

2e3t

3
sinh 3t (i) e2t t cos t

8:2:2 (p. 412) (a) t2e7t C 17

6
t3e7t (b) e2t

�

1

6
t3 C 1

6
t4 C 1

40
t5

�

(c) e�3t

�

cos 3t C 2

3
sin 3t

�

(d) 2 cos 3t C 1

3
sin 3t (e) .1 � t /e�t (f) cosh3t C 1

3
sinh 3t (g)

�

1 � t � t2 � 1

6
t3

�

e�t

(h) et

�

2 cos 2t C 5

2
sin 2t

�

(i) 1 � cos t (j) 3 cosh t C 4 sinh t (k) 3et C 4 cos 3t C 1

3
sin 3t

(l) 3te�2t � 2 cos 2t � 3 sin 2t

8:2:3 (p. 413) (a)
1

4
e2t � 1

4
e�2t � e�t (b)

1

5
e�4t � 41

5
et C 5e3t (c) �1

2
e2t � 13

10
e�2t � 1

5
e3t

(d) �2

5
e�4t � 3

5
et (e)

3

20
e2t � 37

12
e�2t C 1

3
et C 8

5
e�3t (f)

39

10
et C 3

14
e3t C 23

105
e�4t � 7

3
e2t
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8:2:4 (p. 413) (a)
4

5
e�2t � 1

2
e�t � 3

10
cos t C 11

10
sin t (b)

2

5
sin t C 6

5
cos t C 7

5
e�t sin t � 6

5
e�t cos t

(c)
8

13
e2t � 8

13
e�t cos 2t C 15

26
e�t sin 2t (d)

1

2
tet C 3

8
et C e�2t � 11

8
e�3t

(e)
2

3
tet C 1

9
et C te�2t � 1

9
e�2t (f) �et C 5

2
tet C cos t � 3

2
sin t

8:2:5 (p. 413) (a)
3

5
cos 2t C 1

5
sin 2t � 3

5
cos 3t � 2

15
sin 3t (b) � 4

15
cos t C 1

15
sin t C 4

15
cos 4t � 1

60
sin 4t

(c)
5

3
cos t C sin t � 5

3
cos 2t � 1

2
sin 2t (d) �1

3
cos

t

2
C 2

3
sin

t

2
C 1

3
cos t � 1

3
sin t

(e)
1

15
cos

t

4
� 8

15
sin

t

4
� 1

15
cos 4t C 1

30
sin 4t (f)

2

5
cos

t

3
� 3

5
sin

t

3
� 2

5
cos

t

2
C 2

5
sin

t

2

8:2:6 (p. 413) (a) et .cos 2t C sin 2t/ � e�t

�

cos 3t C 4

3
sin 3t

�

(b) e3t

�

� cos 2t C 3

2
sin 2t

�

C e�t

�

cos 2t C 1

2
sin 2t

�

(c) e�2t

�

1

8
cos t C 1

4
sin t

�

� e2t

�

1

8
cos 3t � 1

12
sin 3t

�

(d) e2t

�

cos t C 1

2
sin t

�

� e3t

�

cos 2t � 1

4
sin 2t

�

(e) et

�

1

5
cos t C 2

5
sin t

�

� e�t

�

1

5
cos 2t C 2

5
sin 2t

�

(f) et=2

�

� cos t C 9

8
sin t

�

C e�t=2

�

cos t � 1

8
sin t

�

8:2:7 (p. 413) (a) 1�cos t (b)
et

16
.1 � cos 4t/ (c)

4

9
e2t C 5

9
e�t sin 3t � 4

9
e�t cos 3t (d) 3et=2 � 7

2
et sin 2t � 3et cos 2t

(e)
1

4
e3t � 1

4
e�t cos 2t (f)

1

9
e2t � 1

9
e�t cos 3t C 5

9
e�t sin 3t

8:2:8 (p. 413) (a) � 3

10
sin t C 2

5
cos t � 3

4
et C 7

20
e3t (b) �3

5
e�t sin t C 1

5
e�t cos t � 1

2
e�t C 3

10
et

(c) � 1

10
et sin t � 7

10
et cos t C 1

5
e�t C 1

2
e2t (d) �1

2
et C 7

10
e�t � 1

5
cos 2t C 3

5
sin 2t

(e)
3

10
C 1

10
e2t C 1

10
et sin 2t � 2

5
et cos 2t (f) �4

9
e2t cos 3t C 1

3
e2t sin 3t � 5

9
e2t C et

8:2:9 (p. 414)
1

a
e

b
a t f

�

t

a

�

Section 8.3 Answers, pp. 419–420

8:3:1 (p. 419) y D 1

6
et � 9

2
e�t C 16

3
e�2t 8:3:2 (p. 419) y D �1

3
C 8

15
e3t C 4

5
e�2t

8:3:3 (p. 419) y D �23

15
e�2t C 1

3
et C 1

5
e3t 8:3:4 (p. 419) y D �1

4
e2t C 17

20
e�2t C 2

5
e3t

8:3:5 (p. 419) y D 11

15
e�2t C 1

6
et C 1

10
e3t 8:3:6 (p. 419) y D et C 2e�2t � 2e�t

8:3:7 (p. 419) y D 5

3
sin t � 1

3
sin 2t 8:3:8 (p. 419) y D 4et � 4e2t C e3t

8:3:9 (p. 419) y D �7

2
e2t C 13

3
et C 1

6
e4t 8:3:10 (p. 419) y D 5

2
et � 4e2t C 1

2
e3t

8:3:11 (p. 419) y D 1

3
et � 2e�t C 5

3
e�2t 8:3:12 (p. 419) y D 2 � e�2t C et

8:3:13 (p. 419) y D 1 � cos 2t C 1

2
sin 2t 8:3:14 (p. 419) y D �1

3
C 8

15
e3t C 4

5
e�2t

8:3:15 (p. 419) y D
1

6
et �

2

3
e�2t C

1

2
e�t 8:3:16 (p. 419) y D �1 C et C e�t

8:3:17 (p. 419) y D cos 2t � sin 2t C sin t 8:3:18 (p. 419) y D 7

3
� 7

2
e�t C 1

6
e3t

8:3:19 (p. 419) y D 1 C cos t 8:3:20 (p. 419) y D t C sin t 8:3:21 (p. 420) y D t � 6 sin t C cos t C sin 2t

8:3:22 (p. 420) y D e�t C 4e�2t � 4e�3t 8:3:23 (p. 420) y D �3 cos t � 2 sin t C e�t .2 C 5t/

8:3:24 (p. 420) y D � sin t � 2 cos t C 3e3t C e�t 8:3:25 (p. 420) y D .3t C 4/ sin t � .2t C 6/ cos t
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8:3:26 (p. 420) y D �.2t C 2/ cos 2t C sin 2t C 3 cos t 8:3:27 (p. 420) y D et .cos t � 3 sin t / C e3t

8:3:28 (p. 420) y D �1 C t C e�t .3 cos t � 5 sin t / 8:3:29 (p. 420) y D 4 cos t � 3 sin t � et .3 cos t � 8 sin t /

8:3:30 (p. 420) y D e�t � 2et C e�2t .cos 3t � 11=3sin 3t/

8:3:31 (p. 420) y D e�t .sin t � cos t / C e�2t .cos t C 4 sin t /

8:3:32 (p. 420) y D 1

5
e2t � 4

3
et C 32

15
e�t=2 8:3:33 (p. 420) y D 1

7
e2t � 2

5
et=2 C 9

35
e�t=3

8:3:34 (p. 420) y D e�t=2.5 cos.t=2/ � sin.t=2// C 2t � 4

8:3:35 (p. 420) y D 1

17

�

12 cos t C 20 sin t � 3et=2.4 cos t C sin t /
�

.

8:3:36 (p. 420) y D e�t=2

10
.5t C 26/ � 1

5
.3 cos t C sin t / 8:3:37 (p. 420) y D 1

100

�

3e3t � et=3.3 C 310t/
�

Section 8.4 Answers, pp. 428–431

8:4:1 (p. 428) 1 C u.t � 4/.t � 1/;
1

s
C e�4s

�

1

s2
C

3

s

�

8:4:2 (p. 428) t C u.t � 1/.1 � t /;
1 � e�s

s2

8:4:3 (p. 428) 2t � 1 � u.t � 2/.t � 1/;

�

2

s2
� 1

s

�

� e�2s

�

1

s2
C 1

s

�

8:4:4 (p. 428) 1 C u.t � 1/.t C 1/;
1

s
C e�s

�

1

s2
C 2

s

�

8:4:5 (p. 428) t � 1 C u.t � 2/.5 � t /;
1

s2
� 1

s
� e�2s

�

1

s2
� 3

s

�

8:4:6 (p. 428) t2 .1 � u.t � 1//;
2

s3
� e�s

�

2

s3
C 2

s2
C 1

s

�

8:4:7 (p. 429) u.t � 2/.t2 C 3t/; e�2s

�

2

s3
C

7

s2
C

10

s

�

8:4:8 (p. 429) t2 C 2 C u.t � 1/.t � t2 � 2/;
2

s3
C 2

s
� e�s

�

2

s3
C 1

s2
C 2

s

�

8:4:9 (p. 429) tet C u.t � 1/.et � tet /;
1 � e�.s�1/

.s � 1/2

8:4:10 (p. 429) e�t C u.t � 1/.e�2t � e�t / ;
1 � e�.sC1/

s C 1
C e�.sC2/

s C 2

8:4:11 (p. 429) �t C 2u.t � 2/.t � 2/ � u.t � 3/.t � 5/; � 1

s2
C 2e�2s

s2
C e�3s

�

2

s
� 1

s2

�

8:4:12 (p. 429) Œu.t � 1/ � u.t � 2/� t ; e�s

�

1

s2
C 1

s

�

� e�2s

�

1

s2
C 2

s

�

8:4:13 (p. 429) t C u.t � 1/.t2 � t / � u.t � 2/t2;
1

s2
C e�s

�

2

s3
C 1

s2

�

� e�2s

�

2

s3
C 4

s2
C 4

s

�

8:4:14 (p. 429) t C u.t � 1/.2 � 2t/ C u.t � 2/.4 C t /;
1

s2
� 2

e�s

s2
C e�2s

�

1

s2
C

6

s

�

8:4:15 (p. 429) sin t C u.t � �=2/ sin t C u.t � �/.cos t � 2 sin t /;
1 C e� �

2 ss � e��s .s � 2/

s2 C 1

8:4:16 (p. 429) 2 � 2u.t � 1/t C u.t � 3/.5t � 2/;
2

s
� e�s

�

2

s2
C 2

s

�

C e�3s

�

5

s2
C 13

s

�

8:4:17 (p. 429) 3 C u.t � 2/.3t � 1/ C u.t � 4/.t � 2/;
3

s
C e�2s

�

3

s2
C 5

s

�

C e�4s

�

1

s2
C 2

s

�

8:4:18 (p. 429) .t C 1/2 C u.t � 1/.2t C 3/;
2

s3
C 2

s2
C 1

s
C e�s

�

2

s2
C 5

s

�
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8:4:19 (p. 429) u.t � 2/e2.t�2/ D
(

0; 0 � t < 2;

e2.t�2/; t � 2:

8:4:20 (p. 429) u.t � 1/
�

1 � e�.t�1/
�

D
(

0; 0 � t < 1;

1 � e�.t�1/; t � 1:

8:4:21 (p. 429) u.t � 1/
.t � 1/2

2
C u.t � 2/.t � 2/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

0; 0 � t < 1;

.t � 1/2

2
; 1 � t < 2;

t2 � 3

2
; t � 2:

8:4:22 (p. 429) 2 C t C u.t � 1/.4 � t / C u.t � 3/.t � 2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

2 C t; 0 � t < 1;

6; 1 � t < 3;

t C 4; t � 3:

8:4:23 (p. 430) 5 � t C u.t � 3/.7t � 15/ C
3

2
u.t � 6/.t � 6/2 D

8

ˆ

ˆ

<

ˆ

ˆ

:

5 � t; 0 � t < 3;

6t � 10; 3 � t < 6;

44 � 12t C 3
2

t2; t � 6:

8:4:24 (p. 430) u.t � �/e�2.t��/.2 cos t � 5 sin t / D
(

0; 0 � t < �;

e�2.t��/.2 cos t � 5 sin t /; t � �:

8:4:25 (p. 430) 1 � cos t C u.t � �=2/.3 sin t C cos t / D

8

ˆ

<

ˆ

:

1 � cos t; 0 � t <
�

2
;

1 C 3 sin t; t � �

2
:

8:4:26 (p. 430) u.t � 2/
�

4e�.t�2/ � 4e2.t�2/ C 2e.t�2/
�

D
(

0; 0 � t < 2;

4e�.t�2/ � 4e2.t�2/ C 2e.t�2/; t � 2:

8:4:27 (p. 430) 1 C t C u.t � 1/.2t C 1/ C u.t � 3/.3t � 5/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

t C 1; 0 � t < 1;

3t C 2; 1 � t < 3;

6t � 3; t � 3:

8:4:28 (p. 430) 1 � t2 C u.t � 2/

 

� t2

2
C 2t C 1

!

C u.t � 4/.t � 4/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 � t2; 0 � t < 2

�
3t2

2
C 2t C 2; 2 � t < 4;

�
3t2

2
C 3t � 2; t � 4:

8:4:29 (p. 430)
e��s

s
8:4:30 (p. 430) For each t only finitely many terms are nonzero.

8:4:33 (p. 431) 1 C
1
X

mD1

u.t � m/I 1

s.1 � e�s/
8:4:34 (p. 431) 1 C 2

1
X

mD1

.�1/mu.t � m/I 1

s
I 1 � e�s

1 C e�s

8:4:35 (p. 431) 1 C
1
X

mD1

.2m C 1/u.t � m/I e�s .1 C e�s /

s.1 � e�s/2
8:4:36 (p. 431)

1
X

mD1

.�1/m.2m � 1/u.t � m/I 1

s

.1 � es/

.1 C es /2

Section 8.5 Answers, pp. 438–440

8:5:1 (p. 438) y D 3.1 � cos t / � 3u.t � �/.1 C cos t /

8:5:2 (p. 438) y D 3�2 cos tC2u.t�4/ .t � 4 � sin.t � 4// 8:5:3 (p. 438) y D �
15

2
C

3

2
e2t � 2t C

u.t � 1/

2
.e2.t�1/ � 2t C 1/
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8:5:4 (p. 438) y D 1

2
et C 13

6
e�t C 1

3
e2t C u.t � 2/

�

�1 C 1

2
et�2 C 1

2
e�.t�2/ C 1

2
etC2 � 1

6
e�.t�6/ � 1

3
e2t

�

8:5:5 (p. 438) y D �7et C 4e2t C u.t � 1/

�

1

2
� et�1 C 1

2
e2.t�1/

�

� 2u.t � 2/

�

1

2
� et�2 C 1

2
e2.t�2/

�

8:5:6 (p. 438) y D 1

3
sin 2t � 3 cos 2t C 1

3
sin t � 2u.t � �/

�

1

3
sin t C 1

6
sin 2t

�

C u.t � 2�/

�

1

3
sin t � 1

6
sin 2t

�

8:5:7 (p. 438) y D
1

4
�

31

12
e4t C

16

3
et C u.t � 1/

�

2

3
et�1 �

1

6
e4.t�1/ �

1

2

�

C u.t � 2/

�

1

4
C

1

12
e4.t�2/ �

1

3
et�2

�

8:5:8 (p. 438) y D 1

8
.cos t � cos 3t/ � 1

8
u

�

t � 3�

2

��

sin t � cos t C sin 3t � 1

3
cos 3t

�

8:5:9 (p. 438) y D t

4
� 1

8
sin 2t C 1

8
u
�

t � �

2

�

.� cos 2t � sin 2t C 2� � 2t/

8:5:10 (p. 438) y D t � sin t � 2u.t � �/.t C sin t C � cos t /

8:5:11 (p. 438) y D u.t � 2/

 

t � 1

2
C e2.t�2/

2
� 2et�2

!

8:5:12 (p. 438) y D t C sin t C cos t � u.t � 2�/.3t � 3 sin t � 6� cos t /

8:5:13 (p. 438) y D 1

2
C 1

2
e�2t � e�t C u.t � 2/

�

2e�.t�2/ � e�2.t�2/ � 1
�

8:5:14 (p. 438) y D �1

3
� 1

6
e3t C 1

2
et C u.t � 1/

�

2

3
C 1

3
e3.t�1/ � et�1

�

8:5:15 (p. 438) y D 1

4

�

et C e�t .11 C 6t/
�

C u.t � 1/.te�.t�1/ � 1/

8:5:16 (p. 438) y D et � e�t � 2te�t � u.t � 1/
�

et � e�.t�2/ � 2.t � 1/e�.t�2/
�

8:5:17 (p. 438) y D te�t C e�2t C u.t � 1/
�

e�t .2 � t / � e�.2t�1/
�

8:5:18 (p. 439) y D y D t2e2t

2
� te2t � u.t � 2/.t � 2/2e2t

8:5:19 (p. 439) y D t4

12
C 1 � 1

12
u.t � 1/.t4 C 2t3 � 10t C 7/ C 1

6
u.t � 2/.2t3 C 3t2 � 36t C 44/

8:5:20 (p. 439) y D 1

2
e�t .3 cos t C sin t / C 1

2

�u.t � 2�/

�

e�.t�2�/

�

.� � 1/ cos t C
2� � 1

2
sin t

�

C 1 �
t

2

�

�1

2
u.t � 3�/

�

e�.t�3�/.3� cos t C .3� C 1/ sin t / C t
�

8:5:21 (p. 439) y D t2

2
C

1
X

mD1

u.t � m/
.t � m/2

2

8:5:22 (p. 439) (a) y D
(

2m C 1 � cos t; 2m� � t < .2m C 1/� .m D 0; 1; : : : /

2m; .2m � 1/� � t < 2m� .m D 1; 2; : : : /

(b) y D .m C 1/.t � sin t � m� cos t /; 2m� � t < .2m C 2/� .m D 0; 1; : : : /

(c) y D .�1/m � .2m C 1/ cos t; m� � t < .m C 1/� .m D 0; 1; : : : /

(d) y D emC1 � 1

2.e � 1/
.et�m C e�t / � m � 1; m � t < m C 1 .m D 0; 1 : : : /

(e) y D
 

m C 1 �
 

e2.mC1/� � 1

e2� � 1

!

e�t

!

sin t 2m� � t < 2.m C 1/� .m D 0; 1; : : : /

(f) y D m C 1

2
� et�m emC1 � 1

e � 1
C 1

2
e2.t�m/ e2mC2 � 1

e2 � 1
; m � t < m C 1 .m D 0; 1; : : : /
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Section 8.6 Answers, pp. 449–453

8:6:1 (p. 449) (a)
1

2

Z t

0
� sin 2.t � �/ d� (b)

Z t

0
e�2� cos 3.t � �/ d�

(c)
1

2

Z t

0
sin 2� cos 3.t � �/ d� or

1

3

Z t

0
sin 3� cos 2.t � �/ d� (d)

Z t

0
cos � sin.t � �/ d�

(e)

Z t

0
ea�d� (f) e�t

Z t

0
sin.t � �/ d� (g) e�2t

Z t

0
�e� sin.t � �/ d�

(h)
e�2t

2

Z t

0
�2.t � �/e3� d� (i)

Z t

0
.t � �/e� cos � d� (j)

Z t

0
e�3� cos � cos 2.t � �/ d�

(k)
1

4Š5Š

Z t

0
�4.t � �/5e3� d� (l)

1

4

Z t

0
�2e� sin 2.t � �/ d�

(m)
1

2

Z t

0
�.t � �/2e2.t��/ d� (n)

1

5Š6Š

Z t

0
.t � �/5e2.t��/�6 d�

8:6:2 (p. 450) (a)
as

.s2 C a2/.s2 C b2/
(b)

a

.s � 1/.s2 C a2/
(c)

as

.s2 � a2/2
(d)

2!s.s2 � !2/

.s2 C !2/4

(e)
.s � 1/!

�

.s � 1/2 C !2
�2

(f)
2

.s � 2/3.s � 1/2
(g)

s C 1

.s C 2/2
�

.s C 1/2 C !2
�

(h)
1

.s � 3/
�

.s � 1/2 � 1
� (i)

2

.s � 2/2.s2 C 4/
(j)

6

s4.s � 1/
(k)

3 � 6Š

s7
�

.s C 1/2 C 9
�

(l)
12

s7
(m)

2 � 7Š

s8
�

.s C 1/2 C 4
� (n)

48

s5.s2 C 4/

8:6:3 (p. 450) (a) y D
2

p
5

Z t

0
f .t � �/e�3�=2 sinh

p
5�

2
d� (b) y D

1

2

Z t

0
f .t � �/ sin 2� d�

(c) y D
Z t

0
�e�� f .t � �/ d� (d) y.t/ D �

1

k
sin kt C cos kt C

1

k

Z t

0
f .t � �/ sin k� d�

(e) y D �2te�3t C
Z t

0
�e�3� f .t � �/ d� (f) y D

3

2
sinh 2t C

1

2

Z t

0
f .t � �/ sinh 2� d�

(g) y D e3t C
Z t

0
.e3� � e2� /f .t � �/ d� (h) y D k1

!
sin !t C k0 cos !t C 1

!

Z t

0
f .t � �/ sin !� d�

8:6:4 (p. 450) (a) y D sin t (b) y D te�t (c) y D 1 C 2tet (d) y D t C t2

2

(e) y D 4 C 5

2
t2 C 1

24
t4 (f) y D 1 � t

8:6:5 (p. 451) (a)
7Š8Š

16Š
t16 (b)

13Š7Š

21Š
t21 (c)

6Š7Š

14Š
t14 (d)

1

2
.e�t C sin t � cos t / (e)

1

3
.cos t � cos 2t/

Section 8.7 Answers, pp. 461–462

8:7:1 (p. 461) y D
1

2
e2t � 4e�t C

11

2
e�2t C 2u.t � 1/.e�.t�1/ � e�2.t�1//

8:7:2 (p. 461) y D 2e�2t C 5e�t C 5

3
u.t � 1/.e.t�1/ � e�2.t�1//

8:7:3 (p. 461) y D
1

6
e2t �

2

3
e�t �

1

2
e�2t C

5

2
u.t � 1/ sinh 2.t � 1/

8:7:4 (p. 461) y D 1

8
.8 cos t � 5 sin t � sin 3t/ � 2u.t � �=2/ cos t

8:7:5 (p. 461) y D 1 � cos 2t C
1

2
sin 2t C

1

2
u.t � 3�/ sin 2t

8:7:6 (p. 461) y D 4et C 3e�t � 8 C 2u.t � 2/ sinh.t � 2/

8:7:7 (p. 461) y D 1

2
et � 7

2
e�t C 2 C 3u.t � 6/.1 � e�.t�6//
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8:7:8 (p. 461) y D e2t C 7 cos 2t � sin 2t � 1

2
u.t � �=2/ sin 2t

8:7:9 (p. 461) y D 1

2
.1 C e�2t / C u.t � 1/.e�.t�1/ � e�2.t�1//

8:7:10 (p. 461) y D 1

4
et C 1

4
e�t .2t � 5/ C 2u.t � 2/.t � 2/e�.t�2/

8:7:11 (p. 461) y D 1

6
.2 sin t C 5 sin 2t/ � 1

2
u.t � �=2/ sin 2t

8:7:12 (p. 461) y D e�t .sin t � cos t / � e�.t��/ sin t � 3u.t � 2�/e�.t�2�/ sin t

8:7:13 (p. 461) y D e�2t

�

cos 3t C 4

3
sin 3t

�

� 1

3
u.t � �=6/e�2.t��=6/ cos 3t � 2

3
u.t � �=3/e�2.t��=3/ sin 3t

8:7:14 (p. 461) y D 7

10
e2t � 6

5
e�t=2 � 1

2
C 1

5
u.t � 2/.e2.t�2/ � e�.t�2/=2/

8:7:15 (p. 461) y D 1

17
.12 cos t C 20 sin t / C 1

34
et=2.10 cos t � 11 sin t / � u.t � �=2/e.2t��/=4 cos t

Cu.t � �/e.t��/=2 sin t

8:7:16 (p. 461) y D 1

3
.cos t � cos 2t � 3 sin t / � 2u.t � �=2/ cos t C 3u.t � �/ sin t

8:7:17 (p. 461) y D et � e�t .1 C 2t/ � 5u.t � 1/ sinh.t � 1/ C 3u.t � 2/ sinh.t � 2/

8:7:18 (p. 461) y D 1

4
.et � e�t .1 C 6t// � u.t � 1/e�.t�1/ C 2u.t � 2/e�.t�2//

8:7:19 (p. 461) y D 5

3
sin t � 1

3
sin 2t C 1

3
u.t � �/.sin 2t C 2 sin t / C u.t � 2�/ sin t

8:7:20 (p. 461) y D 3

4
cos 2t � 1

2
sin 2t C 1

4
C 1

4
u.t � �=2/.1 C cos 2t/ C 1

2
u.t � �/ sin 2t C 3

2
u.t � 3�=2/ sin 2t

8:7:21 (p. 461) y D cos t � sin t 8:7:22 (p. 461) y D 1

4
.8e3t � 12e�2t /

8:7:23 (p. 461) y D 5.e�2t � e�t / 8:7:24 (p. 461) y D e�2t .1 C 6t/

8:7:25 (p. 461) y D 1

4
e�t=2.4 � 19t/

8:7:29 (p. 462) y D .�1/km!1Re�c�=2mı.t � �/ if !1� � � D .2k C 1/�=2(k D integer)

8:7:30 (p. 462) (a) y D .emC1 � 1/.et�m � e�t /

2.e � 1/
, m � t < m C 1, (m D 0, 1, . . . )

(b) y D .m C 1/ sin t , 2m� � t < 2.m C 1/� , (m D 0, 1, . . . )

(c) y D e2.t�m/ e2mC2 � 1

e2 � 1
� e.t�m/ emC1 � 1

e � 1
, m � t < m C 1 (m D 0, 1, . . . )

(d) y D
(

0; 2m� � t < .2m C 1/�;

� sin t; .2m C 1/� � t < .2m C 2/�;
(m D 0, 1,. . . )

Section 9.1 Answers, pp. 471–475

9:1:2 (p. 472) y D 2x2 � 3x3 C 1

x
9:1:3 (p. 472) y D 2exC3e�x�e2xCe�3x 9:1:4 (p. 472) yi D .x � x0/i�1

.i � 1/Š
; 1 � i � n

9:1:5 (p. 472) (b) y1 D �
1

2
x3 C x2 C

1

2x
; y2 D

1

3
x2 �

1

3x
; y3 D

1

4
x3 �

1

3
x2 C

1

12x
(c) y D k0y1 C k1y2 C k2y3

9:1:7 (p. 472) 2e�x2
9:1:8 (p. 473)

p
2K cos x 9:1:9 (p. 473) (a) W.x/ D 2e3x (d) y D ex.c1 Cc2x Cc3x2/

9:1:10 (p. 473) (a) 2 (b) �e3x (c) 4 (d) 4=x2 (e) 1 (f) 2x (g) 2=x2(h) ex.x2 � 2x C 2/

(i) �240=x5 (j) 6e2x.2x � 1/(l) �128x

9:1:24 (p. 475) (a) y000 D 0 (b) xy000 � y00 � xy0 C y D 0 (c) .2x � 3/y000 � 2y00 � .2x � 5/y0 D 0

(d) .x2 � 2x C 2/y000 � x2y00 C 2xy0 � 2y D 0 (e) x3y000 C x2y00 � 2xy0 C 2y D 0

(f) .3x � 1/y000 � .12x � 1/y00 C 9.x C 1/y0 � 9y D 0



632 Answers to Selected Exercises

(g) x4y.4/ C 5x3y000 � 3x2y00 � 6xy0 C 6y D 0

(h) x4y.4/ C 3x2y000 � x2y00 C 2xy0 � 2y D 0

(i) .2x � 1/y.4/ � 4xy000 C .5 � 2x/y00 C 4xy0 � 4y D 0

(j) xy.4/ � y000 � 4xy00 C 4y0 D 0

Section 9.2 Answers, pp. 483–488

9:2:1 (p. 483) y D ex.c1 C c2x C c3x2/ 9:2:2 (p. 483) y D c1ex C c2e�x C c3 cos 3x C c4 sin 3x

9:2:3 (p. 483) y D c1ex C c2 cos 4x C c3 sin 4x 9:2:4 (p. 483) y D c1ex C c2e�x C c3e�3x=2

9:2:5 (p. 483) y D c1e�x C e�2x.c1 cos x C c2 sin x/ 9:2:6 (p. 483) y D c1ex C ex=2.c2 C c3x/

9:2:7 (p. 483) y D e�x=3.c1 C c2x C c3x2/ 9:2:8 (p. 483) y D c1 C c2x C c3 cos x C c4 sin x

9:2:9 (p. 483) y D c1e2x C c2e�2x C c3 cos 2x C c4 sin 2x

9:2:10 (p. 483) y D .c1 C c2x/ cos
p

6x C .c3 C c4x/ sin
p

6x

9:2:11 (p. 483) y D e3x=2.c1 C c2x/ C e�3x=2.c3 C c4x/

9:2:12 (p. 483) y D c1e�x=2 C c2e�x=3 C c3 cos x C c4 sin x

9:2:13 (p. 483) y D c1ex Cc2e�2x Cc3e�x=2Cc4e�3x=2 9:2:14 (p. 483) y D ex.c1Cc2xCc3 cos xCc4 sin x/

9:2:15 (p. 484) y D cos 2x � 2 sin 2x C e2x 9:2:16 (p. 484) y D 2ex C 3e�x � 5e�3x

9:2:17 (p. 484) y D 2ex C 3xex � 4e�x

9:2:18 (p. 484) y D 2e�x cos x � 3e�x sin x C 4e2x 9:2:19 (p. 484) y D 9

5
e�5x=3 C ex.1 C 2x/

9:2:20 (p. 484) y D e2x.1 � 3x C 2x2/ 9:2:21 (p. 484) y D e3x.2 � x/ C 4e�x=2

9:2:22 (p. 484) y D ex=2.1 � 2x/ C 3e�x=2 9:2:23 (p. 484) y D 1

8
.5e2x C e�2x C 10 cos 2x C 4 sin 2x/

9:2:24 (p. 484) y D �4ex C e2x � e4x C 2e�x 9:2:25 (p. 484) y D 2ex � e�x

9:2:26 (p. 484) y D e2x C e�2x C e�x.3 cos x C sin x/ 9:2:27 (p. 484) y D 2e�x=2 C cos 2x � sin 2x

9:2:28 (p. 484) (a) fex ; xex ; e2xg W 1 (b) fcos 2x; sin 2x; e3xg W 26

(c) fe�x cos x; e�x sin x; exg W 5 (d) f1; x; x2; exg 2ex

(e) fex ; e�x ; cos x; sin xg8 (f) fcos x; sin x; ex cos x; ex sin xg W 5

9:2:29 (p. 484) fe�3x cos 2x; e�3x sin 2x; e2x ; xe2x ; 1; x; x2g
9:2:30 (p. 484) fex ; xex ; ex=2; xex=2; x2ex=2; cos x; sin xg
9:2:31 (p. 484) fcos 3x; x cos 3x; x2 cos 3x; sin 3x; x sin 3x; x2 sin 3x; 1; xg
9:2:32 (p. 484) fe2x ; xe2x ; x2e2x ; e�x ; xe�x ; 1g
9:2:33 (p. 484) fcos x; sin x; cos 3x; x cos 3x; sin 3x; x sin 3x; e2xg
9:2:34 (p. 484) fe2x ; xe2x ; e�2x ; xe�2x ; cos 2x; x cos 2x; sin 2x; x sin 2xg
9:2:35 (p. 484) fe�x=2 cos 2x; xe�x=2 cos 2x; x2e�x=2 cos 2x; e�x=2 sin 2x; xe�x=2 sin 2x,

x2e�x=2 sin 2xg
9:2:36 (p. 484) f1; x; x2; e2x ; xe2x ; cos 2x; x cos 2x; sin 2x; x sin 2xg
9:2:37 (p. 484) fcos.x=2/; x cos.x=2/; sin.x=2/; x sin.x=2/; cos 2x=3 x cos.2x=3/,

x2 cos.2x=3/; sin.2x=3/; x sin.2x=3/; x2 sin.2x=3/g
9:2:38 (p. 484) fe�x ; e3x ; ex cos 2x; ex sin 2xg 9:2:39 (p. 485) (b) e.a1Ca2C���Can/x

Y

1�i<j �n

.aj � ai /

9:2:43 (p. 487) (a)

(

ex ; e�x=2 cos

 p
3

2
x

!

; e�x=2 sin

 p
3

2
x

!)

(b)

(

e�x ; ex=2 cos

 p
3

2
x

!

; ex=2 sin

 p
3

2
x

!)

(c) fe2x cos 2x; e2x sin 2x; e�2x cos 2x; e�2x sin 2xg

(d)

(

ex ; e�x ; ex=2 cos

 p
3

2
x

!

; ex=2 sin

 p
3

2
x

!

; e�x=2 cos

 p
3

2
x

!

; e�x=2 sin

 p
3

2
x

!)

(e) fcos 2x; sin 2x; e�
p

3x cos x; e�
p

3x sin x; e
p

3x cos x; e
p

3x sin xg
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(f)

(

1; e2x ; e3x=2 cos

 p
3

2
x

!

; e3x=2 sin

 p
3

2
x

!

; ex=2 cos

 p
3

2
x

!

; ex=2 sin

 p
3

2
x

!)

(g)

(

e�x ; ex=2 cos

 p
3

2
x

!

; ex=2 sin

 p
3

2
x

!

; e�x=2 cos

 p
3

2
x

!

; e�x=2 sin

 p
3

2
x

!)

9:2:45 (p. 488) y D c1xr1 C c2xr2 C c3xr3 .r1; r2; r3 distinct); y D c1xr1 C .c2 C c3 ln x/xr2 .r1; r2

distinct/I y D Œc1 C c2 ln x C c3.ln x/2�xr1 ; y D c1xr1 C x�Œc2 cos.! ln x/ C c3 sin.! ln x/�

Section 9.3 Answers, pp. 495–497

9:3:1 (p. 495) yp D e�x.2Cx�x2/ 9:3:2 (p. 495) yp D �
e�3x

4
.3�xCx2/ 9:3:3 (p. 495) yp D ex.1Cx�x2/

9:3:4 (p. 495) yp D e�2x.1 � 5x C x2/. 9:3:5 (p. 495) yp D �
xex

2
.1 � x C x2 � x3/

9:3:6 (p. 495) yp D x2ex.1 C x/ 9:3:7 (p. 495) yp D xe�2x

2
.2 C x/ 9:3:8 (p. 495) yp D x2ex

2
.2 C x/

9:3:9 (p. 495) yp D x2e2x

2
.1C2x/ 9:3:10 (p. 495) yp D x2e3x.2Cx�x2/ 9:3:11 (p. 495) yp D x2e4x.2Cx/

9:3:12 (p. 495) yp D x3ex=2

48
.1 C x/ 9:3:13 (p. 495) yp D e�x .1 � 2x C x2/ 9:3:14 (p. 495) yp D e2x.1 � x/

9:3:15 (p. 495) yp D e�2x.1 C x C x2 � x3/ 9:3:16 (p. 495) yp D
ex

3
.1 � x/ 9:3:17 (p. 495) yp D ex.1 C x/2

9:3:18 (p. 495) yp D xex.1 C x3/ 9:3:19 (p. 495) yp D xex.2 C x/ 9:3:20 (p. 495) yp D xe2x

6
.1 � x2/

9:3:21 (p. 495) yp D 4xe�x=2.1 C x/ 9:3:22 (p. 495) yp D xex

6
.1 C x2/

9:3:23 (p. 495) yp D x2e2x

6
.1 C x C x2/ 9:3:24 (p. 495) yp D x2e2x

6
.3 C x C x2/ 9:3:25 (p. 495) yp D

x3ex

48
.2 C x/

9:3:26 (p. 495) yp D x3ex

6
.1 C x/ 9:3:27 (p. 496) yp D �x3e�x

6
.1 � x C x2/ 9:3:28 (p. 496) yp D

x3e2x

12
.2 C x � x2/

9:3:29 (p. 496) yp D e�x Œ.1 C x/ cos x C .2 � x/ sin x� 9:3:30 (p. 496) yp D e�x Œ.1 � x/ cos 2x C .1 C x/ sin 2x�

9:3:31 (p. 496) yp D e2x Œ.1 C x � x2/ cos x C .1 C 2x/ sin x�

9:3:32 (p. 496) yp D ex

2
Œ.1 C x/ cos 2x C .1 � x C x2/ sin 2x� 9:3:33 (p. 496) yp D x

13
.8 cos 2x C 14 sin 2x/

9:3:34 (p. 496) yp D xex Œ.1 C x/ cos x C .3 C x/ sin x� 9:3:35 (p. 496) yp D xe2x

2
Œ.3 � x/ cos 2x C sin 2x�

9:3:36 (p. 496) yp D �xe3x

12
.x cos 3x C sin 3x/ 9:3:37 (p. 496) yp D �ex

10
.cos x C 7 sin x/

9:3:38 (p. 496) yp D ex

12
.cos 2x � sin 2x/ 9:3:39 (p. 496) yp D xe2x cos 2x

9:3:40 (p. 496) yp D �e�x

2
Œ.1 C x/ cos x C .2 � x/ sin x� 9:3:41 (p. 496) yp D xe�x

10
.cos x C 2 sin x/

9:3:42 (p. 496) yp D xex

40
.3 cos 2x � sin 2x/ 9:3:43 (p. 496) yp D xe�2x

8
Œ.1 � x/ cos 3x C .1 C x/ sin 3x�

9:3:44 (p. 496) yp D �xex

4
.1 C x/ sin 2x 9:3:45 (p. 496) yp D x2e�x

4
.cos x � 2 sin x/

9:3:46 (p. 496) yp D �
x2e2x

32
.cos 2x � sin 2x/ 9:3:47 (p. 496) yp D

x2e2x

8
.1 C x/ sin x
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9:3:48 (p. 496) yp D 2x2ex C xe2x � cos x 9:3:49 (p. 496) yp D e2x C xex C 2x cos x

9:3:50 (p. 496) yp D 2x C x2 C 2xex � 3xe�x C 4e3x

9:3:51 (p. 496) yp D xex.cos 2x �2 sin 2x/C2xe2x C1 9:3:52 (p. 496) yp D x2e�2x.1C2x/�cos 2x Csin 2x

9:3:53 (p. 496) yp D 2x2.1 C x/e�x C x cos x � 2 sin x 9:3:54 (p. 496) yp D 2xex C xe�x C cos x

9:3:55 (p. 496) yp D xex

6
.cos x C sin 2x/ 9:3:56 (p. 496) yp D x2

54
Œ.2 C 2x/ex C 3e�2x �

9:3:57 (p. 496) yp D x

8
sinh x sin x 9:3:58 (p. 496) yp D x3.1 C x/e�x C xe�2x

9:3:59 (p. 496) yp D xex.2x2 C cos x C sin x/ 9:3:60 (p. 496) y D e2x.1 C x/ C c1e�x C ex.c2 C c3x/

9:3:61 (p. 496) y D e3x

 

1 � x � x2

2

!

C c1ex C e�x.c2 cos x C c3 sin x/

9:3:62 (p. 497) y D xe2x.1 C x/2 C c1ex C c2e2x C c3e3x

9:3:63 (p. 497) y D x2e�x.1 � x/2 C c1 C e�x.c2 C c3x/

9:3:64 (p. 497) y D x3ex

24
.4 C x/ C ex.c1 C c2x C c3x2/

9:3:65 (p. 497) y D x2e�x

16
.1 C 2x � x2/ C ex.c1 C c2x/ C e�x.c3 C c4x/

9:3:66 (p. 497) y D e�2x

�

�

1 C x

2

�

cos x C
�

3

2
� 2x

�

sin x

�

C c1ex C c2e�x C c3e�2x

9:3:67 (p. 497) y D �xex sin 2x C c1 C c2ex C ex.c3 cos x C c4 sin x/

9:3:68 (p. 497) y D �x2ex

16
.1 C x/ cos 2x C ex Œ.c1 C c2x/ cos 2x C .c3 C c4x/ sin 2x�

9:3:69 (p. 497) y D .x2 C 2/ex � e�2x C e3x 9:3:70 (p. 497) y D e�x.1 C x C x2/ C .1 � x/ex

9:3:71 (p. 497) y D
 

x2

12
C 16

!

xe�x=2 � ex 9:3:72 (p. 497) y D .2 � x/.x2 C 1/e�x C cos x � sin x

9:3:73 (p. 497) y D .2 � x/ cos x � .1 � 7x/ sin x C e�2x 9:3:74 (p. 497) 2 C ex Œ.1 C x/ cos x � sin x � 1�

Section 9.4 Answers, pp. 503–506

9:4:1 (p. 503) yp D 2x3 9:4:2 (p. 504) yp D
8

105
x7=2e�x2

9:4:3 (p. 504) yp D x ln jxj

9:4:4 (p. 504) yp D �2.x2 C 2/

x
9:4:5 (p. 504) yp D �xe�3x

64
9:4:6 (p. 504) yp D �2x2

3

9:4:7 (p. 504) yp D �e�x.x C 1/

x
9:4:8 (p. 504) yp D 2x2 ln jxj 9:4:9 (p. 504) yp D x2 C 1

9:4:10 (p. 504) yp D
2x2 C 6

3
9:4:11 (p. 504) yp D

x2 ln jxj
3

9:4:12 (p. 504) yp D �x2 � 2

9:4:13 (p. 504)
1

4
x3 ln jxj �

25

48
x3 9:4:14 (p. 504) yp D

x5=2

4
9:4:15 (p. 504) yp D

x.12 � x2/

6

9:4:16 (p. 504) yp D x4 ln jxj
6

9:4:17 (p. 504) yp D x3ex

2
9:4:18 (p. 504) yp D x2 ln jxj

9:4:19 (p. 504) yp D xex

2
9:4:20 (p. 504) yp D 3xex

2
9:4:21 (p. 504) yp D �x3

9:4:22 (p. 504) y D �x.ln x/2 C 3x C x3 � 2x ln x 9:4:23 (p. 504) y D x3

2
.ln jxj/2 C x2 � x3 C 2x3 ln jxj

9:4:24 (p. 504) y D �1

2
.3x C 1/xex � 3ex � e2x C 4xe�x 9:4:25 (p. 504) y D 3

2
x4.ln x/2 C 3x � x4 C 2x4 ln x
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9:4:26 (p. 504) y D �x4 C 12

6
C 3x � x2 C 2ex 9:4:27 (p. 504) y D

 

x2

3
� x

2

!

ln jxj C 4x � 2x2

9:4:28 (p. 505) y D �xex .1 C 3x/

2
C x C 1

2
� ex

4
C e3x

2
9:4:29 (p. 505) y D �8x C 2x2 � 2x3 C 2ex � e�x

9:4:30 (p. 505) y D 3x2 ln x � 7x2 9:4:31 (p. 505) y D 3.4x2 C 9/

2
C x

2
� ex

2
C e�x

2
C e2x

4

9:4:32 (p. 505) y D x ln x C x �
p

x C 1

x
C 1p

x
. 9:4:33 (p. 505) y D x3 ln jxj C x � 2x3 C 1

x
� 1

x2

9:4:35 (p. 506) yp D
Z x

x0

e.x�t/ � 3e�.x�t/ C 2e�2.x�t/

6
F.t/ dt 9:4:36 (p. 506) yp D

Z x

x0

.x � t /2.2x C t /

6xt3
F.t/ dt

9:4:37 (p. 506) yp D
Z x

x0

xe.x�t/ � x2 C x.t � 1/

t4
F.t/ dt 9:4:38 (p. 506) yp D

Z x

x0

x2 � t .t � 2/ � 2te.x�t/

2x.t � 1/2
F.t/ dt

9:4:39 (p. 506) yp D
Z x

x0

e2.x�t/ � 2e.x�t/ C 2e�.x�t/ � e�2.x�t/

12
F.t/ dt

9:4:40 (p. 506) yp D
Z x

x0

.x � t /3

6x
F.t/ dt

9:4:41 (p. 506) yp D
Z x

x0

.x C t /.x � t /3

12x2t3
F.t/ dt

9:4:42 (p. 506) yp D
Z x

x0

e2.x�t/.1 C 2t/ C e�2.x�t/.1 � 2t/ � 4x2 C 4t2 � 2

32t2
F.t/ dt

Section 10.1 Answers, pp. 515–516

10:1:1 (p. 515)
Q0

1 D 2 � 1

10
Q1 C 1

25
Q2

Q0
2 D 6 C 3

50
Q1 � 1

20
Q2:

10:1:2 (p. 515)

Q0
1 D 12 �

5

100 C 2t
Q1 C

1

100 C 3t
Q2

Q0
2 D 5 C

1

50 C t
Q1 �

4

100 C 3t
Q2:

10:1:3 (p. 515) m1y00
1 D �.c1 C c2/y0

1 C c2y0
2 � .k1 C k2/y1 C k2y2 C F1

m2y00
2 D .c2 � c3/y0

1 � .c2 C c3/y0
2 C c3y0

3 C .k2 � k3/y1 � .k2 C k3/y2 C k3y3 C F2

m3y00
3 D c3y0

1 C c3y0
2 � c3y0

3 C k3y1 C k3y2 � k3y3 C F3

10:1:4 (p. 516) x00 D � ˛

m
x0 C gR2x

.x2 C y2 C ´2/3=2
y00 D � ˛

m
y0 C gR2y

�

x2 C y2 C ´2
�3=2

´00 D � ˛

m
´0 C gR2´

�

x2 C y2 C ´2
�3=2

10:1:5 (p. 516) (a)

x0
1 D x2

x0
2 D x3

x0
3 D f .t;x1; y1; y2/

y0
1 D y2

y0
2 D g.t; y1; y2/

(b)

u0
1 D f .t; u1; v1; v2; w2/

I v0
1 D v2

v0
2 D g.t; u1; v1; v2; w1/

w0
1 D w2

w0
2 D h.t; u1; v1; v2; w1; w2/

(c)

y0
1 D y2

y0
2 D y3

y0
3 D f .t; y1; y2; y3/

(d)

y0
1 D y2

y0
2 D y3

y0
3 D y4

y0
4 D f .t; y1/

(e)

x0
1 D x2

x0
2 D f .t; x1; y1/

y0
1 D y2

y0
2 D g.t; x1; y1/



636 Answers to Selected Exercises

10:1:6 (p. 516)

x0 D x1

y0 D y1

´0 D ´1

x0
1 D � gR2x

�

x2 C y2 C ´2
�3=2

y0
1 D � gR2y

�

x2 C y2 C ´2
�3=2

´0
1 D � gR2´

�

x2 C y2 C ´2
�3=2

Section 10.2 Answers, pp. 519–522

10:2:1 (p. 519) (a) y0 D
�

2 4

4 2

�

y (b) y0 D
�

�2 �2

�5 1

�

y

(c) y0 D
�

�4 �10

3 7

�

y (d) y0 D
�

2 1

1 2

�

y

10:2:2 (p. 519) (a) y0 D

2

4

�1 2 3

0 1 6

0 0 �2

3

5 y (b) y0 D

2

4

0 2 2

2 0 2

2 2 0

3

5 y

(c) y0 D

2

4

�1 2 2

2 �1 2

2 2 �1

3

5 y (d) y0 D

2

4

3 �1 �1

�2 3 2

4 �1 �2

3

5 y

10:2:3 (p. 519) (a) y0 D
�

1 1

�2 4

�

y; y.0/ D
�

1

0

�

(b) y0 D
�

5 3

�1 1

�

y; y.0/ D
�

9

�5

�

10:2:4 (p. 520) (a) y0 D

2

4

6 4 4

�7 �2 �1

7 4 3

3

5 y; y.0/ D

2

4

3

�6

4

3

5

(b) y0 D

2

4

8 7 7

�5 �6 �9

5 7 10

3

5 y; y.0/ D

2

4

2

�4

3

3

5

10:2:5 (p. 520) (a) y0 D
�

�3 2

�5 3

�

C
�

3 � 2t

6 � 3t

�

(b) y0 D
�

3 1

�1 1

�

y C
�

�5et

et

�

10:2:10 (p. 522) (a)
d

dt
Y 2 D Y 0Y C Y Y 0

(b)
d

dt
Y n D Y 0Y n�1 C Y Y 0Y n�2 C Y 2Y 0Y n�3 C � � � C Y n�1Y 0 D

n�1
X

rD0

Y rY 0Y n�r�1

10:2:13 (p. 522) B D .P 0 C PA/P �1 .

Section 10.3 Answers, pp. 526–530

10:3:2 (p. 526) y0 D

2

4

0 1

�P2.x/

P0.x/
�P1.x/

P0.x/

3

5 y 10:3:3 (p. 527) y0 D

2

6

6

6

6

6

4

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

�
Pn.x/

P0.x/
�

Pn�1.x/

P0.x/
� � � �

P1.x/

P0.x/

3

7

7

7

7

7

5

y

10:3:7 (p. 528) (b) y D
�

3e6t � 6e�2t

3e6t C 6e�2t

�

(c) y D 1

2

�

e6t C e�2t e6t � e�2t

e6t � e�2t e6t C e�2t

�

k

10:3:8 (p. 529) (b) y D
�

6e�4t C 4e3t

6e�4t � 10e3t

�

(c) y D
1

7

�

5e�4t C 2e3t 2e�4t � 2e3t

5e�4t � 5e3t 2e�4t C 5e3t

�

k

10:3:9 (p. 529) (b) y D
�

�15e2t � 4et

9e2t C 2et

�

(c) y D
�

�5e2t C 6et �10e2t C 10et

3e2t � 3et 6e2t � 5et

�

k
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10:3:10 (p. 529) (b) y D
�

5e3t � 3et

5e3t C 3et

�

(c) y D 1

2

�

e3t C et e3t � et

e3t � et e3t C et

�

k

10:3:11 (p. 529) (b) y D

2

4

e2t � 2e3t C 3e�t

2e3t � 9e�t

e2t � 2e3t C 21e�t

3

5 (c) y D 1

6

2

4

4e2t C 3e3t � e�t 6e2t � 6e3t 2e2t � 3e3t C e�t

�3e3t C 3e�t 6e3t 3e3t � 3e�t

4e2t C 3e3t � 7e�t 6e2t � 6e3t 2e2t � 3e3t C 7e�t

3

5k

10:3:12 (p. 529) (b) y D 1

3

2

4

�e�2t C e4t

�10e�2t C e4t

11e�2t C e4t

3

5 (c) y D 1

3

2

4

2e�2t C e4t �e�2t C e4t �e�2t C e4t

�e�2t C e4t 2e�2t C e4t �e�2t C e4t

�e�2t C e4t �e�2t C e4t 2e�2t C e4t

3

5k

10:3:13 (p. 529) (b) y D

2

4

3et C 3e�t � e�2t

3et C 2e�2t

�e�2t

3

5 (c) y D

2

4

e�t et � e�t 2et � 3e�t C e�2t

0 et 2et � 2e�2t

0 0 e�2t

3

5k

10:3:14 (p. 530) YZ�1 and ZY �1

Section 10.4 Answers, pp. 540–542

10:4:1 (p. 540) y D c1

�

1

1

�

e3t C c2

�

1

�1

�

e�t 10:4:2 (p. 540) y D c1

�

1

1

�

e�t=2 C c2

�

�1

1

�

e�2t

10:4:3 (p. 540) y D c1

�

�3

1

�

e�t C c2

�

�1

2

�

e�2t 10:4:4 (p. 540) y D c1

�

2

1

�

e�3t C c2

�

�2

1

�

et

10:4:5 (p. 540) y D c1

�

1

1

�

e�2t C c1

�

�4

1

�

e3t 10:4:6 (p. 540) y D c1

�

3

2

�

e2t C c2

�

1

1

�

et

10:4:7 (p. 540) y D c1

�

�3

1

�

e�5t C c2

�

�1

1

�

e�3t

10:4:8 (p. 540) y D c1

2

4

1

2

1

3

5 e�3t C c2

2

4

�1

�4

1

3

5 e�t C c3

2

4

�1

�1

1

3

5 e2t

10:4:9 (p. 540) y D c1

2

4

2

1

2

3

5 e�16t C c2

2

4

�1

2

0

3

5 e2t C c3

2

4

�1

0

1

3

5 e2t

10:4:10 (p. 540) y D c1

2

4

�2

�4

3

3

5 et C c2

2

4

�1

1

0

3

5 e�2t C c3

2

4

�7

�5

4

3

5 e2t

10:4:11 (p. 540) y D c1

2

4

�1

�1

1

3

5 e�2t C c2

2

4

�1

�2

1

3

5 e�3t C c3

2

4

�2

�6

3

3

5 e�5t

10:4:12 (p. 540) y D c1

2

4

11

7

1

3

5 e3t C c2

2

4

1

2

1

3

5 e�2t C c3

2

4

1

1

1

3

5 e�t

10:4:13 (p. 540) y D c1

2

4

4

�1

1

3

5 e�4t C c2

2

4

�1

�1

1

3

5 e6t C c3

2

4

�1

0

1

3

5 e4t

10:4:14 (p. 540) y D c1

2

4

1

1

5

3

5 e�5t C c2

2

4

�1

0

1

3

5 e5t C c3

2

4

1

1

0

3

5 e5t
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10:4:15 (p. 540) y D c1

2

4

1

�1

2

3

5C c2

2

4

�1

0

3

3

5 e6t C c3

2

4

1

3

0

3

5 e6t

10:4:16 (p. 541) y D �
�

2

6

�

e5t C
�

4

2

�

e�5t 10:4:17 (p. 541) y D
�

2

�4

�

et=2 C
�

�2

1

�

et

10:4:18 (p. 541) y D
�

7

7

�

e9t �
�

2

4

�

e�3t 10:4:19 (p. 541) y D
�

3

9

�

e5t �
�

4

2

�

e�5t

10:4:20 (p. 541) y D

2

4

5

5

0

3

5 et=2 C

2

4

0

0

1

3

5 et=2 C

2

4

�1

2

0

3

5 e�t=2 10:4:21 (p. 541) y D

2

4

3

3

3

3

5 et C

2

4

�2

�2

2

3

5 e�t

10:4:22 (p. 541) y D

2

4

2

�2

2

3

5 et �

2

4

3

0

3

3

5 e�2t C

2

4

1

1

0

3

5 e3t

10:4:23 (p. 541) y D �

2

4

1

2

1

3

5 et C

2

4

4

2

4

3

5 e�t C

2

4

1

1

0

3

5 e2t

10:4:24 (p. 541) y D

2

4

�2

�2

2

3

5 e2t �

2

4

0

3

0

3

5 e�2t C

2

4

4

12

4

3

5 e4t

10:4:25 (p. 541) y D

2

4

�1

�1

1

3

5 e�6t C

2

4

2

�2

2

3

5 e2t C

2

4

7

�7

�7

3

5 e4t

10:4:26 (p. 541) y D

2

4

1

4

4

3

5 e�t C

2

4

6

6

�2

3

5 e2t 10:4:27 (p. 541) y D

2

4

4

�2

2

3

5C

2

4

3

�9

6

3

5 e4t C

2

4

�1

1

�1

3

5 e2t

10:4:29 (p. 542) Half lines of L1 W y2 D y1 and L2 W y2 D �y1 are trajectories other trajectories

are asymptotically tangent to L1 as t ! �1 and asymptotically tangent to L2 as t ! 1.

10:4:30 (p. 542) Half lines of L1 W y2 D �2y1 and L2 W y2 D �y1=3 are trajectories

other trajectories are asymptotically parallel to L1 as t ! �1 and asymptotically tangent to L2 as

t ! 1.

10:4:31 (p. 542) Half lines of L1 W y2 D y1=3 and L2 W y2 D �y1 are trajectories other trajectories

are asymptotically tangent to L1 as t ! �1 and asymptotically parallel to L2 as t ! 1.

10:4:32 (p. 542) Half lines of L1 W y2 D y1=2 and L2 W y2 D �y1 are trajectories other trajectories

are asymptotically tangent to L1 as t ! �1 and asymptotically tangent to L2 as t ! 1.

10:4:33 (p. 542) Half lines of L1 W y2 D �y1=4 and L2 W y2 D �y1 are trajectories other trajectories

are asymptotically tangent to L1 as t ! �1 and asymptotically parallel to L2 as t ! 1.

10:4:34 (p. 542) Half lines of L1 W y2 D �y1 and L2 W y2 D 3y1 are trajectories other trajectories

are asymptotically parallel to L1 as t ! �1 and asymptotically tangent to L2 as t ! 1.

10:4:36 (p. 542) Points on L2 W y2 D y1 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1 , parallel to

�

1

�1

�

, traversed toward L1 .

10:4:37 (p. 542) Points on L1 W y2 D �y1=3 are trajectories of constant solutions. The trajectories
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of nonconstant solutions are half-lines on either side of L1, parallel to

�

�1

2

�

, traversed away from

L1.

10:4:38 (p. 542) Points on L1 W y2 D y1=3 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1, parallel to

�

1

�1

�

,

�

1

�

�1, traversed

away from L1 .

10:4:39 (p. 542) Points on L1 W y2 D y1=2 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1 , parallel to

�

1

�1

�

, L1.

10:4:40 (p. 542) Points on L2 W y2 D �y1 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L2 , parallel to

�

�4

1

�

, traversed toward L1 .

10:4:41 (p. 542) Points on L1 W y2 D 3y1 are trajectories of constant solutions. The trajectories

of nonconstant solutions are half-lines on either side of L1, parallel to

�

1

�1

�

, traversed away from

L1.

Section 10.5 Answers, pp. 555–557

10:5:1 (p. 555) y D c1

�

2

1

�

e5t C c2

��

�1

0

�

e5t C
�

2

1

�

te5t

�

.

10:5:2 (p. 555) y D c1

�

1

1

�

e�t C c2

��

1

0

�

e�t C
�

1

1

�

te�t

�

10:5:3 (p. 555) y D c1

�

�2

1

�

e�9t C c2

��

�1

0

�

e�9t C
�

�2

1

�

te�9t

�

10:5:4 (p. 555) y D c1

�

�1

1

�

e2t C c2

��

�1

0

�

e2t C
�

�1

1

�

te2t

�

10:5:5 (p. 555) c1

�

�2

1

�

C c2

��

�1

0

�

e�2t

3
C
�

�2

1

�

te�2t

�

10:5:6 (p. 555) y D c1

�

3

2

�

e�4t C c2

 

�

�1

0

�

e�4t

2
C
�

3

2

�

te�4t

!

10:5:7 (p. 555) y D c1

�

4

3

�

e�t C c2

��

�1

0

�

e�t

3
C
�

4

3

�

te�t

�

10:5:8 (p. 555) y D c1

2

4

�1

�1

2

3

5C c2

2

4

1

1

2

3

5 e4t C c3

0

@

2

4

0

1

0

3

5

e4t

2
C

2

4

1

1

2

3

5 te4t

1

A

10:5:9 (p. 555) y D c1

2

4

�1

1

1

3

5 et C c2

2

4

1

�1

1

3

5 e�t C c3

0

@

2

4

0

3

0

3

5 e�t C

2

4

1

�1

1

3

5 te�t

1

A.

10:5:10 (p. 555) y D c1

2

4

0

1

1

3

5 e2t C c2

2

4

1

0

1

3

5 e�2t C c3

0

@

2

4

1

1

0

3

5

e�2t

2
C

2

4

1

0

1

3

5 te�2t

1

A

10:5:11 (p. 555) y D c1

2

4

�2

�3

1

3

5 e2t C c2

2

4

0

�1

1

3

5 e4t C c3

0

@

2

4

1

0

0

3

5

e4t

2
C

2

4

0

�1

1

3

5 te4t

1

A
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10:5:12 (p. 555) y D c1

2

4

�1

�1

1

3

5 e�2t C c2

2

4

1

1

1

3

5 e4t C c3

0

@

2

4

1

0

0

3

5

e4t

2
C

2

4

1

1

1

3

5 te4t

1

A.

10:5:13 (p. 555) y D
�

6

2

�

e�7t �
�

8

4

�

te�7t 10:5:14 (p. 555) y D
�

5

8

�

e3t �
�

12

16

�

te3t

10:5:15 (p. 555) y D
�

2

3

�

e�5t �
�

8

4

�

te�5t 10:5:16 (p. 555) y D
�

3

1

�

e5t �
�

12

6

�

te5t

10:5:17 (p. 555) y D
�

0

2

�

e�4t C
�

6

6

�

te�4t

10:5:18 (p. 555) y D

2

4

4

8

�6

3

5 et C

2

4

2

�3

�1

3

5 e�2t C

2

4

�1

1

0

3

5 te�2t

10:5:19 (p. 555) y D

2

4

3

3

6

3

5 e2t �

2

4

9

5

6

3

5C

2

4

2

2

0

3

5 t

10:5:20 (p. 555) y D �

2

4

2

0

2

3

5 e�3t C

2

4

�4

9

1

3

5 et �

2

4

0

4

4

3

5 tet

10:5:21 (p. 556) y D

2

4

�2

2

2

3

5 e4t C

2

4

0

�1

1

3

5 e2t C

2

4

3

�3

3

3

5 te2t

10:5:22 (p. 556) y D �

2

4

1

1

0

3

5 e�4t C

2

4

�3

2

�3

3

5 e8t C

2

4

8

0

�8

3

5 te8t

10:5:23 (p. 556) y D

2

4

3

6

3

3

5 e4t �

2

4

3

4

1

3

5C

2

4

8

4

4

3

5 t

10:5:24 (p. 556) y D c1

2

4

0

1

1

3

5 e6t C c2

0

@

2

4

�1

1

0

3

5

e6t

4
C

2

4

0

1

1

3

5 te6t

1

A

Cc3

0

@

2

4

1

1

0

3

5

e6t

8
C

2

4

�1

1

0

3

5

te6t

4
C

2

4

0

1

1

3

5

t2e6t

2

1

A

10:5:25 (p. 556) y D c1

2

4

�1

1

1

3

5 e3t C c2

0

@

2

4

1

0

0

3

5

e3t

2
C

2

4

�1

1

1

3

5 te3t

1

A

Cc3

0

@

2

4

1

2

0

3

5

e3t

36
C

2

4

1

0

0

3

5

te3t

2
C

2

4

�1

1

1

3

5

t2e3t

2

1

A

10:5:26 (p. 556) y D c1

2

4

0

�1

1

3

5 e�2t C c2

0

@

2

4

�1

1

0

3

5 e�2t C

2

4

0

�1

1

3

5 te�2t

1

A

Cc3

0

@

2

4

3

�2

0

3

5

e�2t

4
C

2

4

�1

1

0

3

5 te�2t C

2

4

0

�1

1

3

5

t2e�2t

2

1

A
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10:5:27 (p. 556) y D c1

2

4

0

1

1

3

5 e2t C c2

0

@

2

4

1

1

0

3

5

e2t

2
C

2

4

0

1

1

3

5 te2t

1

A

Cc3

0

@

2

4

�1

1

0

3

5

e2t

8
C

2

4

1

1

0

3

5

te2t

2
C

2

4

0

1

1

3

5

t2e2t

2

1

A

10:5:28 (p. 556) y D c1

2

4

�2

1

2

3

5 e�6t C c2

0

@�

2

4

6

1

0

3

5

e�6t

6
C

2

4

�2

1

2

3

5 te�6t

1

A

Cc3

0

@�

2

4

12

1

0

3

5

e�6t

36
�

2

4

6

1

0

3

5

te�6t

6
C

2

4

�2

1

2

3

5

t2e�6t

2

1

A :

10:5:29 (p. 556) y D c1

2

4

�4

0

1

3

5 e�3t C c2

2

4

6

1

0

3

5 e�3t C c3

0

@

2

4

1

0

0

3

5 e�3t C

2

4

2

1

1

3

5 te�3t

1

A

10:5:30 (p. 556) y D c1

2

4

�1

0

1

3

5 e�3t C c2

2

4

0

1

0

3

5 e�3t C c3

0

@

2

4

1

0

0

3

5 e�3t C

2

4

�1

�1

1

3

5 te�3t

1

A

10:5:31 (p. 556) y D c1

2

4

2

0

1

3

5 e�t C c2

2

4

�3

2

0

3

5 e�t C c3

0

@

2

4

1

0

0

3

5

e�t

2
C

2

4

�1

2

1

3

5 te�t

1

A

10:5:32 (p. 556) y D c1

2

4

�1

1

0

3

5 e�2t C c2

2

4

0

0

1

3

5 e�2t C c3

0

@

2

4

�1

0

0

3

5 e�2t C

2

4

1

�1

1

3

5 te�2t

1

A

Section 10.6 Answers, pp. 566–569

10:6:1 (p. 566) y D c1e2t

�

3 cos t C sin t

5 cos t

�

C c2e2t

�

3 sin t � cos t

5 sin t

�

.

10:6:2 (p. 566) y D c1e�t

�

5 cos 2t C sin 2t

13 cos 2t

�

C c2e�t

�

5 sin 2t � cos 2t

13 sin 2t

�

.

10:6:3 (p. 566) y D c1e3t

�

cos 2t C sin 2t

2 cos 2t

�

C c2e3t

�

sin 2t � cos 2t

2 sin 2t

�

.

10:6:4 (p. 566) y D c1e2t

�

cos 3t � sin 3t

cos 3t

�

C c2e2t

�

sin 3t C cos 3t

sin 3t

�

.

10:6:5 (p. 567) y D c1

2

4

�1

�1

2

3

5 e�2t C c2e4t

2

4

cos 2t � sin 2t

cos 2t C sin 2t

2 cos 2t

3

5C c3e4t

2

4

sin 2t C cos 2t

sin 2t � cos 2t

2 sin 2t

3

5.

10:6:6 (p. 567) y D c1

2

4

�1

�1

1

3

5 e�t C c2e�2t

2

4

cos 2t � sin 2t

� cos 2t � sin 2t

2 cos 2t

3

5C c3e�2t

2

4

sin 2t C cos 2t

� sin 2t C cos 2t

2 sin 2t

3

5

10:6:7 (p. 567) y D c1

2

4

1

1

1

3

5 e2t C c2et

2

4

� sin t

sin t

cos t

3

5C c3et

2

4

cos t

� cos t

sin t

3

5
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10:6:8 (p. 567) y D c1

2

4

�1

1

1

3

5 et C c2e�t

2

4

� sin 2t � cos 2t

2 cos 2t

2 cos 2t

3

5C c3e�t

2

4

cos 2t � sin 2t

2 sin 2t

2 sin 2t

3

5

10:6:9 (p. 567) y D c1e3t

�

cos 6t � 3 sin 6t

5 cos 6t

�

C c2e3t

�

sin 6t C 3 cos 6t

5 sin 6t

�

10:6:10 (p. 567) y D c1e2t

�

cos t � 3 sin t

2 cos t

�

C c2e2t

�

sin t C 3 cos t

2 sin t

�

10:6:11 (p. 567) y D c1e2t

�

3 sin 3t � cos 3t

5 cos 3t

�

C c2e2t

�

�3 cos 3t � sin 3t

5 sin 3t

�

10:6:12 (p. 567) y D c1e2t

�

sin 4t � 8 cos 4t

5 cos 4t

�

C c2e2t

�

� cos 4t � 8 sin 4t

5 sin 4t

�

10:6:13 (p. 567) y D c1

2

4

�1

1

1

3

5 e�2t C c2et

2

4

sin t

� cos t

cos t

3

5C c3et

2

4

� cos t

� sin t

sin t

3

5

10:6:14 (p. 567) y D c1

2

4

2

2

1

3

5 e�2t C c2e2t

2

4

� cos 3t � sin 3t

� sin 3t

cos 3t

3

5C c3e2t

2

4

� sin 3t C cos 3t

cos 3t

sin 3t

3

5

10:6:15 (p. 567) y D c1

2

4

1

2

1

3

5 e3t C c2e6t

2

4

� sin 3t

sin 3t

cos 3t

3

5C c3e6t

2

4

cos 3t

� cos 3t

sin 3t

3

5

10:6:16 (p. 567) y D c1

2

4

1

1

1

3

5 et C c2et

2

4

2 cos t � 2 sin t

cos t � sin t

2 cos t

3

5C c3et

2

4

2 sin t C 2 cos t

cos t C sin t

2 sin t

3

5

10:6:17 (p. 567) y D et

�

5 cos 3t C sin 3t

2 cos 3t C 3 sin 3t

�

10:6:18 (p. 567) y D e4t

�

5 cos 6t C 5 sin 6t

cos 6t � 3 sin 6t

�

10:6:19 (p. 567) y D et

�

17 cos 3t � sin 3t

7 cos 3t C 3 sin 3t

�

10:6:20 (p. 567) y D et=2

�

cos.t=2/ C sin.t=2/

� cos.t=2/ C 2 sin.t=2/

�

10:6:21 (p. 567) y D

2

4

1

�1

2

3

5 et C e4t

2

4

3 cos t C sin t

cos t � 3 sin t

4 cos t � 2 sin t

3

5

10:6:22 (p. 567) y D

2

4

4

4

2

3

5 e8t C e2t

2

4

4 cos 2t C 8 sin 2t

�6 sin 2t C 2 cos 2t

3 cos 2t C sin 2t

3

5

10:6:23 (p. 567) y D

2

4

0

3

3

3

5 e�4t C e4t

2

4

15 cos 6t C 10 sin 6t

14 cos 6t � 8 sin 6t

7 cos 6t � 4 sin 6t

3

5

10:6:24 (p. 567) y D

2

4

6

�3

3

3

5 e8t C

2

4

10 cos 4t � 4 sin 4t

17 cos 4t � sin 4t

3 cos 4t � 7 sin 4t

3

5

10:6:29 (p. 568) U D 1p
2

�

�1

1

�

, V D 1p
2

�

1

1

�

10:6:30 (p. 568) U �
�

:5257

:8507

�

, V �
�

�:8507

:5257

�

10:6:31 (p. 568) U �
�

:8507

:5257

�

,
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V �
�

�:5257

:8507

�

10:6:32 (p. 568) U �
�

�:9732

:2298

�

, V �
�

:2298

:9732

�

10:6:33 (p. 568) U �
�

:5257

:8507

�

, V �
�

�:8507

:5257

�

10:6:34 (p. 568) U �
�

�:5257

:8507

�

, V �
�

:8507

:5257

�

10:6:35 (p. 569) U �
�

�:8817

:4719

�

, V �
�

:4719

:8817

�

10:6:36 (p. 569) U �
�

:8817

:4719

�

, V �
�

�:4719

:8817

�

10:6:37 (p. 569) U D
�

0

1

�

, V D
�

�1

0

�

10:6:38 (p. 569) U D
�

0

1

�

, V D
�

1

0

�

10:6:39 (p. 569) U D 1p
2

�

1

1

�

, V D 1p
2

�

�1

1

�

10:6:40 (p. 569) U �
�

:5257

:8507

�

, V �
�

�:8507

:5257

�

Section 10.7 Answers, pp. 577–579

10:7:1 (p. 577)

�

5e4t C e�3t .2 C 8t/

�e4t � e�3t .1 � 4t/

�

10:7:2 (p. 577)

�

13e3t C 3e�3t

�e3t � 11e�3t

�

10:7:3 (p. 577)
1

9

�

7 � 6t

�11 C 3t

�

10:7:4 (p. 577)

�

5 � 3et

�6 C 5et

�

10:7:5 (p. 577)

�

e�5t .3 C 6t/ C e�3t .3 � 2t/

�e�5t .3 C 2t/ � e�3t .1 � 2t/

�

10:7:6 (p. 577)

�

t

0

�

10:7:7 (p. 577) �1

6

2

4

2 � 6t

7 C 6t

1 � 12t

3

5

10:7:8 (p. 577) �1

6

2

4

3et C 4

6et � 4

10

3

5

10:7:9 (p. 577)
1

18

2

4

et .1 C 12t/ � e�5t .1 C 6t/

�2et .1 � 6t/ � e�5t .1 � 12t/

et .1 C 12t/ � e�5t .1 C 6t/

3

5 10:7:10 (p. 577)
1

3

2

4

2et

et

2et

3

5 10:7:11 (p. 577)

�

t sin t

0

�

10:7:12 (p. 577) �
�

t2

2t

�

10:7:13 (p. 577) .t � 1/ .ln jt � 1j C t /

�

1

�1

�

10:7:14 (p. 577)
1

9

�

5e2t � e�3t

e3t � 5e�2t

�

10:7:15 (p. 577)
1

4t

�

2t3 ln jt j C t3.t C 2/

2 ln jt j C 3t � 2

�

10:7:16 (p. 577)
1

2

�

te�t .t C 2/ C .t3 � 2/

tet .t � 2/ C .t3 C 2/

�

10:7:17 (p. 577) �

2

4

t

t

t

3

5 10:7:18 (p. 578)
1

4

2

4

�3et

1

e�t

3

5 10:7:19

(p. 578)

2

4

2t2 C t

t

�t

3

5 10:7:20 (p. 578)
et

4t

2

4

2t C 1

2t � 1

2t C 1

3

5

10:7:22 (p. 578) (a) y0 D

2

6

6

6

6

6

4

0 1 � � � 0

0 0 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

�Pn.t /=P0.t / �Pn�1=P0.t / � � � �P1.t /=P0.t /

3

7

7

7

7

7

5

y C

2

6

6

6

4

0

0
:::

F.t /=P0.t /

3

7

7

7

5

:
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(b)

2

6

6

6

4

y1 y2 � � � yn

y0
1 y0

2 � � � y0
n

:::
:::

: : :
:::

y
.n�1/
1 y

.n�1/
2 � � � y

.n�1/
n

3

7

7

7

5



Index

A

Abel’s formula, 199–203, 469

Accelerated payment, 139

Acceleration due to gravity, 151

Airy’s equation, 320

Amplitude,

of oscillation, 271

time-varying, 280

Amplitude–phase form, 272

Aphelion distance, 301

Apogee, 301

Applications,

of first order equations, 130–192

autonomous secondorder equations, 162–179

cooling problems, 140–141

curves, 179–192

elementary mechanics, 151–177

growth and decay, 130–140

mixing problems, 143–150

of linear second order equations, 268–303

motion under a central force, 296–303

motion under inverse square law force, 300–

302

RLC circuit, 290–296

spring–mass systems, 268–290

Autonomous second order equations, 162–183

conversion to first order equations, 162

damped 173–178

pendulum 174

spring–mass system, 173

Newton’s second law of motion and, 163

undamped 164–172

pendulum 173–169

spring–mass system, 165–173

stability and instability conditions for, 170–178

B

Beat, 275

Bernoulli’s equation, 63–64

Bessel functions of order �, 361

Bessel’s equation, 205 287, 349

of order �, 361

of order zero, 378

ordinary point of, 320

singular point of, 320, 343

Bifurcation value, 54, 176

Birth rate, 2

Laplace equation,

Capacitance, 291

Capacitor, 291

Carbon dating, 136

Central force,

motion under a, 296–303

in terms of polar coordinates,

Characteristic equation, 211

with complex conjugate roots, 214–217

with disinct real roots, 211–217

with repeated real root, 212, 217

Characteristic polynomial, 210, 341, 476

Charge, 291

steady state, 294

Chebyshev polynomials, 323

Chebshev’s equation, 323

Circuit, RLC . See RLC circuit

Closed Circuit, 290

Coefficient(s) See also Constant coefficient equations

computing recursively, 323

in Frobenius solutions, 353–359

undetermined, method of, 229–248, 476–497

principle of superposition and, 235

Coefficient matrix, 517, 517

Competition, species, 6, 542

Complementary equation, 35, 470

Complementary system, 570

Compound interest, continuous, 132, 134

Constant,

damping, 173

decay, 130

645
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spring, 268

temperature decay, 140

Constant coefficient equations, 210, 476

homogeneous, 210–221

with complex conjugate roots, 214–217

with distinct real roots, 211, 217

higher order. See Higher order constant coef-

ficient homogeneous equations

with repeated real roots, 212, 217

with impulses, 453–461

nonhomogeneous, 229–248

with piecewise continuous forcing functions, 431–

440

Constant coefficient homogeneous linear systems of

differential equations, 530–569

geometric properties of solutions,

when n D 2, 537–540, 552–555, 563–566

with complex eigenvalue of constantmatrix, 557–

566

with defective constant matrix, 559–557

with linearly independent eigenvetors, 530–542

Constant solutions of separable first order equations,

48–53

Converge absolutely, 308

Convergence,

of improper integral, 394

open interval of, 307

radius of, 307

Convergent power series, 307

Convolution, 441–453

convolution integral, 446–451

defined, 442

theorem, 442

transfer functions, 447–449

Volterra integral equation, 446

Cooling, Newton’s law of, 3, 140

Cooling problems, 140–141, 148–148

Cosine series, Fourier,

Critically damped motion, 281–282

oscillation, 292–295

Critical point, 163

Current, 290

steady state, 294

transient, 294

Curves, 179–192

equipotential, 185

geometric problems, 183

isothermal, 185

one-parameter famlies of, 179–183 subsubitem

defined, 180

differential equation for, 180

orthogonal trajectories, 190–190, 192

finding, 186–190

D

Damped autonomous second order equations, 172–

179

for pendulum, 174

for spring-mass system, 173

Damped motion, 268

Damping,

RLC circuit in forced oscllation with, 294

spring-mass systems with, 173, 268, 279–289

critically damped motion, 281–284

forced vibrations, 284–288

free vibrations, 279–284

overdamped motion,280

underdamped motion, 280

spring-mass systems without, 269–277

forced oscillation, 274–277

Damping constant, 173

Damping forces, 163, 268

Dashpot, 268

Dating, carbon, 135–136

Death rate 3

Decay, See Exponential growth and decay,

Decay constant, 130

Derivatives, Laplace transform of, 414–416

Differential equations,

defined, 8

order of, 8

ordinary, 8

partial, 8

solutions of, 9–11

Differentiation of power series, 309

Dirac, Paul A. M., 453

Dirac delta function, 453

Direction fields for first order equations, 16–27

Discontinuity,

jump, 399

removable, 409

Distributions, theory of, 454

Divergence of improper integral, 394

Divergent power series, 307

E

Eccentricity of orbit, 301

Elliptic orbit, 301

Epidemics 5–53

Equidimensional equation, 487

Equilibrium, 163

spring-mass system, 268

Equilibrium position, 268

Equipotentials, 185

Error(s),

in applying numerical methods, 96

in Euler’s method, 97–102
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at the i -th step, 96

truncation, 96

global, 102, 111, 119

local, 100

local, numerical methods with O.h3/, 114–

116

Escape velocity, 159

Euler’s equation, 344–347, 229

Euler’s identity, 96–108

Euler’s method, 96–108

error in, 97–100

truncation, 100–102

improved, 109–114

semilinear, 102–106

step size and accuracy of, 97

Exact first order equations, 73–83

implicit solutions of, 74–74

procedurs for solving, 77

Exactness condition, 75

Existence of solutions of nonlinear first order equa-

tions, 56–62

Existence theorem, 40, 56

Exponential growth and decay, 130–140

carbon dating, 136

interest compounded continuously, 134

mixed growth and decay, 134

radioactive decay, 130

savings program, 136

Exponential order, function of, 401

F

First order equations, 31–93

applications of See under Applications.

autonomous second order equation converted to,

162

direction fields for, 16–20

exact, 73–83

implicit solution of, 74

procedurs for solving, 77

linear, 31–44

homogeneous, 106–35

nonhomogeneous, 35–41

solutions of, 30

nonlinear, 41, 52, 56–73

existence and uniqueness of solutions of, 56–

62

transformation into separables, 63–73

numerical methods for solving. See Numerical

method

separable, 45–55, 68–73

constant solutions of, 48–50

implicit solutions of, 47–48

First order systems of equations,

higher order systems written as, 512

scalar differential equations written as, 513

First shifting theorem, 398

Force(s)

damping, 163, 268

gravitational, 151, 158

impulsive, 454

lines of, 185

motion under central, 297–303

motion under inverse square law, 300–303

Forced motion, 268

oscillation

damped, 294–295

undamped, 274–277

vibrations, 284–288

Forcing function, 194

without exponential factors, 517, 517 488–495

with exponential factors, 244–244

piecewise continuous constant equations with,

431–440

Free fall under constant gravity, 13

Free motion, 268

oscillation, RLC circuit in, 292–293

vibrations, 279–284

Frequency, 280

of simple harmonic motion, 293

Frobenius solutions, 348–391

indicial equation with distinct real roots differ-

ing by an integer, 379–391

indicial equation with distinct real roots not dif-

fering by an integer, 352–365

indicial equation with repeated root, 365–379

power series in, 349

recurrence relationship in, 351

two term, 354–356

verifying, 358

Fundamental matrix, 525

Fundamental set of solutions, of higher order constant

coefficient homogeneous equations, 481–

483

of homogeneous linear second order equations,

198, 203

of homogeneous linear systems of differential

equations, 523, 525

of linear higher order equations, 467

G

Gamma function, 404

Generalized Riccati equation, 72, 255

General solution

of higher order constant coefficient homogeneous

equations, 476–481

of homogeneous linear second order equations,
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198

of homogeneous linear systems of differential

equations, 522, 525

of linear higher order equations, 466, 470

of nonhomogeneous linear first order equations,

30, 40

of nonhomogeneous linear second order equa-

tions, 221, 248–255

Geometric problems, 235–184

Global truncation error in Euler’s method, 102

Glucose absorption by the body, 5

Gravitation, Newton’s law of, 151, 176, 296, 511, 516

Gravity, acceleration due to,151

Grid, rectangular, 17

Growth and decay,

carbon dating, 136

exponential, 130–140

interest compounded continuously, 133–134

mixed growth and decay, 134

radioactive decay, 130

savings program, 136

H

Half-life, 130

Half-line, 537

Half-plane, 553

Harmonic conjugate function, 82

Harmonic function, 82

Harmonic motion, simple, 167, 271 293, 293

amplitude of oscillation, 272

natural frequancy of, 272

phase angle of, 272

nonhomogeneous problems,

Heat flow lines, 185

Heaviside’s method, 408, 413

Hermite’s equation, 323

Heun’s method, 116

Higher order constant coefficient homogeneous equa-

tions, 476–488

characteristic polynomial of, 483–479

fundamental sets of solutions of, 481

general solution of, 477–483

Homogeneous linear first order equations, 30–34

general solutions of, 33

separation of variables in, 35

Homogeneous linear higher order equations, 466

Homogeneous linear second order equations, 194–221

constant coefficient, 210–221

with complex conjugate roots, 214–217

with distinct real roots, 210–217

with repeated real roots, 210–214, 217

solutions of, 194, 198

the Wronskian and Abel’s formula, 199–203

Homogeneous linear systems of differential equations,

517

basic theory of, 522–529

constant coefficient, 530–569

with complex eigenvalues of coefficient ma-

trix, 557–569

with defective coefficient matrix, 543–552

geometric properties of solutions when n D
2, 530–540, 552–555, 563–566

with linearly independent eigenvectors, 530–

540 subitem fundamental set of solutions

of, 522, 525

general solution of, 522, 525

trivial and nontrivial solution of, 522

Wronskian of solution set of, 524

Homogeneous nonlinear equations

defined, 65

transformation into separable equations, 65–68

Hooke’s law, 268–269

I

Imaginary part, 215

Implicit function theorem, 47

Implicit solution(s) 73–74

of exact first order equations, 73–74

of initial value problems, 47

of separable first order equations, 47–49

Impressed voltage, 53

Improper integral, 394

Improved Euler method, 108–112 121–122

semilinear, 112–114

Impulse function, 453

Impulse response, 449, 456

Impulses, constant coefficient equations with, 453–

462

Independence, linear

of n function, 467

of two functions, 199

of vector functions, 526

Indicial equation, 344, 352

with distinct real roots differing by an integer,

380–391

with distinct real roots not differing by an inte-

ger, 352–365

with repeated root, 365–379

Indicial polynomial, 344, 352

Inductance, 291

Initial conditions, 11

Initial value problems, 11–14

implicit solution of, 47

Laplace transforms to solve, 414–420

formula for, 444–445

second order equations, 416–420
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Integral curves, 9–9, 414–27,

Integrals,

convolution, 446–446

improper, 394

Integrating factors, 83–93

finding, 84–93

Interest compounded continuously, 132–134

Interval of validity, 12

Inverse Laplace transforms, 405–414

defined, 405

linearity property of, 406

of rational functions, 407–414

Inverse square law force, motion under, 300–302

Irregular singular point, 343

Isothermal curves, 185

J

Jump discontinuity, 399

K

Kepler’s second law, 297

Kepler’s third law, 302

Kirchoff’s Law, 291

L

Laguerre’s equation, 349

boundary conditions,

formal solutions of,

Laplace transforms, 394–462

computation of simple, 394–397

of constant coefficient equations

with impulses 453–462

with piecewise continuous forcing functions,

431–440

convolution, 441–453

convolution integral, 446

defined, 442

theorem, 442

transfer functions, 447–449

definition of, 394

existence of, 399

First shifting theorem, 398

inverse, 405

defined, 404

linearity property of, 406

of rational functons, 407–412

linearity of, 397

of piecewise continuous functions, 422–431

unit step function and, 421–431

Second shifting theorem, 426

to solve initial value problems, 414–420

derivatives , 414–416

formula for, 444–445

second order equations, 416

tables of, 397

Legendre’s equation, 205, 320

ordinary points of, 320

singular points of, 320, 348

Limit, 399

Limit cycle, 176

Linear combination(s), 198, 466, 522

of power series, 314–317

Linear difference equations, second order homoge-

neous, 341

Linear first order equations, 30–44

homogeneous, 30–35

general solution of, 33

separation of variables, 35

nonhomogeneous, 30, 35–41

general solution of, 35–41

solutions in integral form, 38–39

variation of parameters to solve, 35, 38

solutions of, 30–31

Linear higher order equations, 466–506

fundamental set of solutions of, 466, 467

general solution of, 466, 470

higher order constant coefficient homogeneous

equations, 476–488 characteristic polyomial

of 476–481

fundamental sets of solutions of, 480–483

general solution of, 477–479

homogeneous, 466

nonhomogeneous, 466, 470

trivial and nontrivial solutions of, 466

undetermined coefficients for, 488–497

variation of parameters for, 498–506

derivation of method, 498–500

fourth order equations, 502–498

third order equations, 500

Wronskian of solutions of 468–470

Linear independence 199

of n functions, 467

of two functions, 199

of vector functions, 522–524

Linearity,

of inverse Laplace transform, 406

of Laplace transform, 397

Linear second order equations, 194–264

applications of. See under Applications

defined, 194

homogeneous, 194–221

constant coefficient, 210–201

solutions of, 194–198

the Wronskian and Abel’s formula, 199–203

nonhomnogeneous, 194, 221–264, 466, 470

comparison of methods for solving, 203
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complementary equation for, 221

constant coefficient, 229–248

general solution of, 221–225

particular solution of, 221, 225–227

reduction of order to find general solution of,

248–255

superposition principle and, 225–227

undetermined coefficients method for, 229–

248

variation of parameters to find particular so-

lution of, 255–264

series solutions of, 307–391

Euler’s equation, 344–348

Frobenius solutions, 348–391

near an ordinary point, 320–340

with regular singular points, 343–348

Linear systems of differential equations, 516–579

defined, 516

homogeneous, 516

basic theory of, 522–530

constant coefficient, 530–569

fundamental set of solutions of, 522–525

general solution of, 522, 525

linear indeopendence of, 522, 525

trivial and nontrivial solution of, 522

Wronskian of solution set of, 524

nonhomogeneous, 517

variation of parameters for, 570–578

solutions to initial value problem, 516–518

Lines of force, 185

local truncation error, 100–102

numerical methods with O.h3/, 114-116

Logistic equation 3

M

Maclaurin series, 309

Magnitude of acceleration due to gravity at Earth’s

surface, 151

Malthusian model, 2

Mathematical models, 2

validity of, 137, 140, 149

Matrix/matrices, 517–519

coefficient,

complex eigenvalue of, 558–569

defective, 543

fundamental, 525

Mechanics, elementary, 151–178

escape velocity, 158–160 162, 162

motion through resisting medium under constant

gravitational force, 151–157

Newton’s second law of motion, 151–151

pendulum motion

damped, 174–176

undamped, 173–169

spring-mass system

damped, 173–174, 269, 279–290

undamped, 165–173,268

units used in, 151

Midpoint method, 109

Mixed Fourier cosine series,

Mixed Fourier sine series,

Mixed growth and decay, 134

Mixing problems, 143–148

Models, mathematical, 2–3

validity of, 137, 140, 149

Motion,

damped, 268

critically, 281

overdamped, 280–281

underdamped, 279

elementary, See Mechanics, elementary

equation of, 269

forced, 270

free, 270

Newton’s second law of, 6, 151–151, 163, 165,

173, 173–174, 268, 297, 511

autonomous second order equations and, 163

simple harmonic, 167, 269–273

amplitude of oscillation, 271

frequency of, 272

phase angle of, 271

through resisting medium under constant gravi-

tational force, 152–157

under a central force, 296–303

under inverse square law force, 300–302

undamped, 268

Multiplicity, 480

N

Natural frequency, 272

Natural length of spring, 268

Negative half plane, 553

Newton’s law of cooling, 3, 140–141, 148–150

Newton’s law of gravitation, 151, 176, 296, 511, 520

Newton’s second law of motion, 151–151, 163, 166,

173, 176, 268, 297, 510, 511

autonomous second order equations and, 163

Nonhomogeneous linear second order equations, 30,

35, 41

general solution of, 35–38 40–41

solutions in integral form, 38

variation of parameters to solve, 35, 38

Nonhomogeneous linear second order equations, 194,

221–264

comparison of methods for solving, 262

complementary equation for, 221, 221
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constant coefficient, 229–255

general solution of, 221–225

particular solution of, 221, 221–226, 229–235,

255–262

reduction of order to find general solution of,

248–255

superposition principle and, 225–223

undetermined coefficients method for, 229–255

forcing functions with exponential factors, 242–

244

forcing functions without exponential factors,

238–241

superposition principle and, 235

variation of parameters to find particular so-

lution of, 255–264

Nonhomogeneous linear systems of differential equa-

tions, 516

variation of parameters for, 570–579

Nonlinear first order equations, 52 56–73

existence and uniqueness of solutions of, 56–73

transformation into separable equations, 63–73

Nonoscillatory solution, 359

Nontrivial solutions

of homogeneous linear first order equations, 30

of homogeneous linear higher order equations,

466

of homogeneous linear second order equations,

194

of homogeneous linear systems of differential

equations, 522

Numerical methods, 96–127, 515

with O.h3/ local truncation, 114–116

error in, 96

Euler’s method, 96–108

error in, 97–102

semilinear, 102–106

step size and accuracy of, 97

truncation error in, 99–102

Heun’s method, 115

semilinear, 106

improved Euler method, 106, 109–112

semilinear, 112

midpoint, 116

Runge-Kutta method, 98, 106 119–127, 514–

515

for caseswhere x0 isn’t the left endpoint, 122–

124

semilinear, 106, 122

for systems of differential equations, 515

Numerical quadrature, 119, 127

O

One-parameter families of curves, 179–183

defined, 180

differential equation for, 180

One-parameter families of functions, 30

Open interval of convergence, 307

Open rectangle, 56

Orbit, 302

eccentricity of, 301

elliptic, 301

period of, 302

Order of differential equation, 8

Ordinary differential equation,

defined, 8

Ordinary point, series solutions of linear second order

equations near, 320–342

Orthogonal trajectories, 186–190,

finding, 186

Orthogonal with respect to a weighting function, 332,

332

Oscillation

amplitude of, 271

critically damped, 293

overdamped, 293

RLC circuit in forced, with damping, 294–294

RLC circuit in free, 292–294

undamped forced, 274–277

underdamped, 292

Oscillatory solutions, 232–176, 348

Overdamped motion, 279–280

P

Partial differential equations

defined, 8

Partial fraction expansions, software packages to find,

412

Particular solutions of nonhomogeneous higher equa-

tions, 470, 488–506

Particular solutions of nonhomogeneous linear sec-

ond order equations, 221, 225–226, 229–

235, 255–261

Particular solutions of nonhomogeneous linear sys-

tems equations, 570–579

Pendulum

damped, 174–176

undamped, 173–169

Perigee, 301

Perihelion distance, 301

Periodic functions, 405

Period of orbit, 297

Phase angle of simple harmonic motion, 271–272

Phase plane equivalent, 163

Piecewise continuous functions, 400

forcing, constant coeffocient equations with, 431–

440
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Laplace transforms of 399–402, 422–431

unit step functions and, 421–431

Plucked string, wave equation applied to,

Poinccaré, Henri, 163

Polar coordinates

central force in terms of, 297–299

in amplitude-phase form, 271

Polynomial(s)

characteristic, 210, 341, 483

of higher order constant coefficient homoge-

neous equations, 476–479

Chebyshev, 323

indicial, 344, 352

Taylor, 310

trigonometric, ??

Polynomial operator, 476

Population growth and decay, 2

Positive half-plane, 553

Power series, 307–320

convergent, 307–308

defined, 307

differentiation of, 309–310

divergent, 307

linear combinations of, 314–317

radius of convergence of, 307, 308

shifting summation index in, 311–313

solutions of linear second order equations, rep-

resented by, 320–342

Taylor polynomials, 310

Taylor series, 309

uniqueness of 310–310

Q

Quasi-period, 280

R

Radioactive decay, 130–132

Radius of convergence of power series, 307, 308

Rational functions, inverse Laplace transforms of, 407–

414

Rayleigh, Lord, 171

Rayleigh’s equation, 177

Real part, 215

Rectangle, open, 56

Rectangular grid, 17

Recurrence relations, 323

in Frobenius solutions, 352

two term, 354–356

Reduction of order, 213, 248–255

Regular singular points, 343–348

at x0 D 0, 348–365

Removable discontinuity, 399

Resistance, 291

Resistor, 291

Resonance, 277

Ricatti, Jacopo Francesco, 72

Ricatti equation, 72

RLC circuit, 290–295

closed, 290

in forced oscillation with danping, 294

in free oscillation, 292–294

Roundoff errors, 96

Runge-Kutta method, 98, 119–127, 515

for cases where x0 isn’t the left endpoint, 122

for linear systems of differential equations, 515

semilinear, 106, 122

S

Savings program, growth of, 136

Scalar differential equations, 513

Second order differential equation, 6

autonomous, 162–178

conversion to first order equation, 162

damped, 173–178

Newton’s second law of mation and, 163

undamped, 164–169

Laplace transform to solve, 416–419

linear, See linear second equations

two-point boundary value problems for,

Second order homogeneous linear difference equa-

tion, 341

Second shifting Theorem, 426–428

Semilinear Euler method, 102

Semilinear improved Euler method, 106, 112

Semilinear Runge-Kutta method, 108, 124

Separable first order equations, 45–55

constant solutions of, 48–50

implicit solutions, 47

transfomations of nonlinear equations to, 63–63

Bernoulli’s equation, 63–68

homogeneous nonlinear equations, 65–68

other equations, 64

Separation of variables, 35, 45

to solve Laplace’s equation,

Separatrix, 171, 170

Series, power. See Power series

Series solution of linear second order equations, 307-

391

Frobenius solutions, 348–391

near an ordinary point, 320

Shadow trajectory, 564–566

Shifting theorem

first, 398

second, 426–428

Simple harmonic motion, 269–274

amplitude of oscillation, 271
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natural frequency of, 272

phase angle of, 272

Simpson’s rule, 127

Singular point, 320

irregular, 343

regular, 343–348

Solution(s), 9–10 See also Frobenius solutions Non-

trivial solutions Series solutions of linear

second order equations Trivial solution

nonoscillatory, 359

oscillatory, 359

Solution curve, 9–9

Species, interacting, 6, 541

Spring, natural length of, 268, 269

Spring constant, 268

Spring-mass systems, 268–290

damped, 172, 269, 288–290

critically damped motion, 288–284

forced vibrations, 284–288

free vibrations, 284–285

overdamped motion, 279

underdamped motion, 279

in equilibrium, 268

simple harmonic motion, 269–274

amplitude of oscillation, 272

natural frequency of, 272

phase angle of, 272

undamped, 164–167, 269–277

forced oscillation, 274–288

Stability of equilibrium and critical point, 163–164

Steady state, 135

Steady state charge, 294

Steady state component, 286, 448

Steady state current, 294

String motion, wave equation applied to,

Summation index in power series, 311–313

Superposition, principle of, 44, 225, 235, 471

method of undetermine coefficients and, 235

Systems of differential equations, 508–519 See also

Linear systems of differential equations

first order

higher order systems rewritten as, 323–513

scalar differential equations rewritten as, 513

numerical solutions of, 515

two first order equations in two unknowns, 508–

511

T

Tangent lines, 181

Taylor polynomials, 310

Taylor Series, 309

Temperature, Newton’s law of cooling, 3 140–141,

148–149

Temperature decay constant of the medium, 140

Terminal velocity, 152

Time-varying amplitude, 280

Total impulse, 453

Trajectory(ies),

of autonomous second order equations, 163

orthogonal, 186–190

finding, 186–244

shadow, 564

of 2 � 2 systems, 537–540, 552–555, 563–566

Transfer functions, 447

Transformation of nonlinear equations to separable

first order, equations, 63–81

Bernoulli’s equation, 63

homogeneous nonlinear equations, 65–68

other equations, 64

Transform pair, 394

Transient current, 294

Transient components, 286, 448

Transient solutions, 293

Trapezoid rule, 119

Trivial solution,

of homogeneous linear first order equations, 30

of homogeneous linear second order equations,

194

of homogeneous linear systems of differential

equations, 522

of linear higher order differential equations, 466

Truncation error(s), 96

in Euler’s method, 100

global, 102, 109

local, 100

numerical methods with O.h3/, 114–116

Two-point boundary value problems,

U

Undamped autonomous second order equations, 164–

171

pendulum, 173–169

spring-mass system, 165–167

stability and instabilty conditions for, 170–171

Undamped motion, 268

Underdamped motion, 279

Underdamped oscillation, 292

Undetermined coefficients

for linear higher order equations, 488–497

forcing functions, 488–495

for linear second order equations, 229–248

principle of superposition, 235

Uniqueness of solutions of nonlinear first equations,

56–62

Uniqueness theorem, 40, 56, 194, 466, 517

Unit step function, 423–431
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V

Validity, interval of, 12

Vandermonde, 485

Vandermonde determinant, 485

van der Pol’s equation, 176

Variables, separation of, 35, 45

Variation of parameters

for linear first order equations, 35

for linear higher order equations, 498–506

derivation of method, 498–499

fourth order equations, 502–503

third order equations, 500

for linear higher second order equations, 255

for nonhomogeneous linear systems of differen-

tial equations, 570–579

Velocity

escape, 158–151

terminal, 152–156

Verhulst, Pierre, 3

Verhulst model, 3, 27, 69

Vibrations

forced, 284–288

free, 279–284

Voltage, impressed, 290

Voltage drop, 291

Volterra, Vito 446

Volterra integral equation, 446

W

plucked string,

assumptions, ??

Wave, traveling, ??

332

Wronskian

of solutions of homogeneous linear systems of

differential equations, 524

of solutions of homogeneoussecond differential

equations, 199–201

of solutions of homogeneous linear higher order

differential equations, 468–470
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